下培优训练三平面直角坐标系综合问题压轴题
最新整理平面直角坐标系压轴题汇总
1、、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。
(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADEBCES S?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为(用含n 的式子表示)2、、如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C.(1)若∠A=∠AOC ,求证:∠B=∠BOC ;xy OCBAFA O C ByxA yxO C B(2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠A 度数;(3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问∠P 的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.3、如图,y 轴的负半轴平分∠AOB , P 为y 轴负半轴上的一动点,过点P 作x 轴的平行线分别交OA 、OB 于点M 、N.(1)如图1, MN ⊥y 轴吗?为什么?(2)如图2,当点P 在y 轴的负半轴上运动到AB 与y 轴的交点处,其他条件都不变时,等式∠APM=21(∠OBA -∠A )是否成立?为什么?xy OEDCBAPMF xy OCBAMNADBCb 21aE βαMaADBCbF HQ(3)当点P 在y 轴的负半轴上运动到图3处(Q 为BA 、NM 的延长线的交点),其他条件都不变时,试问∠Q 、∠OAB 、∠OBA 之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.4、.已知直线a ∥b ,点A 在直线a 上,点B 、C 在直线b 上,点D 在线段BC 上.(1)如图1,AB 平分∠MAD ,AC 平分∠NAD ,DE ⊥AC 于E ,求证:∠1=∠2.(5分)(2)若点F 为线段AB 上不与A 、B 重合的一动点,点H 在AC 上,FQ 平分∠AFD 交AC于Q ,设∠HFQ =x °,(此时点D 为线段BC 上不与点B 、C 重合的任一点),问当α、β、x 之间满足怎样的等量关系时,FH ∥a (如图2)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH ∥a .(5分)AOBQMPNyx 图37、如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足02)22ba(,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE、DE分别平分∠CAB、∠ODB,如图2求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.yACxO ByACxO BEDyACxO B图1图2 备用图8、在平面直角坐标系中,点)0,(a A ,)0,(b B ,),0(c C ,且满足342c b a ,过点C 作x MN //轴,D 是MN上一动点. (1)求ABC 的面积;(2)如图1,若点D 的横坐标为-3,AD 交OC 于E ,求点E 的坐标;(3)如图2,若B 35AD,P 是A D 上的点,Q 是射线DM 上的点,射线QG平分PQM ,射线PH 平分APQ ,//PF QG ,请你补全图形,并求HPF ADN的值.9、(12分)如图,直角坐标系中,C 点是第二象限一点,CB ⊥y 轴于B ,且B (0,b )是y 轴正半轴上一点,A (a ,0)是x 轴负半轴上一点,且2230a b ,S 四边形AOBC =9。
2020-2021学年人教版七年级数学下册 第3章 直角坐标系综合运用 压轴题训练
坐标系综合运用(压轴)学校:___________姓名:___________班级:___________考号:___________1.如图①,在平面直角坐标系中,(),0A a ,(),4C b ,且满足()240a ++=,过C 作CB x ⊥轴于B . (1)求三角形ABC 的面积;(2)若线段AC 与y 轴交于点()0,2Q ,在y 轴上是否存在点P ,使得三角形ABC 和三角形QCP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.(3)若过B 作//BD AC 交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图①,求AED ∠的度数.2.