粒子群优化算法综述
粒子群优化算法介绍
![粒子群优化算法介绍](https://img.taocdn.com/s3/m/797a46d1900ef12d2af90242a8956bec0875a579.png)
粒子群优化算法介绍
粒子群优化算法(Particle Swarm Optimization,PSO)是一种
基于群体智能的优化方法,其中包含了一组粒子(代表潜在解决方案)在n维空间中进行搜索,通过找到最优解来优化某个问题。
在PSO的
过程中,每个粒子根据自身当前的搜索位置和速度,在解空间中不断
地寻找最优解。
同时,粒子也会通过与周围粒子交换信息来寻找更好
的解。
这种信息交换模拟了鸟群或鱼群中的信息交流行为,因此PSO
算法也被称为群体智能算法。
由于其并行搜索和对局部最优解的较好处理,PSO算法在多个领
域均得到了广泛应用。
其中最常用的应用之一是在神经网络和其他机
器学习算法中用来寻找最优解。
此外,PSO算法在图像处理、数据挖掘、机器人控制、电力系统优化等领域也有着广泛的应用。
PSO算法的核心是描述每个粒子的一组速度和位置值,通常使用
向量来表示。
在PSO的初始化阶段,每个粒子在解空间中随机生成一
个初始位置和速度,并且将其当前位置作为当前最优解。
然后,每个
粒子在每次迭代(即搜索过程中的每一次)中根据当前速度和位置,
以及粒子群体中的最优解和全局最优解,更新其速度和位置。
PSO算法的重点在于如何更新各个粒子的速度向量,以期望他们能够快速、准
确地达到全局最优解。
总之, PSO算法是一种群体智能算法,目的是通过模拟粒子在解
空间中的移动来优化某个问题。
由于其简单、有效且易于实现,因此PSO算法在多个领域得到了广泛应用。
粒子群优化算法综述介绍
![粒子群优化算法综述介绍](https://img.taocdn.com/s3/m/99543f69bdd126fff705cc1755270722182e5977.png)
粒子群优化算法综述介绍PSO算法的基本原理是通过多个个体(粒子)在解空间里的,通过不断更新个体的位置和速度来寻找最优解。
每个粒子都有自己的位置和速度,并根据个体历史最佳位置和群体历史最佳位置进行更新。
当粒子接近最优解时,根据历史最优位置和当前位置的差异进行调整,从而实现相对于当前位置的。
具体而言,PSO算法可以分为以下几个步骤:1.初始化粒子群:定义粒子的位置和速度以及适应度函数。
2.更新每个粒子的速度和位置:根据粒子的历史最佳位置和群体历史最佳位置,以及加权系数进行更新。
可以使用以下公式计算:v(i+1) = w * v(i) + c1 * rand( * (pbest(i) - x(i)) + c2 * rand( * (gbest - x(i))x(i+1)=x(i)+v(i+1)其中,v(i+1)是第i+1次迭代时粒子的速度,x(i+1)是第i+1次迭代时粒子的位置,w是惯性权重,c1和c2是学习因子,rand(是一个随机数,pbest(i)是粒子个体历史最佳位置,gbest是整个群体历史最佳位置。
3.更新每个粒子的个体历史最佳位置和群体历史最佳位置:根据当前适应度函数值,更新每个粒子的个体历史最佳位置,同时更新群体历史最佳位置。
4.判断终止条件:当达到预设的最大迭代次数或者适应度函数值达到预设的误差范围时,停止迭代,输出结果。
PSO算法的优点在于简单易用、易于实现、不需要求导和梯度信息,并且可以灵活地应用于各种问题。
然而,PSO算法也存在一些缺点,如易于陷入局部最优解、收敛速度较慢等。
为了克服这些限制,研究者们提出了各种改进的粒子群优化算法,如自适应权重粒子群优化算法(Adaptive Weight Particle Swarm Optimization, AWPSO)、混合粒子群优化算法(Hybrid Particle Swarm Optimization, HPSO)等。
这些算法通过引入更多的因素或策略来加快收敛速度、改善性能。
粒子群优化算法概述
![粒子群优化算法概述](https://img.taocdn.com/s3/m/e43a8e2a001ca300a6c30c22590102020740f21a.png)
粒子群优化算法概述粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,最早由Eberhart和Kennedy于1995年提出。
它模拟了鸟群觅食的行为,并通过不断迭代,使得粒子(鸟)们逐渐找到目标点(食物)。
PSO算法的基本思想是通过模拟鸟群在解空间中的过程来寻找全局最优解。
在算法中,解被称为粒子,可以看作是在解空间中的一点。
每个粒子在解空间中的当前位置被认为是当前的解,并且每个粒子都有一个速度,用于指导粒子下一步的移动方向。
粒子的速度和位置的更新遵循以下规则:1.个体历史最优更新:每个粒子都有一个个体历史最优位置,它记录了粒子在过程中找到的最好解。
如果当前位置的适应度值好于个体历史最优位置的适应度值,则更新个体历史最优位置。
2.全局历史最优更新:整个粒子群有一个全局历史最优位置,即所有粒子中适应度值最好的位置。
如果当前位置的适应度值好于全局历史最优位置的适应度值,则更新全局历史最优位置。
3.速度更新:粒子的速度由个体历史最优位置和全局历史最优位置引导。
速度更新的公式为:V(t+1) = w * V(t) + c1 * r1 * (Pbest - X(t)) + c2 * r2 * (Gbest - X(t))其中,V(t+1)是下一时刻的速度,w是惯性权重,c1和c2是学习因子,r1和r2是随机数,Pbest是个体历史最优位置,Gbest是全局历史最优位置,X(t)是当前位置。
4.位置更新:粒子的位置由当前位置和速度决定。
位置更新的公式为:X(t+1)=X(t)+V(t+1)以上四个步骤不断重复迭代,直到满足停止准则为止,比如达到最大迭代次数或收敛到一个满意的解。
PSO算法具有以下一些特点和优势:1.简单易实现:PSO算法的原理和实现相对简单,不需要对目标函数的导数信息进行求解。
2.全局能力:由于粒子群中的信息共享和协作,PSO算法可以较好地避免陷入局部最优解,有较强的全局能力。
粒子群优化算法综述
![粒子群优化算法综述](https://img.taocdn.com/s3/m/eb92a2826037ee06eff9aef8941ea76e58fa4ab0.png)
