肺炎双球菌转化实验和噬菌体侵染细菌实验的比较精选.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.有关概率(可能性)计算
(1)原理
○1 乘法定律:当两个互不影响的独立事件同时或相继出现时其概率是它们各自概率
的乘积。
○2 加法定律:当一个事件出现时,另一个事件就被排除,这样的两个事件为互斥事
件,这种互斥事件出现的概率是它们各自概率之和。
(2)计算方法
例如:有甲、乙两种遗传病按自由组合定律遗传,据亲代的基因型已判断出后代患甲
沉淀物 放射性很低
或被 32P 标记了 DNA
放射性很低
放射性很高
(3)试验结论(或目的)比较 肺炎双球菌转化实验的结论:证明 DNA 是遗传物质,蛋白质不是遗传物质。 噬菌体侵染细菌实验结论:证明 DNA 是遗传物质,不能证明蛋白质不是遗传物质,
因蛋白质没有进入细菌体内。
二、有关碱基数量计算的归类与应用


① DNA
④ RNA
蛋白质(性状)

(1)在生物生长繁殖过程中遗传信息的传递方向为
转录

制 DNA(基因)
mRNA
翻译
蛋白质
(2) 在细胞内蛋白质合成过程中传递信息的传递方向(如胰岛细胞中胰岛素合
成)为
转录
翻译
DNA
mRNA
(含胰岛素基因)
蛋白质
(3) 含逆转录酶的 RNA 病毒在寄主细胞内繁殖过程中,遗传信息的传递方向的
○×
F1 所结果实(含 F2 的种子)
果皮红色 (Aa)
F2 的胚 (1/4AA、2/4 Aa、1/4aa)
果皮红色 (Aa)
F2 的胚 (1/4AA、2/4 Aa、1/4aa)
○× ○× ○× F2 所结果实
○× ○× ○× F2 所结果实
果皮
果皮
1/4AA
2/4Aa
1/4aa
1/4AA
2/4Aa
非互补碱基之和的比例在 整个 DNA 分子中为 1,在
两条互补链中互为倒数
3. DNA 复制过程中的碱基数量计算
1 / 9word.
某 DNA 分子中含某碱基 a 个, (1)复制 n 次需要含该碱基的脱氧核糖核苷酸数为 a(2n-1);
(2) 第 n 次复制,需要含该碱基的脱氧核苷酸数为 a2n-1 4.碱基比例的运用 由核酸所含碱基种类及比例可以分析判断核酸的种类。 (1) 若有 U 无 T,则该核酸为 RNA。 (2) 若有 T 无 U,且 A=T,G=C,则该核酸一般为双链 DNA。 (3) 若有 T 无 U,且 A≠T,G≠C,则该核酸一般为单链 DNA。 三、与中心法则相关的几个问题 1. 中心法则中遗传信息的流动过程为:
二、三种可遗传变异的比较




基因突变
基因重组
染色体变异

自然状态下只 真核生物细胞增
适 物 所有生物(包括 发 生 Байду номын сангаас 真 核 生 殖过程中均可发
用 种 病毒)均可发生 物 有 性 生 殖 过 生
6 / 9word.
范类 围
程中,为核遗传
生 无性生殖、有性 有性生殖 无性生殖、有性生
殖 生殖

(2)其次确定致病基因位于常染色体上还是位于性染色体上。 ○1 在确定是隐性遗传病的情况下,要特别关注以下特殊情况: a.父亲正常,女儿患病,或儿子正常,母亲患病,则一定是常染色体隐性遗传病。

