MS056 磁流体力学 - 中国力学学会

合集下载

磁流体力学:磁流体动力学原理与应用

磁流体力学:磁流体动力学原理与应用

核聚变反应区的冷却
• 对核聚变反应环境的要求较低
磁场的环境
• 磁流体等离子体稳定器:利用磁
• 有助于实现可持续能源和清洁能
流体实现等离子体的稳定

• 磁流体燃料输送:利用磁流体实
现燃料的输送和控制
磁流体在航空航天领域的应用
航空航天领域的挑战
磁流体在航空航天领域
磁流体在航空航天领域
的应用
的优点
• 需要实现高速、高温、高压等极
• 对热传输介质的要求较低
• 适用于各种工程领域和工业过程
03
磁流体力学在工业与科研中的应用实例
磁流体在核聚变反应中的应用
核聚变反应原理
磁流体在核聚变反应中
磁流体在核聚变反应中
的应用
的优点
• 利用核聚变反应产生大量能量
• 磁流体冷却剂:利用磁流体实现
• 具有高热传导性能和高热稳定性
• 核聚变反应需要高温、高压和高
• 磁流体发动机:利用磁流体实现
• 具有高性能和高可靠性
端条件下的运行
发动机的驱动和控制
• 对航空航天环境的要求较低
• 对动力系统和控制系统的要求较
• 磁流体热管理系统:利用磁流体
• 有助于实现航空航天技术的突破

实现航空航天器的热管理
和发展
• 磁流体导航系统:利用磁流体实
现导航系统的控制
磁流体在生物医学工程中的应用
生物医学工程领域的挑战
磁流体在生物医学工程
磁流体在生物医学工程
领域的应用
领域的优点
• 需要实现生物组织和生物流体的
• 磁流体成像技术:利用磁流体实
• 具有高生物相容性和高灵敏度
精确控制和监测