粒子群优化算法综述粒子群优化算法的核心思想是模拟粒子通过信息交流来寻找最优解的过程。
每个粒子在空间中通过位置和速度进行与移动。
它们通过个体极值和全局极值的引导来调整自己的速度和位置。
具体而言,每个粒子根据自身经验和信息共享来更新速度和位置,并不断跟随历史经验和全局经验向最优解逼近。
在原始的粒子群优化算法中,粒子的速度和位置更新公式如下:\begin{{align*}}V_{ij}(t+1) &= wV_{ij}(t) + c_1r_1(p_{ij}(t) - x_{ij}(t)) + c_2r_2(g_{ij}(t) - x_{ij}(t)) \\x_{ij}(t+1) &= x_{ij}(t) + V_{ij}(t+1)\end{{align*}}\]其中,$V_{ij}(t)$为粒子$i$在维度$j$上的速度,$x_{ij}(t)$为粒子$i$在维度$j$上的位置,$p_{ij}(t)$为粒子$i$当前的个体最优位置,$g_{ij}(t)$为全局最优位置,$r_1$和$r_2$为[0, 1]的随机数,$c_1$和$c_2$为学习因子。
尽管原始的粒子群优化算法在一些简单问题上表现出良好的性能,但对于复杂问题,其效率和精度有待提升。
因此,研究者进行了一系列的改进与发展。
首先是关于学习因子的改进。
学习因子的选择会影响算法的性能。
经典的学习因子取值策略是将$c_1$和$c_2$设置为常数,但这种策略缺乏自适应性。
改进的学习因子选择方法包括线性递减学习因子、非线性学习因子和自适应学习因子等。
其次是关于收敛性和多样性的改进。
经典的粒子群优化算法容易陷入局部最优解,从而导致的收敛性不佳。
研究者通过引入惯性权重、控制种群多样性、引入随机性等方式改善了算法的收敛性和多样性。
此外,还有一些改进的算法思想在粒子群优化算法中得到了应用。
例如,粒子竞争机制、学习机制和混合策略等。
这些改进方法可以提高粒子群优化算法的效率和精度。
启发式优化算法综述
![启发式优化算法综述](https://img.taocdn.com/s3/m/310596ae5ff7ba0d4a7302768e9951e79b896986.png)
启发式优化算法综述启发式优化算法 (Heuristic Optimization Algorithms) 是一类通过模拟自然界生物学中的智能行为来解决优化问题的算法。
这些算法通常能够在较短的时间内找到接近最优解的解决方案,尤其适用于复杂的优化问题,如组合优化、连续优化、多目标优化等。
1. 粒子群优化算法 (Particle Swarm Optimization, PSO)粒子群优化算法模拟了鸟群捕食行为中个体之间的信息交流和寻找最佳食物源的过程。
在算法中,每个解被看作是一个“粒子”,通过调整速度和位置以最优解。
粒子之间通过更新自己和邻居的最佳位置来共享信息,并且通过迭代的方式不断收敛到全局最优解。
2. 遗传算法 (Genetic Algorithm, GA)遗传算法模拟了生物进化的过程。
算法通过构建一组候选解,称为“染色体”,其中包含了问题的可能解决方案。
算法使用选择、交叉和变异等操作来生成新的染色体,并根据染色体的适应度评估解的质量。
通过不断迭代,遗传算法可以全局最优解。
3. 蚁群算法 (Ant Colony Optimization, ACO)蚁群算法模拟了蚂蚁寻找食物的行为。
在算法中,每只蚂蚁通过释放信息素来标记其行走路径。
蚂蚁根据信息素浓度决定下一步的行动,并且信息素浓度会根据蚂蚁的选择进行更新。
通过蚂蚁的协作和信息素的反馈,蚁群算法能够出较优解。
4. 模拟退火算法 (Simulated Annealing, SA)模拟退火算法模拟了固体从高温退火到低温的冷却过程。
算法从一个初始解开始,通过随机地变换当前解以生成新的解,并计算新解的目标函数值。
算法根据目标函数值的变化和当前温度来决定是否接受新解。
通过逐渐降低温度的方式,模拟退火算法最终能够收敛到全局最优解。
这些启发式优化算法在不同的问题领域都取得了一定的成功。
它们被广泛运用于机器学习、数据挖掘、智能优化等领域,解决了很多实际问题。
尽管启发式优化算法在大多数情况下能够找到较优解,但并不能保证找到确切的全局最优解。
粒子群优化方法范文
![粒子群优化方法范文](https://img.taocdn.com/s3/m/1524d5230a1c59eef8c75fbfc77da26925c59618.png)
粒子群优化方法范文
具体而言,粒子群优化算法包括以下几个步骤:
1.初始化粒子群:设定种群中粒子的初始位置和初始速度,并为每个粒子随机分配初始解。
2.评估个体适应度:通过适应度函数评估每个粒子的适应度,确定其解的质量。
3.更新粒子速度和位置:根据自身历史最优解和全局历史最优解,调整粒子的速度和位置,并更新粒子自身的最优解。
4.更新全局最优解:根据所有粒子的最优解,更新全局最优解,记录当前到的最佳解。
5.判断终止条件:设定终止条件,例如达到最大迭代次数、适应度值的收敛等,判断是否结束优化。
6.迭代更新:不断重复步骤2至5,直到满足终止条件。
相对于其他优化算法,粒子群优化算法具有以下优点:
1.简单而直观:算法的核心思想易于理解,模拟了生物群体的行为规律。
2.全局能力:粒子群优化算法可以问题的全局最优解,避免陷入局部最优解。
3.并行化和分布式计算:粒子群优化算法的并行化和分布式计算非常容易实现,能够加速求解过程。
然而,粒子群优化算法也存在一些不足之处:
1.对参数的敏感性:算法的性能受到参数设置的影响,不同问题需要不同的参数组合。
2.适应度函数的选取:适应度函数的选择对算法的结果有着重要的影响,需要根据问题的特点进行合理的设计。
3.收敛速度较慢:在寻找复杂问题的最优解时,粒子群优化算法可能需要较长的时间来收敛。
总之,粒子群优化算法是一种有效的全局优化算法,能够在多种问题中找到较优解。
通过合理选择参数和适应度函数,并结合其他优化方法,可以进一步提高算法的性能和收敛速度。
粒子群优化算法精讲
![粒子群优化算法精讲](https://img.taocdn.com/s3/m/6124c0e7cf2f0066f5335a8102d276a200296034.png)
