送货路线设计(经典版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模作业六
论文成员:
09计本(2)班刘琳岚
09数本(1)班汪灵枝
09数本(1)班钟建忠
2011-8-7
内容摘要;首先标出50个地点。然后用MATLAB软件计算出所有连通线路的距离。结果(取整)如下所示。(程序及结果见附录)
针对问题一:首先根据题中所给数据求出30件货物质量之和49.5kg、体积之和0.9m3,得出结果不超过送货员的载重。所以这里不用考虑质量、体积的约束。本文使用最小生成树法的改进模型,(当两点之间没有直线连接时,应改进为使其两点的距离最短;遇到两点之间不直接连接,如果由这两点组成的最短路径与后面有重复,必须把后面的路径中重复的部分删除。),采用单一目标规划问题,对路程进行优化。得到最优化路线;O-18-13-19-24-31-27-39-27-31-34-40-45-42-49-42-43-38-36-38-35-32-23-16-14-17-21-26-O.
其路程为D= 54618.59 米时间为t=3.32578小时。
针对问题二;题中增加了“时间”这一约束条件,而没有要求返回出发点。所以我们必须在满足各点的时间要求前提下,寻找一条最优的路径。对于此种情况的解决方法,我们将22个节点按时间限制划分为四个阶段,分别为:9:00、9:30、10:15、12:00 ,然后按照“时间要求越早,先送到”的原则。分析各时间段所需到达的节点,在各区域得出最短路径。依
据各分区域“路径均较短,则总路径较短”的原则(注:引自高教版《运筹学》动态规划最优化原理),最短距离用最小生成树法计算。最后经过改进得出总距离最短的具体路径为O-18-13-19-24-31-27-39-27-31-34-40-45-42-49-42-43-38-36-38-35-32-23-16-14-17-21-26
其路程为 53226.59m 时间为3.27h 针对问题三;用最小生成树法对50个地点进行分析。并用最小生成树法分三区并分组求出最佳送货路线,得出的结论可以很好的符合此问题的要求。
一·问题重述
现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少。
现有一快递公司,库房在图1中的O 点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线。各件货物的相关信息见表1,50个位置点的坐标见表2。
假定送货员最大载重50公斤,所带货物最大体积1立方米。送货员的平均速度为24公里/小时。假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算。
现在送货员要将100件货物送到50个地点。请完成以下问题。
1. 若将1~30号货物送到指定地点并返回。设计最快完成路线与方式。给出结果。要求标出送货线路。
2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。要求标出送货线路。
3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。设计最快完成路线与方式。要求标出送货线路,给出送完所有快件的时间。由于受重量和体积限制,送货员可中途返回取货。可不考虑中午休息时间。
二·问题分析 在路线中,每个目的地看作图中的一个节点,各目的地之间的路看作图中连通节点的边,各条路的长度或行驶时间看作对应边上的权所给的线路网就转化为加权网络图,而所求问题就转化为在给定的加权网络图中寻找从给定点O 出发行遍所有顶点至少一次再回到O 点,使得总权即时间最短。
对于第一道题前三十个货到达的目的地的节点看作点集V,连接任意两点的路线所需时间作为权值赋给对应边,形成边集E 得到加权图G(V,E)(因为32和38两地点通过35的路线比其他路都短所以可以两点直接连起而权值为323835→→的权值和)。
我们可以采用最小生成树法算出0点到 任意一点的最短距离,然后根据最短路线逐次加边加权得到从0点出发回到0点的最短路线。
问题二我们将22个节点按时间限制划分为四个阶段,分别为:9:00、9:30、10:15、12:00 ,然后按照“时间要求越早,先送到”的原则。分析各时间段所需到达的节点,在各区域得出最短路径。依据各分区域“路径均较短,则总路径较短”的原则(注:引自高教版《运筹学》动态规划最优化原理),最短距离用最小生成树法计算。最后得出总距离最短的具体路径
问题三;我们将50个节点按路程近似三等分将区域分为3个区域,在对每个区域运用最小生成树法进行求解。
三·问题假设
第一问;1.假设重复的送货地点仍按一件货物的停留时间算,所以不用考虑主要与次要因素问题。
2.经过某一点停留时,才可以加权,否则不能加权。
3. 假设送货员非常熟悉地理位置,送货中途不间断,不考虑中午休息时间。同时也不考虑装货时间。
4.假设用平均速度代表他的行驶速度。
5。针对第二问;定义;两点间最短距离。就是在连通的所有路上选最短的路程。如0-13两地的最短距离即为0-18-13的距离和
6.针对第三问;(1)以上可大胆假设送货员中途返回两次,即三次送完。
(2)又因为每次送货都不超过50公斤,且货物总重148公斤,总体积为2.98立方米,所以三次送货每次携带的货物总重和总体积必须尽量均衡。
(3)可假设有三个送货员同时送货,结果只需把这三个的总时间加起来即可。
四·模型的符号说明
m表示货物的重量
v表示货物的体积
t表示到达两个地点的时间
T表示总的时间
五·模型的建立与求解
问题一若将1—30号货物送到指定地点并返回设计最短时间路线方式
经计算得前30号货物的重量是M=49.5公斤< 50公斤
V0.9立方米< 1立方米
体积为
所以送货员可以一次送完,而不用考虑是否返回取货。
本题是图上点的行遍性问题。只取30个点得到路线图如下所示
图(1)(前30号货物的目的地除35号地点外)
本题可用最小生成树法求的最小生成树,然后再用模型的改进方案进行初选路线图,最小生成树图如下所示(程序见附录):