如图①,在平面直角坐标系中,等边ABC ∆的顶点A ,B 的坐标分别为()5,0,()9,0,点D 是x 轴正半轴上一个动点,连接CD ,将ACD ∆绕点C 逆时针旋转60︒得到BCE ∆,连接DE .(1)并判断CDE ∆的形状,说明理由.(2)如图①,当D 在线段AB 上运动时,BDE ∆的周长随D 点的移动而变化,求出BDE ∆的最小周长.(3)当BDE ∆是直角三角形时,直接写出点D 的坐标.3.如图,平面直角坐标系中,ABCD 为长方形,其中点A 、C 坐标分别为(﹣4,2)、(1,﹣4),且AD①x 轴,交y 轴于M 点,AB 交x 轴于N .(1)求B 、D 两点坐标和长方形ABCD 的面积;(2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出①AMP 、①MPO 、①PON 之间的数量关系;(3)是否存在某一时刻t ,使三角形AMP 的面积等于长方形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.4.如图1,在平面直角坐标系中,点,A B 的坐标分别为(),0A a ,(),0B b ,且,a b 满足|3|0a +=,现同时将点,A B 分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点,A B 的对应点,C D ,连接AC ,BD .(1)请求出,C D 两点的坐标;(2)如图2,点P 是线段AC 上的一个动点,点Q 是线段CD 的中点,连接PQ ,PO ,当点P 在线段AC 上移动时(不与,A C 重合),请找出PQD ∠,OPQ ∠,BOP ∠的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M ,使三角形MAD 的面积与三角形ACD 的面积相等?若存在直接写出点M 的坐标;若不存在,试说明理由.5.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180)(3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.6.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中,a b 2(3)0b -=.(1)填空:a =_______,b =________;(2)若在第三象限内有一点(2,)M m -,用含m 的式子表示ABM 的面积;(3)在(2)条件下,当32m =-时,点P 是坐标轴上的动点,当满足PBM 的面积是ABM 的面积的2倍时,求点P 的坐标.7.如图,()0,A a ,(),0C c ,且()2182140c a -+-=,将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B .(1)求点A ,点B ,点C 的坐标;(2)若点P 从点C 以2个单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以每秒1个单位长度的速度沿OA 方向移动,设移动的时间为t 秒(07t <<).①李超在解题过程中发现:P ,Q 移动过程中四边形QOPB 的面积与移动的时间t 无关.你同意她的结论吗?请说明理由;①是否存在一段时间,使2OQB OPBA S S ∆<四边形,若存在,求出t 的取值范围;若不存在,请说明理由.8.如图,在平面直角坐标系中,点A (a ,0)在x 轴负半轴上,点C (2,0)在x 正半轴上,点B (0,b )在y 轴正半轴上,并且a 、b 是方程组2356a b a b +=-⎧⎨+=⎩的解,连接AB 、BC . (1)a =________,b =________;(2)经过计算AB=10,动点M 从点A 出发,沿射线AB 以每秒2个单位长度的速度匀速运动,连接MC ,设点M 的运动时间为t (t>0)秒,用含t 的式子表示①BCM 的面积S ,并直接写出t 的取值范围;(3)在(2)的条件下,点N 在线段BC 上,且BN=2CN ,连接MN.当三角形BMN 的面积为8时,求t 值,并直接写出点M 的坐标.9.如图1,在平面直角坐标系中,A (a ,0)是x 轴负半轴上一点,C 是第三象限内一点,CB①y 轴交y 轴负半轴于B (0,b ),且|a+3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C的坐标;(2)如图2,设D为线段OB上一动点,当AD①AC时,①ODA的平分线与①CAN的平分线的反向延长线交于点E,求①AED的度数(点N在x轴的负半轴);(3)如图3,当点D在线段OB上运动时,作DP①AD交BC于P点,①BPD、①DAO的平分线交于Q点,则点D 在运动过程中,①Q的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.10.