【精品奥数】三年级上册数学思维训练讲义-第10讲 填运算符号 人教版(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十讲 添运算符号

第一部分:趣味数学

数学家---华罗庚的故事

小朋友们,“今朝有物不知其数,三三数之剩二,五五数之

剩三,七七数之剩二,问物几何?”你知道是多少吗?赶快读下

面的故事吧,你一定会找到答案的!

聪明好学的华罗庚

华罗庚从小聪明好学,念初中时,在数学课上就表现出了特殊的才华。一天王维克老师给全班出了一道数学题,这是一道出自《孙子算经》的题目:“今朝有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”王老师在读这道题时,读得很慢,声音抑扬顿挫。读完题目后,王老师把目光扫向全班同学,一张张紧张思索的面孔,一道道疑惑不解的目光尽在王老师的视野之内。突然,一个学生站起来,说:“这物品是23个。”这是个熟悉的声音,这声音把小朋友们从思索和疑惑中唤醒过来。大家用惊异的目光看着他。这个最先说出答案的同学就是少年华罗庚。华罗庚在解这道题时是这样想的:从“七七数之剩二”开始,就是说,七个七个的数余二,那么七的倍数再加二定是这个数,不妨设这个数是7×3+2=23。再对23进行检验:23被3除,余2;23被5除余3,因此,23符合题目条件。正是由于华罗庚从小勤奋好学,王维克老师才加倍看重他的聪明与才华。

第二部分 :奥数小练

游戏要点:

根据题目给定的条件和要求,添运算符号和括号,使等式成立,这是一种很有趣的游戏。这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。

添运算符号问题,通常采用尝试探索法。主要尝试方法有两种:1.如果题目中的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子;2.如果题目中的数字多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。

【例题1】在下面各题中添上+、-、×、÷、(),使等式成立。

1 2 3 4 5 = 10 1 2 3 4 5 = 10

1 2 3 4 5 = 10 1 2 3 4 5 = 10

【思路导航】对于这种问题,我们也可以用倒推法来分析。从结果10想起,最后一个数是5,可以从下面几种情况中想:□+5=10,□-5=10,□×5=10,□÷5=10。

(1)从□+5=10考虑,□=5,前4个数必须组成得数是5的算式有:

(1+2)÷3+4+5=10 (1+2)×3-4+5=10

(2)从□-5=10考虑,□=15,前4个数必须组成得数是15的算式有:

1+2+3×4-5=10

(3)从□×5=10考虑,□=2,前4个数必须组成得数是2的算式有:

(1×2×3-4)×5=10 (1+2+3-4)×5=10

(4)从□÷5=10考虑,□=50,前面4个数必须组成得数是50的算式,而前面4个数无法组成得数是50的算式。所以这种思路不可取。

练习一:

1.你能在下面的各数中添上运算符号,使算式成立吗?

(1)4 1 2 5 = 10 (2)4 1 2 5 = 10

2.在下面各数中添上适当的运算符号,使等式成立。

(1)3 4 5 6 8 = 8 (2)3 4 5 6 8 = 8

3.巧添运算符号,使等式成立。

(1)3 3 3 3 =1 (2)3 3 3 3 =2 (3)3 3 3 3 =3

【例题2】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立。你能试一试吗?

8 8 8 8 = 0 8 8 8 8 = 1

8 8 8 8 = 2 8 8 8 8 = 3

【思路导航】这道题除了可以用倒推法来分析,还可以这样想:

(1)等于0的思考方法:假设最后一步运算是减法,那么这四个数可以分成两组,这两组的和、差、积、商应该相等,有:

8+8-(8+8)=0 8×8-8×8=0 8-8-(8-8)=0 8÷8-8÷8=0

(2)等于1的思考方法:假设最后一步是除法,那么四个数分成两组,这两组的和、积、商分别相等,相同的数相除也可得到1,有:

(8+8)÷(8+8)=1 8×8÷(8×8)=1 8÷8÷(8÷8)=1

8×8÷8÷8=1 8÷8×8÷8=1 8÷(8×8÷8)=1

(3)等于2的思考方法:假设最后一步是加法,那么两组数各为1,有:

8÷8+8÷8=2

(4)等于3的思考方法:假设最后一步是除法,那么前三个数凑为3个8,有:

(8+8+8)÷8=3

练习二:

1.在各数中添上+、-、×、÷或(),使算式相等。

4 4 4 4 = 0 4 4 4 4 = 1 4 4 4 4 = 2

4 4 4 4 = 3 4 4 4 4 = 4 4 4 4 4 = 5

2.巧添各种运算符号和括号,使等式成立。

5 5 5 5 5 = 0 5 5 5 5 5 = 1

5 5 5 5 5 = 2 5 5 5 5 5 = 3

3.用8个8组成5个数,再添上适当的运算符号,使它们的和是1000。

8 8 8 8 8 8 8 8 = 1000

【例题3】在4个4之间添上+、-、×、÷或括号,使组成的得数是8。

4 4 4 4 = 8

【思路导航】这类问题,我们可以用倒推方法来分析。这道题最后得数是8,而最后一个数是4,我们可以想□+4=8,□-4=8,□×4=8,□÷4=8,然后再进行解答。

(1)从□+4=8考虑,□=4,前面3个4必须组成得数是4的算式有:

4+4-4+4=8 4-4+4+4=8 4-(4-4)+4=8

(2)从□-4=8考虑,□=12,前3个4必须组成得数是12的算式有:

相关文档
最新文档