b.母亲患病,儿子一定有病,则为伴 X 染色体隐性遗传病。
c.如为伴 X 染色体隐性遗传病,则女性患者的父亲与儿子一定为患者,否则是常染色 体隐性遗传病。
2 / 9word.
3.中心法则中几个生理过程能准确进行的原因 (1)前者为后者的产生提供了一个标准化的模板。 (2)严格的碱基互补配对原则决定了后者是以前者提供的模板为依据形成的。
准确的模板和严格有序的碱基互补配对关系,保证了遗传信息的正常传递和表 达,从而保证了物种的相对稳定性。
一、应用分离定律解决自由组合问题 1.思路:将自由组合问题转化为若干个分离定律问题
这种突变性状是否有很强的适应能力。若有,则为有利突变,可通过繁殖传给后代,否则
为有害突变,被淘汰掉。
2.基因突变对后代的影响 (1)基因突变可以发生在体细胞有丝分裂过程中,这种突变可以通过无性繁殖传给后 代,但不会通过有性生殖传给后代。
(2)基因突变可以发生在形成精子或卵细胞的减数分裂过程中,这种突变有可能通过 有性生殖传给后代。
一、肺炎双球菌转化实验和噬菌体侵染细菌实验的比较
1.实验设计思路比较
艾弗里试验
噬菌体侵染细菌实验
思路相同
设法将 DNA 与其他物质分开,单独地直接研究它们各自
不同的遗传功能
处理方式的区别
直接分离:分离 S 型细菌的 同位素标记法:分别标记
DNA、多糖、蛋白质等,分 DNA 和蛋白质的特殊元素
别与 R 型细菌混合培养
Aa×Aa
后代有 2 种表现型;
Bb×bb
后代有 2 种表现型;
Cc×Cc
后代有 2 种表现型。
所以 AaBbCc×AabbCc,后代中有 2×2×2=8 种表现型。
二、伴性遗传与分离定律的关系
1.伴性遗传也是一对等位基因控制一对相对性状的遗传,因此也符合分离定律。
3 / 9word.
2.伴性遗传有其特殊性 (1)雌雄个体的性染色体组成不同,有同型和异型两种形式。 (2)有些基因只存在于 X 或 Z 染色体上,Y 或 W 染色体上无相应的等位基因, 从而存在于杂合子(XbY 或 ZdW)内单个隐性基因控制的性状也能得到表现。 (3)Y 或 W 染色体上携带的基因,在 X 或 Z 染色体上无相应的等位基因,只限 于在相应性别的个体之间传递。 (4)性状的遗传与性别相联系。在写基因型、表现型和统计后代的比例时一定 要与性别相联系,如 XbY 或 XBXb。 3.在分析两对或两对以上的相对性状遗传时:由性染色体上的基因控制的性状按 伴性遗传处理;由常染色体上的基因控制的性状按分离定律处理。整体上按自由 组合定律处理。 三、正反交结果不相同的几种情况分析 1.细胞质遗传:细胞质遗传表现为母系遗传,正交和反交中母本的性状不同,因 而产生的后代性状不同。 2.植物果皮种皮颜色等性状遗传:以果皮颜色遗传为例,红色(A)对黄色(a) 为显性。
病的可能性为 m,患乙病的可能性为 n,则后代的表现型的种类和可能性为:
甲病患 m
○3
乙病患 n
○1
○2
不患(1-m)
不患(1-n)
○4
○1 只患甲病的概率 m·(1-n); ○2 只患乙病的概率 n·(1-m); ○3 甲、乙两病同患的概率是 m·n; ○4 甲、乙两病均不患的概率是(1-m)·(1-n)。
H 链 h 链 DNA 分子 mRNA( 以 H
规律(DNA)
链为模板)
A+T/G+C m m m
A+U/G+C=m 互补碱基之和的比例在整
G+C/A+T n n n
G+C/A+U=n
个 DNA 及任一条链中都相 等
A+G/T+C a A+C/G+T b
1/a 1
1/b 1
A+G/U+C=1/a A+C/G+U=1/b
Aa×Aa
后代有 3 种基因型 (1AA:2Aa:1aa);
Bb×BB
后代有 2 种基因型(1BB:1Bb);
Cc×Cc
后代有 3 种基因型(1CC:2Cc:1cc)。
因而 AaBbCc×AaBBCc,后代中由 3×2×3=18 种基因型。
(3)表现型类型的问题
如 AaBbCc×AabbCc, 其杂交后代可能的表现型数可分解为三个分离定律:
正常母亲
色盲父亲
色盲母亲
XB XB ×
Xb Y
XbXb
×
正常父亲 XB Y
XB Xb
XB Y
XBXb
Xb Y
女儿正常
儿子正常
女儿正常
儿子色盲
(携带者)
(携带者)
四、人类遗传病判断及概率计算 1.人类遗传图谱分析及遗传方式的判断 在遗传方式未知的情况下,无论是判断致病基因的显隐性关系,还是确定致病基因的
材料,是形成生物多样性的重要原因之一
1/4aa
3红