粒子群优化算法精讲粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,源自对鸟群觅食行为的观察与模拟。
它通过模拟鸟群中个体通过合作与信息交流来找到最优解的行为,从而在空间中找到最优解。
本文将详细介绍PSO算法的原理、步骤和应用,并提供多个例子以加深理解。
1.粒子群优化算法原理:PSO算法通过模拟鸟群中个体的行为来进行。
每个个体被称为粒子,其在空间中的位置被表示为一个向量,向量的每个维度表示一个参数。
每个粒子都有一个速度向量,表示其在空间中的移动速度。
粒子的位置和速度会根据个体最优和全局最优进行更新。
2.粒子群优化算法步骤:a.初始化粒子群:随机生成一定数量的粒子,初始化其位置和速度。
b. 更新粒子位置和速度:根据当前位置和速度,计算下一时刻的位置和速度。
速度更新公式为 v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 * rand( * (gbest - x(t)),其中w为惯性权重,c1和c2为加速因子,pbest为个体最优,gbest为全局最优,x(t)为当前位置。
c.更新个体最优和全局最优:对于每个粒子,比较其当前位置的适应度和个体最优,更新个体最优。
比较全体粒子的个体最优,更新全局最优。
d.终止条件判断:判断是否满足终止条件,如达到最大迭代次数或适应度达到阈值。
e.返回结果:返回全局最优位置作为最优解。
3.粒子群优化算法应用:PSO算法广泛应用于函数优化、机器学习、图像处理等领域。
下面列举几个具体的例子:a. 函数优化:PSO算法可以用来求解连续函数的最优解,如Rastrigin函数、Ackley函数等。
通过定义适应度函数,将函数优化问题转化为求解适应度最大化或最小化的问题。
b.神经网络训练:PSO算法可以用来训练神经网络的权重和偏置,从而提高神经网络的性能。
通过定义适应度函数,将神经网络训练问题转化为求解适应度最大化或最小化的问题。
生物信息计算模型优化算法综述
![生物信息计算模型优化算法综述](https://img.taocdn.com/s3/m/c3747862cec789eb172ded630b1c59eef8c79aec.png)
生物信息计算模型优化算法综述随着科技的进步和生物信息学领域的发展,生物信息计算模型在解决生物学问题和推动医学研究上发挥着重要作用。
然而,由于复杂性和高维度的特点,生物信息数据的分析和处理面临着诸多挑战。
为此,研究人员开发了各种优化算法,以提高生物信息计算模型的准确性和效率。
本文将综述目前常用的生物信息计算模型优化算法,包括粒子群算法、遗传算法、蚁群算法以及模拟退火算法。
1. 粒子群算法(Particle Swarm Optimization,PSO)粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群或鱼群的行为特点实现优化目标的搜索过程。
在生物信息计算模型中,粒子群算法可以应用于序列比对、蛋白质折叠、基因定位等问题。
算法通过粒子群的位置和速度来表示解向量的搜寻过程,不断更新粒子的速度和位置,直到找到全局最优解或满足收敛条件。
2. 遗传算法(Genetic Algorithm,GA)遗传算法是一种基于进化理论的优化算法,通过模拟生物进化的过程来寻求最优解。
在生物信息计算模型中,遗传算法可以应用于基因选择、SNP(Single Nucleotide Polymorphisms)挖掘和基因表达分析等问题。
算法通过种群的选择、交叉和变异操作来模拟自然选择的过程,以生成更优解。
遗传算法具有全局搜索能力和并行处理特点,在生物信息学领域中被广泛应用。
3. 蚁群算法(Ant Colony Optimization,ACO)蚁群算法是一种模拟蚂蚁寻找食物的行为特点的优化算法,通过模拟蚂蚁释放信息素和信息素挥发的过程来寻找最优解。
在生物信息计算模型中,蚁群算法可以应用于聚类分析、基因网络分析等问题。
算法通过蚁群在解空间中随机搜索,并根据路径上信息素的浓度选择更优的路径,最终找到全局最优解。
蚁群算法具有自适应性和强鲁棒性,对于高纬度的数据处理具有一定优势。
4. 模拟退火算法(Simulated Annealing,SA)模拟退火算法是一种基于金属退火过程的优化算法,通过模拟固体的退火过程来寻找最优解。
粒子群算法综述
![粒子群算法综述](https://img.taocdn.com/s3/m/d677e083d4d8d15abe234e7d.png)
粒子群优化算法粒子群优化算法又翻译为粒子群算法、微粒群算法、或微粒群优化算法。
定义粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。
是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。
通常认为它是群集智能 (Swarm intelligence, SI) 的一种。
它可以被纳入多主体优化系统 (Multiagent Optimization System, MAOS). 粒子群优化算法是由Eberhart博士和kennedy博士发明。
PSO模拟鸟群的捕食行为PSO模拟鸟群的捕食行为。
一群鸟在随机搜索食物,在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
从模型中得到的启示PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO初始化PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。
第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。
算法介绍在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
粒子群优化算法综述
![粒子群优化算法综述](https://img.taocdn.com/s3/m/d1f1cf1df011f18583d049649b6648d7c1c70822.png)
