推荐:Weinreb酰胺制备和应用总结

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推荐:Weinreb酰胺制备和应用总结

展开全文

自从1981年, Nahm和Weinreb两位科学家发现N-甲氧基-N-甲基酰胺后, Weinreb酰胺(WAs)经二十多年发展, 其作为酰化试剂已被广泛应用于有机合成中. WAs既可与格氏试剂或有机锂试剂反应合成各种结构的酮, 也可经金属氢化物还原得到醛, 且金属试剂过量不会导致产物过度加成, 这些特点使其能大量应用于含羰基化合物的合成策略中, 比如醛、酮、端炔[2]、杂环及天然产物的合成. 另外, WAs 作为反应官能团还可参与Birch还原[3]和Wittig反应[4]等. 如Scheme 1所示, 无论金属有机试剂还是金属氢化物, 均可与WAs形成稳定的假想四面体2 或3, 后者不会立刻转换为醛酮, 从而, 阻止了羰基被进一步加成. 只有加入酸性水溶液进行反应后处理时, 中间体2或3瓦解得到目标产物醛酮. 这样既淬灭了过量的金属有机试剂, 也保证了目标醛酮不会被二次加成. 在有机合成应用中, WAs主要体现出以下四个优点: (1)制备简便. WAs可以通过羧酸或酯原位活化得到; (2)可成功转化为酮. 特别是在全合成复杂天然产物中, 大量文献报道了WAs可与金属有机试剂得到酮; (3)可放大反应; (4) WAs稳定且易贮藏.

之前, Aidhen等[5,6]分别在2000年和2008年综述了Weinreb 酰胺的应用. 但近年来, 有关Weinreb酰胺的应用报道热度不减. 2013

年, Davies 等[7]还在利用N-酰基手性辅助基团不对称合成手性醛酮的综述文章中, 提到了开发手性WAs替代基团进行不对称催化工作. 鉴于Weinreb酰胺的诸多优点及其在合成上的广泛使用, 结合近年来的发展趋势, 本文综述了当前WAs的主要制备方法、最新应用进展及使用限制, 以期全面介绍WAs, 丰富有机化学家的合成手段.

鉴于Weinreb酰胺在合成上频繁被使用, 其各种制备方法已被大量报道, Scheme 2所示. 一般, Weinreb酰胺可以从羧酸及其衍生物为原料, 比如酰氯、酯、内酯、酰亚胺和酸酐等, 与市售的N,O-二甲基羟基胺盐酸盐(DMHA)反应得到. 这其中, 羧酸与DMHA直接转化为WAs的制备策略, 操作最为方便而倍受关注, 因为这样可以避免先将酸转化为反应活性更高的羧酸衍生物(path a). 根据这个策略, 研究者们尝试了各种羧酸活化试剂, 比如: DCC, DEPC, HOBT, CBr4/PPh3, CDI, 烷基氯仿, BOP, EDCI, PPA, CDMT, HOTT, CPMA 及DMT-MM 等肽缩合试剂, 用于WAs的制备, 具体文献可见综述[6], 在此不做复述. 以上反应虽然可以有效制备WAs, 但有时也存在收率低, 反应时间长, 反应剧烈及分离纯化困难等缺点. 最近, 肽缩合剂T3P/DBU[8]被报道用于N-保护氨基酸(肽)WAs 的制备(Eq. 1). 由于, T3P具有低毒、反应温和、廉价及商品化等特点, 与碱DBU配合, 可对各种N-保护的手性氨基酸4, 甚至二肽,与DMHA缩合制备WAs衍生物5, 该反应收率高(>90%), 便于分离且不消旋.

此外, COMU®作为第三代脲阳离子肽缩合剂也被成功用于N-保护氨基酸WAs的制备[9]. 不像HATU等苯并三唑类缩合剂, COMU®结构中不含三唑基团, 危险性极低; 在制备WAs反应中, 存在明显的颜色变化, 可裸眼判断反应进程; 反应副产物溶于水, 便于分离, 并且手性氨基酸的消旋化极低. 虽然有以上诸多优点, 但COMU®比较昂贵是一大缺点.

在形成酰胺键的反应中, PPh3常与含卤化合物配合使用, 比如: NCS[10], NBS[11], Br2[12], BrCCl3[13], CCl4[14]等, 可以与羧酸反应有效形成酰胺键. 早先, PPh3/ CBr4组合已经用于WAs的制备[15]. 2010年, Kumar等[16]报道了利用PPh3/I2组合, 可活化羧基, 与DMHA缩合成WAs的反应(Scheme 3). 首先, 等物质的量比PPh3与I2 得到碘化鏻盐8, 后者与脱质子的羧酸形成酰鏻盐或酰碘中间体, 再与DMHA缩合制备9. 该反应在0 ℃进行, 便于操作, 收率在70%左右.

2009年, Niu 等[17]报道了利用PCl3与DMHA反应得到P[NCH3(OCH3)]3(10), 后者可以在甲苯中直接与各种羧酸(芳香酸、

脂肪酸及二元酸), 特别是位阻大的羧酸, 高收率制备WAs (Scheme 4).

除了从羧酸直接活化制备WAs, 也可利用酰卤与DMHA缩合成WAs (path b). 可用于制备WAs的酰化试剂分别为SOCl2和Deoxo-Fluor, 它们可将羧酸先分别转化为酰氯和酰氟. 2013 年, Pace 等[18]报道了酰氯可与DMHA在生物溶剂2-MeTHF[19]和碱水组成的两相体系中制备WAs (Eq. 2). 由于2-MeTHF与水不互溶, 反应中生成的13 溶在有机相, 而盐酸以无机盐的形式与副产物溶于水相, 反应结束后只需简单分液、减压蒸出2-MeTHF即可得到纯净的WAs. 整个过程不需额外使用任何其他有机溶剂, 体现出很好的绿色化学特性.

与酰氯相比, 酰氟的反应活性更像酯, 比酰氯要更加稳定, 因此反应条件不苛刻. 利用Deoxo-Fluor试剂将羧酸转化为酰氟后, 可用于制备WAs. Deoxo-Fluor试剂14已经用于WAs合成长链脂肪酮[20]. 最近发现, 14甚至可与血浆中的游离脂肪酸形成酰氟, 再与二甲胺反应得到类Weinreb酰胺. 该衍生化方法可用于GC-MS定量检测血浆中游离脂肪酸的含量[21]. 另外, Deoxo- Fluor试剂15也可用于合成4-氟吡咯烷WAs衍生物[22].

2014年, Gupta 等[23]报道了从醇或醛合成三氯甲基甲醇16, 后者可经同系化-胺化反应制备多一个碳的WAs 17(path c), 收率达到75%~89% (Eq. 3). 该反应的底物适用性不是特别理想, 当R为除芳基或烷基之外的取代基时, 会出现大量的脱甲氧基副产物18.

其反应机理如Scheme 5所示.

此外, 经酯与内酯(path d)、酰亚胺(path e)、混酐(path f)及醛(path g)等为原料与DMHA缩合, 均可制备WAs[6], 近几年报道不多, 代表性例子[24~27]可见Scheme 6.

相关文档
最新文档