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD 绕点A逆时针旋转90°得线段AE,使得AE①AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.①求证:M为BE的中点.①探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).11.在平面直角坐标系中,已知A(a ,0),B(b ,0),C(0,4),D(6,0).点P(m ,n)为线段CD 上一点(不与点C 和点D 重合).(1)利用三角形COP 、三角形DOP 及三角形COD 之间的面积关系,求m 与n 之间的数量关系;(2)如图1,若a =﹣2,点B 为线段AD 的中点,且三角形ABC 的面积等于四边形AOPC 面积,求m 的值; (3)如图2,设a ,b ,m 满足230325a b m a b m ++=⎧⎨++=-⎩,若三角形ABP 的面积小于5,求m 的取值范围.12.如图1,在平面直角坐标系中,点()2,0A -,()5,0B -,点C 在第三象限,已知AC AB ⊥,且AB AC =.(1)求点C 的坐标;图1(2)如图2,N 为线段AC 上一动点(端点除外),P 是y 轴负半轴的一点,连接BP 、CP ,射线BN 与ACP ∠的角平分线交于D ,若45BDC ABD ∠-∠=︒,求点P 的坐标;图2(3)在第(2)问的基础上,如图3,点Q 与点P 关于x 轴对称,E 是射线PC 上一个动点,连接QE ,EF 平分QEC ∠,QM 平分EQP ∠,射线//QH EF .试问MQH ∠的度数是否发生改变?若不变,请求其度数:若改变,请指出其变化范围.图313.在下面直角坐标系中,已知A(0,a)、B(b,0)、C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0.(1)a=;b=;c=;(2)在第二象限内,是否存在点P(m,12),使四边形ABOP的面积与①ABC的面积相等?若存在,求出点m的值;若不存在,请说明理由;(3)D为线段OB上一动点,连接CD,过D作DE①CD交y轴于点E,EP、CP分别平分①DEO和①DCB,当点D在OB上运动的过程中,①P的度数是否变化,若不变,请求出①P的度数;若变化,请说明理由.14.如图,在平面直角坐标系中,已知A(﹣2,0),B(3,0),C(﹣1,2).(1)在x轴正半轴上存在一点M使S三角形COM=S三角形ABC,求出点M的坐标.(2)在坐标轴的其他位置是否存在点M,使S三角形COM=13ABCS恒成立?若存在,请写出符合条件的点M的坐标.15.如图,已知长方形ABC O中,边AB=12,BC=8.以点0为原点,O A、OC所在的直线为y轴和x轴建立直角坐标系.(1)点A的坐标为(0,8),写出B.C两点的坐标;(2)若点P从C点出发,以3单位/秒的速度向C O方向移动(不超过点O),点Q从原点O出发,以2单位/秒的速度向O A方向移动(不超过点A),设P、Q两点同时出发,在它们移动过程中,四边形OPBQ的面积是否发生变化?若不变,求其值;若变化,求变化范围.16.如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a25=.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得①ACP的面积与①ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且QBC的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.17.如图,在平面直角坐标系中,已知点 (0, 3)A,(5,0)B,(5,4)C三点.(1)在平面直角坐标中画出ABC∆,求ABC∆的面积(2)在x轴上是否存在一点M使得BCM∆的面积等于ABC∆的面积?若存在,求出点M坐标;若不存在,说明理由.(3)如果在第二象限内有一点(, 1)P a,用含a的式子表示四边形ABOP的面积;(4)且四边形ABOP的面积是ABC∆的面积的三倍,是否存在点P,若存在,求出满足条件的P点坐标;若不存在,请说明理由.18.如图,在平面直角坐标系xOy 中,已知(4,0)A ,将线段OA 平移至CB ,点D 在x 轴正半轴上,(,)C a b ,且|3|0b -=.连接OC ,AB ,CD ,BD .(1)写出点C 的坐标为 ;点B 的坐标为 ;(2)当ODC △的面积是ABD △的面积的3倍时,求点D 的坐标;(3)设OCD ∠=α,DBA ∠=β,BDC θ∠=,判断α、β、θ之间的数量关系,并说明理由.19.