粒子群优化算法综述粒子群优化(Particle swarm optimization, PSO)是一种以群体行为模型为基础的进化算法,它是模拟群体中每个体的行动及各种影响机制来找到最优解。
1995年,Eberhart和Kennedy提出了粒子群优化(PSO)算法。
这个算法被用于多维、非线性优化问题,并认为其结果要好于其他搜索算法。
一、粒子群优化算法介绍:1、算法框架:粒子群优化算法是一种迭代搜索算法,它模拟生物世界中群体行为的进化机制来寻找最优解,它的基本框架如下:(1)初始化参数:决定搜索空间的边界条件,确定粒子群的初始状态;(2)计算适应度函数:按照不同的情况确定适应度函数,计算粒子群种群体的适应度;(3)更新种群体:根据当前种群体的适应度情况,更新个体的位置和速度;(4)迭代搜索:重复以上步骤,等待算法收敛到最优解;(5)结果输出:输出算法收敛的最优解。
2、算法特点:粒子群优化算法具有以下优势:(1)算法易于实现;(2)参数少;(3)计算局部搜索和全局搜索并重;(4)利用简单的几何形式,可以用于多目标优化问题。
二、应用情况:粒子群优化算法在多种复杂场景中应用十分灵活,它可以用于以下几个应用场景:(1)最优控制问题:用于解决轨道优化、多种自控问题。
(2)另一个应用领域是多元函数的优化求解,例如多元函数拟合、计算仿真等。
(3)另一个重要应用领域是信息处理,包括图像处理、模式识别等。
三、发展趋势:粒子群优化算法具有很好的搜索能力、实现简单以及参数少等优点,由于其交叉搜索能力和准确度,越来越受到关注,并被采用到各个领域。
然而,近些年,粒子群优化算法也因其原始算法难以改进收敛精度方面存在一定限制,受到两方面限制:一是获得最优解的能力较弱;二是收敛速度较慢。
四、结论:粒子群优化算法是一种利用生物行为模型进行优化的新算法,它在最优控制技术、多元函数优化求解以及信息处理等多个方面具有很好的应用价值。
虽然存在一定的缺点,但是随着计算机能力和计算机科学的发展,粒子群优化算法仍然具有良好的发展前景。
粒子群算法研究综述
![粒子群算法研究综述](https://img.taocdn.com/s3/m/f7858d4602d276a201292e78.png)
粒子群算法综述控制理论与控制工程09104046 吕坤一、粒子群算法的研究背景人工智能经过半个世纪的发展,经历了由传统人工智能、分布式人工智能到现场人工智能等阶段的发展。
到二十世纪九十年代,一些学者开始从各种活动和现象的交互入手,综合地由个体的行为模型开始分析社会结构和群体规律,于是90年代开始,就产生了模拟自然生物群体(swarm)行为的优化技术。
Dorigo等从生物进化的机理中受到启发, 通过模拟蚂蚁的寻径行为, 提出了蚁群优化方法;Eberhar 和Kennedy于1995年提出的粒子群优化算法是基于对鸟群、鱼群的模拟。
这些研究可以称为群体智能(swarm-intelligenee)。
通常单个自然生物并不是智能的,但是整个生物群体却表现出处理复杂问题的能力,群体智能就是这些团体行为在人工智能问题中的应用。
粒子群优化(Particle Swarm Optimization , PSC)最初是处理连续优化问题的, 目前其应用已扩展到组合优化问题。
由于其简单、有效的特点,PSC已经得到了众多学者的重视和研究。
二、粒子群算法的研究现状及研究方向粒子群算法(PSC)自提出以来,已经历了许多变形和改进,包括数学家、工程师、物理学家、生物学家以及心理学家在内的各类研究者对它进行了分析和实验,大量研究成果和经验为粒子群算法的发展提供了各许多合理的假设和可靠的基础,并为实际的工业应用指引了新的方向。
目前,PSC的研究也得到了国内研究者的重视,并已取得一定成果。
十多年来,PSC的研究方向得到发散和扩展,已不局限于优化方面研究。
PSC 算法按其研究方向分为四部分:算法的机制分析研究、算法性能改进研究、算法的应用研究及离散性PSC算法研究。
算法的机制分析主要是研究PSC算法的收敛性、复杂性及参数设置。
算法性能改进研究主要是对原始PSC算法的缺陷和不足进行改进,以提高原始PSC算法或标准PSC算法的一些方面的性能。
粒子种群优化算法
![粒子种群优化算法](https://img.taocdn.com/s3/m/3d0d7d52571252d380eb6294dd88d0d232d43c4c.png)
粒子种群优化算法粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它模拟了鸟群觅食行为,通过不断寻找最优解,解决了许多实际问题。
本文将介绍粒子群优化算法的原理、应用以及优缺点。
一、粒子群优化算法的原理粒子群优化算法的核心思想是通过模拟鸟群觅食行为来寻找最优解。
算法中的每个个体被称为粒子,粒子具有位置和速度两个属性。
每个粒子根据自身的经验和群体的经验来更新自己的速度和位置。
在更新过程中,粒子不断搜索最优解,并逐渐向全局最优靠近。
具体而言,粒子群优化算法通过以下步骤实现:1. 初始化粒子群:随机生成一定数量的粒子,并初始化其位置和速度。
2. 计算适应度:根据问题的具体要求,计算每个粒子的适应度值。
3. 更新速度和位置:根据粒子的当前位置和速度,以及个体和群体的最优值,更新粒子的速度和位置。
4. 判断停止条件:根据预设的停止条件,判断是否终止算法。
5. 返回最优解:返回群体中适应度最优的粒子的位置作为最优解。
二、粒子群优化算法的应用粒子群优化算法在许多领域都有广泛的应用。
以下是一些典型的应用场景:1. 函数优化:粒子群优化算法可以用于求解函数的最大值或最小值,如在经济学中的效用函数求解、在工程学中的参数优化等。
2. 机器学习:粒子群优化算法可以用于优化机器学习算法中的参数,如神经网络的权重和阈值的优化。
3. 图像处理:粒子群优化算法可以用于图像分割、图像重建等问题,通过优化参数来得到更好的图像处理结果。
4. 调度问题:粒子群优化算法可以用于求解调度问题,如作业调度、路径规划等。
5. 物流问题:粒子群优化算法可以用于求解物流问题,如货物配送路径优化、仓库布局优化等。
三、粒子群优化算法的优缺点粒子群优化算法具有以下优点:1. 简单易实现:粒子群优化算法的原理简单,易于实现,不需要复杂的数学模型。
2. 全局搜索能力强:粒子群优化算法能够全局搜索问题的最优解,避免了陷入局部最优的问题。
粒子群优化算法