磁流体动力学的物理学原理和应用

磁流体动力学的物理学原理和应用

磁流体动力学的物理学原理和应用引言磁流体动力学是研究带电流体在磁场中的运动和相互作用的学科。

它是磁学、流体力学、等离子体物理学等多个学科的交叉领域,具有广泛的理论价值和实际应用价值。

本文将从物理学原理和应用两个方面介绍磁流体动力学。

物理学原理磁场和磁力的作用磁场是由运动电荷产生的,是一种具有矢量性质的场。

磁场会对运动带电粒子施加力,称为磁力。

在磁场中运动的带电粒子会受到洛伦兹力的作用,洛伦兹力的大小和方向与磁场、带电粒子速度和电荷量有关。

磁流体动力学方程磁流体动力学方程是描述带电流体在磁场中运动的方程。

其中最基本的方程是磁场方程和流体力学方程。

磁场方程包括安培定律和法拉第电磁感应定律。

流体力学方程包括质量守恒、动量守恒和能量守恒方程。

通过磁流体动力学方程可以描述磁流体的运动和演化规律。

等离子体物理学基础等离子体是由带电离子和自由电子组成的气体态物质。

等离子体物理学是研究等离子体性质和行为的学科。

等离子体物理学在磁流体动力学中有着重要的应用。

应用磁流体动力学的应用非常广泛,下面介绍几个具有代表性的应用。

磁约束聚变磁约束聚变是一种利用磁场约束等离子体进行核聚变反应的技术。

在磁约束聚变中,等离子体被置于高强度的磁场中,通过调节磁场的形状和大小,使等离子体保持稳定,从而实现聚变反应。

磁流体动力学在磁约束聚变中有着重要的应用,可以描述等离子体在磁场中的运动和演化规律,优化聚变反应过程。

磁流体力学模拟磁流体力学模拟是利用计算机模拟等离子体在磁场中的运动和演化规律的方法,为磁约束聚变等磁流体动力学问题提供了重要的研究手段。

磁流体力学模拟可以预测等离子体的行为,包括湍流、不稳定性、聚变反应等,对设计和优化磁约束聚变设备具有重要意义。

等离子体喷射推进技术等离子体喷射推进技术是一种利用磁场加热和加速等离子体推进的技术。

在等离子体喷射推进中,通过在磁场中加热气体,使气体电离成等离子体,并利用磁场对等离子体进行加热和加速,从而推进飞行器。

中国力学学科的发展简史

中国力学学科的发展简史
中国水利水电科学院成立,首任院长张子林。
8月中国科学院成立负责拟定发展人造地球卫星规划的‘581任务组’。随后,中科院力学所成立负责卫星总体设计和运载火箭研制的‘上天’设计院。10月其总体部、结构部和发动机部迁至上海,对外称机电设计院,1959年研制工作中止。
中国科学院与清华大学联合在清华园内组建动力研究室,室主任吴仲华。1960年该室并入中科院力学所,1984年单独建所。
公元1957年
第一次全国力学学术报告会在北京召开。钱学森、钱伟长分别作“论技术科学”和“我国力学工作者的任务”的报告。于1952年2月10日成立中国力学学会,首届理事长钱学森,选举理事35人。会后相继成立了固体力学、流体力学、一般力学、岩土力学4个专业委员会;以及哈尔滨、西安、北京、天津、上海、南京、大连7个地方分会。
郭永怀回国,后任中科院力学所副所长。
10月国防部第五研究院成立,第一任院长钱学森。12月,五院下属空气动力学研究室成立,该室1959年发展为研究所(701所)。
钱学森起草《建立我国国防航空工业的意见书》,为我国火箭与导弹技术提供重要实施方案。
国家制定《1956—1967年科学技术发展远景规划纲要》,其中第37项“喷气与火箭技术的建立”与力学关系密切。同时还制定了我国第一份力学学科规划,确认力学为一级学科。钱学森、周培源、钱伟长、郭永怀及一批知名的力学家参与了力学专业的规划的调研、制定。钱学森任综合组组长。
中国在上海建成摇曳水池。
胡海昌提出弹性力学中三类变量变分原理,鹫津九一郎于1955年提出同一原理。
钱学森发表《工程控制论》(英文版),由美国McGraw Hill出版社出版。
公元1955年
钱学森回国。20世纪40—50年代,我国大批留学西方、苏联和东欧的理学专家回国。

磁流体力学magnetohydrodynamics

磁流体力学magnetohydrodynamics

磁流体力学magnetohydrodynamics磁流体力学magnetohydrodynamics结合流体力学和电动力学的方法研究导电流体和电磁场相互作用的学科。

导电流体在电磁场里运动时,流体中就会产生电流。

此电流与磁场相互作用,产生洛伦兹力,从而改变流体的运动,同时此电流又导致电磁场的改变。

对这类问题进行理论探讨,必须既考虑其力学效应,又考虑其电磁效应。

磁流体力学包括磁流体静力学和磁流体动力学。

磁流体静力学研究导电流体在电磁力作用下的静平衡问题,如太阳黑子理论、受控热核聚变的磁约束机制等。

磁流体动力学研究导电流体与电磁场相互作用时的运动规律,如各种磁流体动力学流动和磁流体动力学波等。

等离子体和液态金属都是导电流体。

前者包括99%以上的宇宙物质,后者包括核动力装置中的携热介质(如钠、钾、钠钾合金)、化学工业中的置换剂(如钠、钾、汞)、冶金铸造工业中的熔融金属等。

地球表面一般不存在自然等离子体,但可因核辐射、气体放电、燃烧、电磁激波、激光等方法产生人工等离子体。

因此,磁流体力学不仅与等离子体物理学有联系,还在天体物理研究(如磁场对日冕、黑子、耀斑的影响)、受控热核聚变和工业新技术(如电磁泵、电弧加热器、磁流体发电、电磁输送、电磁推进等)中得到发展和应用。