如图1,点A 的坐标为()0,2,将点A 向右平移m 个单位得到点B ,其中关于x 的一元一次不等式152mx x -<-的解集为1x >,过点B 作BC x ⊥轴于C 得到长方形ABCO ,(1)求B 点坐标______及四边形AOCB 的面积_______;(2)如图2,点Q 从O 点以每秒1个单位长度的速度在y 轴上向上运动,同时点P 从C 点以每秒2个单位长度的速度匀速在x 轴上向左运动,设运动的时间为t 秒()02t <<,问是否存在一段时间,使得BOQ ∆的面积不大于BOP ∆的面积,若存在,求出t 的取值范围;若不存在,说明理由;(3)在(2)的条件下,四边形BPOQ 的面积是否发生变化,若不变化,请求出其值;若变化,说明理由.20.如图1,在平面直角坐标系中,点A (a ,0),B (b ,3),C (c ,0)+6a b -++2(4)c -=0. (1)分别求出点A ,B ,C 的坐标及三角形ABC 的面积.(2)如图2.过点C 作CD AB ⊥于点D ,F 是线段AC 上一点,满足FDC FCD ∠=∠,若点G 是第二象限内的一点,连接DG ,使ADG ADF ∠=∠,点E 是线段AD 上一动点(不与A 、D 重合),连接CE 交DF 于点H ,点E 在线段AD 上运动的过程中,DHC ACECED∠+∠∠的值是否会变化?若不变,请求出它的值;若变化,请说明理由.(3)如图3,若线段AB 与y 轴相交于点F ,且点F 的坐标为(0,32),在坐标轴上是否存在一点P ,使三角形ABP 和三角形ABC 的面积相等?若存在,求出P 点坐标.若不存在,请说明理由.(点C 除外)21.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB①y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD①AC时,①ODA的角平分线与①CAE的角平分线的反向延长线交于点P,求①APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM①AD交BC于M点,①BMD、①DAO的平分线交于N点,则点D在运动过程中,①N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.+=,22.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|0点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM=13S三角形ABC,试求点M的坐标.23.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=4.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.24.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 20b -=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODPODQ S S=?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.25.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,C(0,a),D(b ,a),其中a ,b 满足关系式:|a+3|+(b -a+1)2=0.(1)a=___,b=___,①BCD 的面积为______;(2)如图2,若AC①BC ,点P 线段OC 上一点,连接BP ,延长BP 交AC 于点Q ,当①CPQ=①CQP 时,求证:BP 平分①ABC ;(3)如图3,若AC①BC ,点E 是点A 与点B 之间一动点,连接CE,CB 始终平分①ECF,当点E 在点A 与点B 之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.26.如图,在平面直角坐标系中,已知(,0)A a,(,0)B b,其中a,b|1|0a+=,点M为第三象限内一点.(1)若(2,210)M m m--到坐标轴的距离相等,MN AB,且NM AB=,求N点坐标(2)若M为(2,)m-,请用含m的式子表示ABM∆的面积.(3)在(2)条件下,当1m=-时,在y轴上有点P,使得ABP∆的面积是ABM∆的面积的2倍,请求出点P的坐标.27.如图1,在平面直角坐标系中,A(m,0),B(n,0),C(﹣1,2),且满足式|m+2|+(m+n﹣2)2=0.(1)求出m,n的值.