![粒子群优化算法](https://img.taocdn.com/s3/m/291f0e9d185f312b3169a45177232f60ddcce71e.png)
粒子群优化算法
在PSO算法中,问题解被表示为一个多维空间中的一个粒子。
每个粒
子都有一个位置和速度,位置表示当前解,速度表示解的更新方向。
粒子
的行为受到个体最优和群体最优的影响。
个体最优是指粒子自身经历过的
最佳位置,群体最优是指整个粒子群中所有粒子最佳位置的集合。
在每一次迭代中,粒子根据当前位置和速度进行更新。
更新的过程中,粒子会考虑个体最优和群体最优的信息,以及一个随机因子。
通过不断迭代,粒子的位置和速度会逐渐靠近最优解,最终收敛到全局最优解或者局
部最优解。
PSO算法的主要步骤如下:
1.初始化粒子群,包括粒子位置和速度。
2.计算粒子的适应度值,并更新个体最优解。
3.更新群体最优解。
4.更新粒子的速度和位置。
5.判断终止条件,如果满足条件则结束迭代,否则返回第2步。
PSO算法的优点是简单易实现,收敛速度快,鲁棒性强。
它能够处理
连续空间和非线性问题,并且不需要求导。
PSO算法也能够通过参数设置
和自适应机制来克服其缺点。
然而,PSO算法也存在一些不足之处。
首先,它对初始解的敏感度较高,不同的初始解可能导致不同的结果。
其次,PSO算法对于高维问题的
效果较差,易陷入局部最优解。
此外,PSO算法的收敛性和收敛速度与问
题的复杂性和特性有关。
综上所述,粒子群优化算法是一种有效的全局优化算法,适用于各种优化问题。
虽然PSO算法存在一些不足,但通过合理的参数设置和改进算法,可以扩大其适用范围和提高效果。
粒子群优化算法的综述
![粒子群优化算法的综述](https://img.taocdn.com/s3/m/0537601abc64783e0912a21614791711cc797999.png)
粒子群优化算法的综述
粒子群优化算法(ParticleSwarmOptimization,简称PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等自然群体的行为方式,通过不断地跟踪当前最优解和群体历史最优解,从而不断地搜索最优解。
PSO算法简单易实现,具有收敛速度快、鲁棒性好、能够避免陷入局部最优等优点,在多个优化问题中表现出较好的效果。
在PSO算法的优化过程中,每个粒子代表一个解,粒子的位置表示解的变量值,粒子的速度表示解的变量值的变化量。
通过不断地更新粒子的位置和速度,逐渐接近最优解。
PSO算法的基本流程包括初始化粒子群、计算适应度函数、更新粒子速度和位置、更新群体历史最优解和个体历史最优解等步骤。
PSO算法的应用领域非常广泛,包括工程设计优化、机器学习、数据挖掘、机器视觉等方面。
在实际应用中,PSO算法可以与其他优化算法相结合,形成混合算法,以提高优化效果。
此外,还可以通过改进PSO算法的参数设置、粒子群模型、适应度函数等方面来提高算法的性能。
总之,PSO算法是一种简单有效的优化算法,具有广泛的应用前景和研究价值,未来还有很大的发展空间。
- 1 -。
粒子群优化算法综述
![粒子群优化算法综述](https://img.taocdn.com/s3/m/500cb5f1453610661fd9f40b.png)
粒子群优化(PSO)算法[摘要]粒子群优化(PSO)算法是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。
PSO通过粒子追随自己找到的最优解和整个群的最优解来完成优化。
该算法简单易实现, 可调参数少,已得到广泛研究和应用。
详细介绍了PSO的基本原理、其特点、各种改进方式及其应用等,并对其未来的研究进行展望。
[关键词]群体智能;优化算法;粒子群优化1、前言从20世纪90年代初,就产生了模拟自然生物群体(swarm)行为的优化技术。
Do rigo等从生物进化的机理中受到启发,通过模拟蚂蚁的寻径行为,提出了蚁群优化方法;Eberhart和Kennedy于1995年提出的粒子群优化算法是基于对鸟群、鱼群的模拟。
这些研究可以称为群体智能(swarm intelligence)。
通常单个自然生物并不是智能的,但是整个生物群体却表现出处理复杂问题的能力,群体智能就是这些团体行为在人工智能问题中的应用。
粒子群优化(PSO)最初是处理连续优化问题的,目前其应用已扩展到组合优化问题。
由于其简单、有效的特点,PSO已经得到了众多学者的重视和研究。
粒子群算法在求解优化函数时,表现出较好的寻优能力。
特别是针对复杂的工程问题,通过迭代寻优计算,能够迅速找到近似解,因而粒子群算法在工程计算中被广泛应用。
2、PSO 基本原理粒子群优化算法是基于群体的演化算法,其思想来源于人工生命和演化计算理论。
Reynolds对鸟群飞行的研究发现,鸟仅仅是追踪它有限数量的邻居,但最终的整体结果是整个鸟群好像在一个中心的控制之下,即复杂的全局行为是由简单规则的相互作用引起的。
PSO即源于对鸟群捕食行为的研究,一群鸟在随机搜寻食物,如果这个区域里只有一块食物,那么找到食物的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。
PSO算法就是从这种模型中得到启示而产生的,并用于解决优化问题。
另外,人们通常是以他们自己及他人的经验来作为决策的依据,这就构成了PSO的一个基本概念。
粒子群优化算法(详细易懂-很多例子)讲解学习
![粒子群优化算法(详细易懂-很多例子)讲解学习](https://img.taocdn.com/s3/m/ce62937c2e60ddccda38376baf1ffc4ffe47e2c2.png)
粒子群算法的构成要素 -停止准则
停止准则一般有如下两种: 最大迭代步数 可接受的满意解
v i k d = w v i k d - 1 c 1 r 1 ( p b e s t i d x i k d 1 ) c 2 r 2 ( g b e s t d x i k d 1 )
粒子速度更新公式包含三部分: 第一部分为粒子先前的速度 第二部分为“认知”部分,表示粒子本身的思考,可理解为 粒子i当前位置与自己最好位置之间的距离。 第三部分为“社会”部分,表示粒子间的信息共享与合作, 可理解为粒子i当前位置与群体最好位置之间的距离。