基础磁流体力学以流体力学和电动力学为基础﹐把流场方程和电磁场方程联立起来﹐引进了许多新的特徵过程﹐因而内容十分丰富。

宇宙磁流体力学更有其特色。

首先﹐它所研究的对象的特徵长度一般来说是非常大的﹐因而电感的作用远远大于电阻的作用。

其次﹐其有效时间非常久﹐所以由电磁原因引起的某些作用力纵然不大﹐却能产生重大效应。

磁流体力学大体上可以和流体力学平行地进行研究﹐但因磁场的存在也具有自己的特点﹕在磁流体静力学中的平衡方程﹐和流体静力学相比﹐增加了磁应力部分﹐这就是产旁际母荨T硕г诖帕魈辶ρе杏兄煌暮濠o它研究磁场的“运动”﹐即在介质流动下磁场的演变。

与正压流体中的涡旋相似﹐磁场的变化也是由对流和扩散两种作用引起的。

磁流体力学方程

磁流体力学方程

第三章 磁流体力学方程(MHD )§3.1引言由上一章的讨论可以看出,等离子体动力学理论是在位形及速度空间中讨论带电粒子的分布函数随时间的演化规律。

由于动力学方程是一个非线性的积分微分方程,数学处理较复杂,在一般情况下很难求解。

实际上,我们可以把等离子体看成为是一种电磁流体,它的宏观状态可以用密度、流速、温度等状态变量及电磁场来描述。

这些状态参量及电磁场是在三维位形空间中随时间演 化的。

建立电磁流体状态参置随时间的演化方程称为磁流体力学(Magnetohydrodynamics-MHD )。

与动力学理论相比,磁流体力学在数学处理上简单的多,而且等离子体中的许多过程,如等离子体的宏观平衡与稳定,波动过程均可以用MHD 理论来描述。

但对于等离子体中的另外一些现象,如Landau 阻尼、速度空间中的不稳定性等则MHD 理论却无能力描述。

下面我们从动力学方程出发,建立MHD 方程。

§3.2二份量MHD 方程设等离子体是由电子成份和一种离子成份组成的二份量电磁流体。

首先我们引入二份量磁流体的宏观状态变量,我们知道,对于一个多粒子系统,其宏观变量是对应的微观变量的统计平均值。

这样,第α类成份流体的密度(,) n r t α、流速火(,)ru t α及温度(,)r T t α的定义为:(,)(,,)r v r v n t d f t αα=⎰ (3-1)(,)(,)(,,)r r vv r v n t u t d f t ααα=⎰ (3-2) 231(,)(,)()(,,)22r r v v r v B k n t T t d m u f t αααα=-⎰ 下面我们利用上章给出的等离子体运动学方程来建立MHD 方程。

动力学方程可以写成:[()](,,)(,,)v v v r v r v q E B f t I t t m αααα∂+⋅∇++⨯⋅∇=∂ (3-3) 首先定义等离子体矩方程:将(3-3)两边乘以()v g 并对v 积分,(1) ()()v v v v f g d g fd g t t t∂∂∂==<>∂∂∂⎰⎰ (2) ()()v v v v v v v g f d g fd g ⋅∇=∇⋅=∇⋅<>⎰⎰(3) ()()()[]()v v v v v v v v v v vq f qE f g E d g d m m qE g f d m qE g m ∂∂⋅=⋅∂∂∂=⋅-∂∂=-⋅<>∂⎰⎰⎰ 其中用到了分部积分和()v f 在v →±∞时为零的条件。