1黄
3红

1黄
从以上分析看出,番茄的果皮颜色遗传中正反交结果不同,子代均表现出母本的性状,
但这种遗传方式本质上仍属于细胞核遗传,遵循孟德尔遗传规律,只是子代的性状分离比
延迟表现而已。另外,正反交结果中胚乳的基因型也不相同。
4 / 9word.
3.伴性遗传中的某些性状遗传(以人类红绿色盲为例)
正交 P:(♀)AA×aa(♂)
反交 P:(♀) aa×AA (♂)
亲代母本所结果实 (含 F1 的种子)
亲代母本所结果实 (含 F1 的种子)
果皮红色 (AA)
F1 的胚 (Aa)
F1 的乳胚 (AAa)
○×
F1 所结果实(含 F2 的种子)
果皮黄色 F1 的胚
F1 的乳胚
(aa)
(Aa)
(Aaa)
类型
自然突变
交叉互换 染色体结构变异、
诱发突变
自由组合 染色体数目变异
发生
DNA 复制时(有 减 数 分 裂 四 分
时期
丝分裂间期、减 体 时 期 及 第 一
数 第 一 次 分 裂 次分裂过程中
细胞分裂期
间期)
产生
产生新的基因 只 产 生 新 的 基 不产生新的基因,
结果
因型,不产生新 但可引起数目或
在独立遗传的情况下,有几对碱基就可分解为几个分离定律问题,如 AaBb× Aabb 可分解为如下两个分离定律问题:Aa×Aa;Bb×bb。 2.题型 (1)配子类型的问题 如 AaBbCc 产生的配子种类数 Aa Bb Cc
2 × 2 × 2 =8 种
如 AaBbCc 与 AaBbCC 杂交过程中,配子间的结合方式?
1. DNA 分子自我复制的碱基配对 A-T,G-C,T-A,C-G。 (2)“转录”中的碱基互补配对:A-U,G-C,C-G,T-A。 (3)“翻译”时的碱基互补配对:A-U,G-C,U-A,C-G。 (4) “逆转录”时的碱基互补配对:A-T,U-A,G-C,C-G。 2.DNA 分子、DNA 某条链及转录生成的 mRNA 中碱基比例关系
(32P 和 35S)
2.两个实验遵循相同的实验设计原则
(1)肺炎双球菌转化实验中的相互对照
S DNA
R
型 糖类
+型
相互对照
○1 DNA 是遗传物质
细 蛋白质
脂质

○2 其他物质不是遗传物质
菌 DNA 分解物

(2)噬菌体侵染细菌实验中的自身对照
噬菌体
侵染细菌后离心
被 35S 标记了蛋白质
上清液 放射性很高
○2 在确定是显性遗传病的情况下,要特别关注以下特殊情况: a.父亲患病,女儿正常,或儿子患病,母亲正常,则为常染色体显性遗传病。

b.父亲患病,女儿一定有病,则为伴 X 染色体显性遗传病。
5 / 9word.
c.如为伴 X 染色体显性遗传病,则男性患者的母亲和女儿一定为患者,否则是常染 色体显性遗传病。
的基因
顺序变化
镜检
光镜下均无法检出,可根据是否 光镜下可检出
有新性状或新性状组合确定
育种
诱变育种
杂交育种
单倍体育种
应用
多倍体育种
与进化 ○1 三种可遗传的变异都为生物的进化提供了原材料
的关系 ○2 基因突变可产生新的基因,为进化提供了最初的原
材料,是生物变异的根本来源
○3 基因重组的变异频率高,为进化提供了广泛的选择
○1 先求 AaBbCc×AaBbCC 各自产生多少种配子。
AaBbCc 8 种配子,AaBbCC 4 种配子
②两亲本配子间的结合方式。由于两性配子间的结合是随机的,因而 AaBbCc 与
AaBbCC 配子间有 8×4=32 种结合方式。
(2)基因型类型的问题
如 AaBbCc 与 AaBBCc 杂交,求其后代的基因型数可分解为三个分离定律:
位置,都要在全面分析图谱信息的基础上,找准特殊个体或几个特殊个体间的关系,以以 下几个方面为突破口进行分析:
(1)首先确定图谱中的遗传病是显性遗传还是隐性遗传。 ○1 若双亲正常,其子代中有患者,此单基因遗传病一定为隐性遗传病(即“无中生有”)。
○2 若患病的双亲有正常后代,此单基因遗传病一定为显性遗传病(即“有中生无”)。

逆转录
转录
翻译
RNA
DNA
mRNA
蛋白质
(4)DNA 病毒(如噬菌体)在寄主细胞内繁殖过程中,遗传信息的传递方向为
转录

制 DNA(基因)
mRNA
翻译
蛋白质
(5)RNA 病毒(如烟草花叶病毒)在宿主细胞内繁殖过程中,遗传信息的传 递方向为
翻译
复 RNA

蛋白质
2.中心法则体现了 DNA 的两大基本功能 (1)图中○1 体现了对遗传信息的传递功能,它是通过 DNA 复制完成的,发生于 亲代产生子代的生殖过程或细胞增殖过程中。
一、基因突变与性状的遗传变异
1.基因突变与生物性状的关系
(1)当控制某种性状的基因发生突变时,其性状未必改变,原因如下:
○1 若发生突变后,引起 mRNA 上密码子改变,但改变了的密码子与原密码子仍对应同
一种氨基酸,此时突变基因控制的性状也不改变。
○2 若基因突变为隐性突变如 AA 中的一个 A a,此时性状也不改变。 (2)基因突变引起性状的改变,这种具有突变性状的个体能否把突变基因传给后代要看
相关文档
最新文档