惯性因子
基本粒子群算法
失去对粒子本身
的速度的记忆
粒子群算法的构成要素-权重因子 权重因子:惯性因子 、学习因子
v i k d = w v i k d - 1 c 1 r 1 ( p b e s t i d x i k d 1 ) c 2 r 2 ( g b e s t d x i k d 1 )
Xik=Xik1+Vik1
V i =V i1,V i2,...,V iN X i= X i1,X i2,...,X iN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
粒子群优化算法(PS0)
粒子群优化算法及其相关研究综述【精品文档】(完整版)
![粒子群优化算法及其相关研究综述【精品文档】(完整版)](https://img.taocdn.com/s3/m/0e89d7cabb4cf7ec4afed0cc.png)
粒子群优化算法及其相关研究综述摘要:粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。
它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。
本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述,侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题中的应用,最后对其未来的研究提出了一些建议及研究方向的展望。
关键词:粒子群优化;PSO;群智能优化;智能算法Abstract: Particle swarm optimization is a new swarm intelligence-based heuristic global search algorithm, through competition and collaboration between the particles in order to achieve the advantages of looking at complex global search space. It has easy to understand, easy to implement, strong global search ability and other characteristics, much attention in the field of science and engineering, has become one of the fastest growing intelligent optimization algorithms. This paper focuses on aspects of the principle of particle swarm optimization, characteristics, improvement and application of a comprehensive review, focusing on improved PSO algorithm, a brief description of the particle swarm algorithm in a typical problem in the theory, and finally presented its future research Looking for some advice and research directions.Key Words: Particle Swarm optimization; PSO; Swarm intelligence optimization;Intelligent algorithm1 引言粒子群算法(Particle Swarm optimization,PSO)的基本概念源于对于鸟群捕食行为的简化社会模型的模拟,由Kenndy和Eberhart等人提出[1-2],1995年IEEE国际神经网络学术会议发表了题为“Particle Swarm Optimization”的论文,标志着PSO算法诞生。
粒子群优化算法介绍
![粒子群优化算法介绍](https://img.taocdn.com/s3/m/5ff66bda18e8b8f67c1cfad6195f312b3169ebf3.png)
粒子群优化算法介绍
粒子群优化算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,通过不断地迭代寻找最优解。
该算法最初由美国加州大学的Eberhart和Kennedy于1995年提出,目前已经被广泛应用于各种优化问题中。
粒子群优化算法的基本思想是将待优化问题转化为一个多维空间中的搜索问题,将每个解看作空间中的一个粒子,每个粒子的位置表示该解的参数值,速度表示该解的变化方向和速度。
在算法的每一次迭代中,每个粒子都会根据自身的历史最优解和群体最优解来更新自己的速度和位置,以期望找到更优的解。
具体来说,粒子群优化算法的实现过程如下:
1. 初始化粒子群,包括粒子的位置和速度等信息。
2. 计算每个粒子的适应度值,即待优化问题的目标函数值。
3. 更新每个粒子的速度和位置,包括考虑自身历史最优解和群体最优解的影响。
4. 判断是否满足停止条件,如果满足则输出最优解,否则返回第2步。
粒子群优化算法的优点在于其简单易懂、易于实现和收敛速度较快等特点。
同时,该算法还具有较好的全局搜索能力和鲁棒性,能够
应对复杂的非线性优化问题。
然而,粒子群优化算法也存在一些缺点,如易陷入局部最优解、对参数的选择较为敏感等问题。
因此,在实际应用中需要根据具体问题进行调整和优化。
粒子群优化算法是一种有效的优化算法,已经被广泛应用于各种领域,如机器学习、图像处理、控制系统等。
随着人工智能和大数据技术的不断发展,相信粒子群优化算法将会有更广泛的应用前景。
离散粒子群优化算法研究现状综述
![离散粒子群优化算法研究现状综述](https://img.taocdn.com/s3/m/b9f7d61b7ed5360cba1aa8114431b90d6c858990.png)