【国家自然科学基金】_磁流体动力学(mhd)_基金支持热词逐年推荐_【万方软件创新助手】_20140731

【国家自然科学基金】_磁流体动力学(mhd)_基金支持热词逐年推荐_【万方软件创新助手】_20140731

2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

2011年 科研热词 磁流体 超声速 磁流体动力学模型 磁作用数 电导率 激波风洞 数值模拟 数值仿真 高超声速进气道 阴极射流 铝电解 金属蒸气 通道插件 边界层分离 管流 等离子体参数 等离子体 空气电弧 稳定性 磁流体微泵 磁流体动力学 真空电弧 相容守恒格式 相似解 电弧切割 电弧 生物微流体 激波-边界层相互作用 液态金属 洛伦兹力 数值计算 微系统 微分变换法 包层 仿真分析 交错网格 mhd边界层流动 mhd流动控制 mhd压降 falkner-skan 推荐指数 4 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
科研热词 推荐指数 数值模拟 3 聚变堆 2 磁流体动力学(mhd) 2 磁流体动力力学 2 电导率 2 包层 2 高超声速 1 高压脉冲直流 1 非线性 1 近似解 1 超声速 1 航空航天 1 自适应网格(amr) 1 能量旁路 1 线性拉伸 1 等离子体电源 1 磁流体发电 1 磁流体动力学(mhd)效应 1 磁流体加速 1 磁流体力学 1 磁流体 1 磁场 1 电离 1 电磁力 1 焦耳热效应 1 烧蚀 1 激励强度 1 液态金属包层 1 液态金属 1 流动控制 1 流动 1 流体动力学 1 板材 1 放电特性 1 强磁场 1 对称性方法 1 z箍缩 1 volume of fluid(vof)法 1 magneto-hydrodynamic (mhd) boundary 1 layer flow,

磁流体力学研究及其应用

磁流体力学研究及其应用

磁流体力学研究及其应用磁流体力学(Magnetohydrodynamics,简称MHD)是一门研究电磁场和流体力学相互作用的学科,其应用涵盖了许多领域。

本文将重点探讨磁流体力学的研究进展及其在能源、航天、环境保护和医疗等方面的应用。

一、磁流体力学的研究进展磁流体力学的研究起源于磁场与流体力学之间的相互作用。

磁流体力学的基本方程是电磁场的马克斯韦方程和流体连续性方程与运动方程的结合。

通过对这些方程的建模和求解,研究者们可以揭示磁场对流体运动和能量传输的影响,进而探索出许多有趣的现象和规律。

在磁流体力学的研究中,最常见的现象是磁阻现象、磁流体力学波动和磁流体力学湍流等。

其中,磁阻现象是指当磁场通过导体或流体时,由于流体的电导率不同于导体,从而引起的能量转化和流体运动的现象。

磁流体力学波动是指在存在磁场时流体中出现的波动,这些波动可以是横波或纵波,具有与传统流体力学中的波动有所不同的性质。

磁流体力学湍流则是指在磁场作用下,由于湍流本身的不稳定性和非线性特性,流体中产生的高速涡旋和湍流结构。

磁流体力学的研究不仅限于理论建模和数值模拟,还包括实验研究和现地观测。

利用实验和观测数据,研究者们可以验证和改进磁流体力学的理论模型,进而推动该领域的发展。

同时,实验和观测数据还可以用于验证和验证磁流体力学模型的应用,促进该领域的实际应用。

二、磁流体力学在能源领域的应用磁流体力学在能源领域的应用主要包括磁约束聚变、磁流体发电和磁流体发动机等。

磁约束聚变是一种利用磁场约束等离子体进行核聚变反应的新能源技术。

磁流体发电则是利用磁流体力学的性质,通过在导体中产生磁阻现象来产生电能。

磁流体发动机则是利用磁流体力学的湍流特性,通过控制电磁场来增加发动机的热效率和功率输出。

三、磁流体力学在航天领域的应用磁流体力学在航天领域的应用主要包括磁流体推进器和磁流体润滑等。

磁流体推进器是一种利用磁流体的流动和相互作用力来进行推进的新型推进系统。

磁流体的制备及应用

磁流体的制备及应用

磁流体的制备及应用
韩调整;黄英;黄海舰
【期刊名称】《材料开发与应用》
【年(卷),期】2012()4
【摘要】磁流体是具有广阔应用前景的功能液体。

本文阐述了磁流体的主要制备方法,讨论了表征其性能的主要参数,着重介绍了磁流体在工程领域、生物医药、物质分选以及环境治理等方面的应用,展望了今后磁流体的研究与发展方向。