(2)①在x轴的正半轴上存在一点M,使①COM的面积等于①ABC的面积的一半,求出点M的坐标;①在坐标轴的其它位置是否存在点M,使①COM的面积等于①ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;(3)如图2,过点C作CD①y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分①AOP,OF①OE,当点P运动时,OPDDOE∠∠的值是否会改变?若不变,求其值;若改变,说明理由.28.如图①,在平面直角坐标系中,点A、B在x轴上,AB①BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图①,过点B作BD①AC交y轴于点D,求①CAB+①BDO的大小.(3)如图①,在图①中,作AE、DE分别平分①CAB、①ODB,求①AED的度数.29.如图①,在平面直角坐标系中,A()0a,,C()2b,,且满足()220a++=,过点C作CB①x轴于点B.(1)__________ABCa b S===,,;(2)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图①,若过点B 作BD①AC 交y 轴于点D ,且AE 、DE 分别平分①CAB 、①ODB ,求①AED 的度数.30.如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )2+|a -b+4|=0,过点C 作CB①x 轴于B , (1)如图1,求①ABC 的面积.(2)如图2,若过B 作BD①AC 交y 轴于D ,在①ABC 内有一点E ,连接AE.DE ,若①CAE+①BDE=①EAO+①EDO ,求①AED 的度数.(3)如图3,在(2)的条件下,DE 与x 轴交于点M ,AC 与y 轴交于点F ,作①AME 的角平分线MP ,在PE 上有一点Q ,连接QM ,①EAM+2①PMQ=45°,当AE=2AM ,FO=2QM 时,求点E 的纵坐标.31.如图,在平面直角坐标系中,()()()A 1,0,B 3,0,C 0,2-,CD//x 轴,CD=AB .(1)求点D 的坐标: (2)四边形OCDB 的面积S四边形OCDB;(3)在y 轴上是否存在点P ,使S ①PAB =S四边形OCDB;若存在,求出点P 的坐标,若不存在,请说明理由.32.如图,在平面直角坐标系中,长方形ABCD的顶点A(a,0),B(b,0)在坐标轴上,C的纵坐标是2,且a,b满足式子:b-=40(1)求出点A、B、C的坐标.(2)连接AC,在y轴上是否存在点M,使①COM的面积等于①ABC的面积,若存在请求出点M的坐标,若不存在请说明理由.(3)若点P是边CD上一动点,点Q是CD与y轴的交点,连接OP,OE平分①AOP交直线CD于点E,OF①OE交直线CD于点F,当点P运动时,探究①OPD和①EOQ之间的数量关系,并证明.33.如图,直角坐标系中,A点是第二象限内一点,AB①x轴于B,且C(0,2)是y轴正半轴上一点,OB-OC=2,AB=4.(1)求A点坐标;(2)设D为线段OB上一动点,当①CDO=①A时,CD与AC之间存在怎么样的位置关系?证明你的结论;(3)当D点在线段OB上运动时,作DE①CD交AB于E,①BED,①DCO的平分线交于M,现在给出两个结论:①①M 的大小不变;①①BED+①CDO的大小不变.其中有且只有一个是正确的,请你选出正确结论,并给予证明.34.如图,在直角坐标系xOy 中,己知()0A ,()6B ,将线段OA 平移至CB ,点D 在x 轴正半轴上(不与点A 重合),连接OC ,AB ,CD ,BD .(1)直接写出点C 的坐标;(2)当①ODC 的面积是①ABD 的面积的2倍时,求点D 的坐标;(3)若①OCD=25°,①DBA=15°,求①BDC .并说明理由.35.如图,在直角坐标系xoy中,点A、B的坐标分别是A(-1,0),B(3,0),将线段AB向上平移2个单位,再向右平移1个单位,得到线段DC,点A、B的对应点分别是D、C,连接AD、BC.(1)直接写出点C,D的坐标;(2)求四边形ABCD的面积;(3)点P为线段BC上任意一点(与点B、C不重合),连接PD,PO.求证:①CDP+①BOP=①OPD.36.如图,以直角①AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,b-=.a),C(b,080(1)点A的坐标为________;点C的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得①ODP与①ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若①DOC=①DCO,点G是第二象限中一点,并且y轴平分①GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究①GOA,①OHC,①ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).37.如图,在平面直角坐标系中,A(4,0),B(0,4),C是第一象限内一点,且BC①x轴.(1)连接AC,当S①ABC=6时,求点C的坐标;(2)设D为y轴上一动点,连接AD,CD,作①BCD、①DAO的平分线相交于点P,在点D的运动过程中,试判断等式①CPA=2①CDA是否始终成立,并说明理由.。