离散粒子群优化算法研究现状综述今天要来聊一聊一个挺有意思的东西——离散粒子群优化算法。
这名字听起来有点复杂,不过没关系,我给你好好讲讲,保证你能明白。
想象一下,你和你的小伙伴们一起在一个大操场上找宝藏。
每个小伙伴都有自己的想法,觉得宝藏可能在不同的地方。
离散粒子群优化算法,就有点像你们一起找宝藏的这个过程。
这个算法一开始,就像小伙伴们刚开始找宝藏时一样,大家会随机地在操场上散开,每个人都站在一个不同的位置。
这些位置就相当于算法里的初始解。
比如说,有的小伙伴站在操场的左边角落,有的站在右边的大树下,大家的位置都不一样。
然后,每个小伙伴会根据自己周围的情况,看看有没有什么线索能找到宝藏。
如果某个小伙伴发现自己周围好像有一点点宝藏的迹象,他就会稍微往那个方向走一走。
这就好比算法里的粒子会根据自己当前的位置和周围的信息,去调整自己的位置,希望能找到更好的解。
随着时间的推移,小伙伴们会互相交流。
比如说,小明发现自己这边的线索好像更靠谱一些,他就会告诉其他小伙伴。
其他小伙伴听到后,可能就会朝着小明的方向走过去一点,看看是不是真的有宝藏。
这在算法里,就是粒子之间的信息共享,大家会根据其他粒子找到的比较好的解,来调整自己的方向。
现在,好多科学家都在研究这个离散粒子群优化算法。
他们就像一群超级好奇的探险家,想看看这个算法还能有什么新的发现。
比如说,有些科学家发现,如果让小伙伴们在交流的时候,不只是听一个人的,而是多听几个人的意见,可能会更快地找到宝藏。
这就像在算法里改进了信息共享的方式,让粒子能参考更多更好的解。
还有的科学家发现,给小伙伴们定一些小规则,比如每隔一段时间,大家都要回到操场中间集合一次,重新商量一下接下来往哪里找,这样也能让找宝藏的过程更顺利。
这在算法里就是加入了一些特殊的策略和机制,让算法的效果更好。
总之,离散粒子群优化算法现在还在不断地发展和进步。
就像我们找宝藏的方法也可以不断改进一样,科学家们一直在努力,想让这个算法在解决各种问题的时候,变得更厉害、更高效!怎么样,现在是不是对这个算法有点了解?。
粒子群算法综述
![粒子群算法综述](https://img.taocdn.com/s3/m/0352c45b42323968011ca300a6c30c225801f05f.png)
粒子群算法综述粒子群算法,这可是个挺有趣的东西呢。
你知道吗,就好比一群小鸟在找食物。
每个小鸟都有自己的位置和飞行方向,这个位置就像是算法里的一个解,而飞行方向呢,就是朝着更好的解去探索。
在粒子群算法里啊,那些粒子就如同这些小鸟。
每个粒子都有自己的速度和位置,它们在一个很大的搜索空间里到处飞呀飞。
粒子群算法最初的想法很简单,就是让这些粒子相互交流经验。
比如说,一只小鸟发现了一个地方好像有比较多食物的迹象,它就会告诉周围的小鸟。
在算法里,就是一个粒子发现自己所在的位置可能比较接近最优解,它就会把这个信息分享出去。
其他粒子听到这个消息后,就会调整自己的飞行方向,朝着这个可能更好的地方飞去。
这就像是大家都朝着有希望的方向努力,是不是很有团结协作的感觉呢?这个算法里有两个很重要的概念,一个是个体极值,另一个是全局极值。
个体极值就像是每只小鸟自己曾经找到过的食物最多的地方,它会记住这个地方,并且以此为参考来调整自己接下来的飞行方向。
而全局极值呢,就是所有小鸟找到的食物最多的那个地方,大家都想朝着这个地方去。
这就好比是大家都有自己的小目标,但是也有一个共同的大目标。
粒子群算法在很多领域都有用处呢。
在工程领域,就像设计一个很复杂的机械结构,有好多好多的参数需要调整,这就像在一个超级大的迷宫里找出口一样。
粒子群算法就可以像那些聪明的小侦探一样,在这个迷宫里到处探索,最后找到一个比较好的出口,也就是比较好的设计参数。
在经济领域也是,比如说预测股票价格走势,有太多的因素影响股票价格了,粒子群算法就可以在这些复杂的因素中寻找规律,就像在一堆乱麻里找头绪一样。
不过啊,粒子群算法也不是完美的。
有时候,这些粒子就像一群调皮的孩子,可能会陷入局部最优解。
这是什么意思呢?就好比一群小鸟都飞到了一个小山坡上,这里有一些食物,它们就以为这里是最好的地方了,都停在那里不动了。
但其实在山的那边,有一个更大的食物仓库。
在算法里就是,粒子们找到了一个看起来还不错的解,就不再继续探索了,其实还有更好的解在别处呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒子群优化算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士发明。
源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于迭代的优化工具。
系统初始化为一组随机解,通过迭代搜寻最优值。
但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。
详细的步骤以后的章节介绍同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域2. 背景: 人工生命"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的容1. 研究如何利用计算技术研究生物现象2. 研究如何利用生物技术研究计算问题我们现在关注的是第二部分的容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.3. 算法介绍如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。
在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。
第一个就是粒子本身所找到的最优解。
这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。
这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。