【总页数】7页(P86-91)
【关键词】磁流体;磁性液体;性能参数
【作者】韩调整;黄英;黄海舰
【作者单位】西北工业大学理学院应用化学系
【正文语种】中文
【中图分类】TB381
【相关文献】
1.油酸钠基纳米Fe3O4磁流体制备、表征及应用 [J], 张鸥;张登宇;徐学东
2.磁流体的制备以及在生物医学工程应用的研究进展 [J], 杨昊;杨笑鹤;潘敏;陈裕泉
3.水基Fe3O4磁流体的制备和磁流体磁性粒子形成的影响因素 [J], 徐艺丽;于学勇
4.醇-水共热法制备Fe3O4磁流体--一种制备Fe3O4磁流体的新方法 [J], 任欢鱼;
刘勇健;庄虹
5.Fe3O4磁流体的制备方法及其应用 [J], 张海霞
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MS056 磁流体力学(负责人:倪明玖、任忠鸣)
时间 13:30 13:43 13:56 14:09 14:22 14:35 14:48 15:01 15:14 15:27 16:30 16:43 16:56 17:09 17:22 17:35 17:48 编号 MS056-3426-O MS056-3030-O MS056-1460-O MS056-1662-O MS056-3334-O MS056-2553-O MS056-1535-O MS056-2624-O MS056-3347-O 8 月 15 日下午 地点:国家会议中心二层 205B 报告人 报告题目 三维磁流体 Taylor-Green 流中磁面与涡面 郝进华 的相互作用机理 张志力 水基磁性液体的制备及其磁流变性能研究 磁性液体旋转密封中阻力矩的理论和实验 程艳红 研究 均匀轴向磁场作用下三维水平同心圆桶内 王 唯 导电流体自然对流研究 李 开 一种随形螺线管磁控热防护系统 张喜东 均匀来流下下游大钝体磁控减阻机理研究 邓 康 电磁制动下板坯结晶器内非对称域流场模拟 MHD 流动对 Fe-纳米 Si 颗粒复合电沉积行 彭明虎 为影响研究 基于统一气体动理学格式的多尺度等离子 刘 畅 体计算方法 潘君华 李明健 赵金松 李明军 刘佰奇 刘 飞 流向磁场对小球绕流尾迹的影响 磁-流-固耦合算法发展及其应用 磁流体中阿尔文波非线性不稳定性的研究 进展 铁磁流体多场耦合计算研究的一些新思想 液态锂膜在展向磁场中流动的实验研究及 数值模拟 基于库尔特原理的微颗粒实时在线监测仪 单位 北京大学 北京交通大学 北京交通大学 东北大学 国防科技大学 南京工程学院 上海大学 上海大学 香港科技大学 黄护林 牛小东 主持人
钟云波
MS056-2197-O MS056-2804-O MS056-3497-O MS056-1949-O MS056-3196-O MS056-2673-O
中国科学院大学 中国科学院大学 紫金山天文台 湘潭大学 中国科学院大学 北京化工大学
李明军


墙报 8 月 15 日下午 地点:国家会议中心一层大宴会厅 A MS056-0093-P MS056-0199-P MS056-0264-P MS056-1624-P MS056-1671-P MS056-1684-P 15:27 16:30 MS056-1813-P MS056-2167-P MS056-2175-P MS056-2586-P MS056-2793-P MS056-3400-P 李胜男 李 翔 白先旭 齐天煜 李福阳 尚 超 温敏 MHD 旋转圆盘流动与传热问题 磁流体可控自组装实验研究及其应用 磁流变液的力-位移磁滞特性分析 磁场影响下的液态镓铟锡多层膜流实验 均匀磁场下双层磁流体泡沫结构自组织转 变的研究 磁场对液滴铺展过程影响的分子动力学模拟 DCLL 通道绝热滑移壁面 MHD 效应的数值 研究 非均匀磁场下导电方管磁流体湍流数值模 拟研究 强磁场中子热源下的单通道混合对流数值 模拟 液态钢渣中金属液滴的电磁分离 磁场作用下固体颗粒上升 MHD 效应分析 磁性液体粘弹性的静态和动态实验研究 沈阳师范大学 汕头大学 合肥工业大学 中国科学院大学 上海大学 西安交通大学 南京航空航天大学 杭州电子科技大学 中国科学院大学 中国科学院大学 中国科学院大 王增辉 李振坤
80
相关文档
最新文档