在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义rand () 是介于(0,1)之间的随机数. c1, c2 是学习因子. 通常c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax4. 遗传算法和PSO 的比较大多数演化计算技术都是用同样的过程1. 种群随机初始化2. 对种群的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关3. 种群根据适应值进行复制4. 如果终止条件满足的话,就停止,否则转步骤2从以上步骤,我们可以看到PSO和GA有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。
两个系统都不是保证一定找到最优解但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。
粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解5. 人工神经网络和PSO人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。
进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。
演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。
不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。
在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。
例如在分类问题中,错误分类的比率可以用来作为适应值演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。
但是缺点在于:在某些问题上性能并不是特别好。
2. 网络权重的编码而且遗传算子的选择有时比较麻烦最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。
研究表明PSO 是一种很有潜力的神经网络算法。
PSO速度比较快而且可以得到比较好的结果。
而且还没有遗传算法碰到的问题这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。
(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris 花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。
我们用3层的神经网络来做分类。
现在有四个输入和三个输出。
所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。
我们也可以训练神经网络中其他的参数。
不过这里我们只是来确定网络权重。
粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。
权重的围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。
对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。
然后记录所有的错误分类的数目作为那个粒子的适应值。
现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。
PSO本身并没有很多的参数需要调整。
所以在实验中只需要调整隐含层的节点数目和权重的围以取得较好的分类效果。
6. PSO的参数设置从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为(x1, x2,x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置粒子数: 一般取20 –40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或200粒子的长度: 这是由优化问题决定, 就是问题解的长度粒子的围: 由优化问题决定,每一维可是设定不同的围Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的围宽度,例如上面的例子里,粒子(x1, x2, x3) x1 属于[-10, 10], 那么Vmax 的大小就是20学习因子: c1 和c2 通常等于2. 不过在文献中也有其他的取值. 但是一般c1 等于c2 并且围在0和4之间中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)7. Online Resources of PSOThe development of PSO is still ongoing. And there are still many unknown areas in PSO research such as the mathematical validation of particle swarm theory.One can find much information from the internet. Following are some information you can get online: lots of information about Particle Swarms and, particularly, Particle Swarm Optimization. lots of Particle Swarm Links./~hux/PSO.shtml lists an updated bibliography of particle swarm optimization and some online paper links.researchindex./ you can search particle swarm related papers and references.2006.7.11 13:20 作者:xiao1jun收藏| 评论:0蚁群算法简介:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。