部编数学七年级下册期末难点特训(三)和平面直角坐标系有关的压轴题(解析版)含答案
(1)已知点A的坐标为(﹣3,1),(1)请直接写出点A ,B ,C 的坐标;(2)如图(1),若点D 的坐标为()1,0-,点(),F m n 为线段DE 12,求m 的取值范围;(3)如图(2),若DE 与y 轴的交点G 在B 点上方,点P 为EBO Ð,BPD Ð,PDA Ð之间的数量关系.【答案】(1)()4,0A ,()0,2B ,()0,3C -14Q 将线段AB 平移到DE ,AB DE \=,AB DE ∥,AD =\四边形ABED 的面积25=´=152ABF ABEDS S D \==四边形,ABF ADF ABO ABFD S S S S D D D =+=+Q 四边形11155422(222n m \+´´=´´+´´-Q将线段AB平移到DE \∥,AD BE AB DE∥ADP BFD\Ð=Ð,\Ð=°-Ð=180180 PFB BFD Q,Ð=Ð+ÐEBO BPD BFPEBO BPD\Ð=Ð+°-Ð180Q将线段AB平移到DE \∥,AD BE\Ð+Ð=°,PDA BFD180\Ð=°-Ð,180BFP PDAÐ=Ð+ÐQ,EBO BFP BPF\Ð=°-Ð+180180 EBO PDA如图,当点P 在AD 的延长线与y 轴的交点T 上方时,EBO BEG EGB Ð=Ð+ÐQ ,又BE AD Q ∥,BEG GDT \Ð=Ð,由对顶角得EGB TGD Ð=Ð,PTD TGD TDG Ð=Ð+ÐQ ,PTD EBO \Ð=Ð,PDA PTD TPD Ð=Ð+ÐQ ,PDA EBO BPD\Ð=Ð+Ð综上所述:当点P 在点B 的下方时,180EBO BPD ADP Ð=Ð+°-Ð;当点P 在B 、与AD 的延长线与y 轴的交点之间时,360EBO PDA BPD Ð+Ð+Ð=°;当点P 在AD 的延长线与y 轴的交点T 上方时,PDA EBO BPD Ð=Ð+Ð.【点睛】本题是三角形综合题,考查了平移的性质,三角形面积公式,利用分类讨论思想解决问题是解题的关键.3.如图所示,在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,点A 在x 轴的负半轴,点C 在y 轴的正半轴上,连接AC 、BD .(1)若(3,0)A -、(2,2)B --,(0,2)C ,直接写出点D 的坐标;(2)如图②,在平面直角坐标系中,已知一定点(2,0)M ,两个动点(,21)E a a +、(,23)F b b -+.请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求点E 、F 的坐标;若不存在,请说明理由;(3)如图③,在直线EF 上有两点A 、C ,分别引两条射线AB 、CD .110BAF Ð=°,//EF OM Q ,EF OM =,\点E 与F 的纵坐标相等,横坐标的差的绝对值为即2123a b +=-+,||a b -=如图①,AB 与CD 在EF 的两侧时,110BAF Ð=°Q ,60DCF Ð=°,18060312031203ACD t t t \Ð=°-°-°´=°-°´=°-°要使//AB CD ,则ACD BAF ÐÐ=,即120°-解得5t =,此时(18060)340°-°¸°=,040t \<<,∴a−6=0,c+8=0,∴a=6,c=−8,∴A(6,0),B(6,−8).当点P到AB的距离为2个单位长度时,运动路程s=6−2=4或s=6+8+2=16,∴4÷2=2s或16÷2=8s,故答案为:2s或8s;(2)①当0≤t≤3时,点P在OA上,此时,P(2t,0);②当3≤t≤7时,点P在AB上,此时PA=2t−6,由于点P在第四象限,纵坐标小于0,则P (6,6−2t);③当7≤t≤10时,点P在BC上,此时PB=2t−OA−AB=2t−14,PC=BC−PB=6−(2t−14)=20−2t,∴P(20−2t,−8);(3)当点P在线段AB上时,分两种情况:①如图3中,结论:∠PEA+∠PFC=160°,理由如下:连接OP,∵∠PFC=∠FPO+∠FOP,∠AEP=∠EOP+∠EPO,∴∠PEA+∠PFC=∠FPO+∠FOP+∠EOP+∠EPO=∠AOF+∠EPF=90°+70°=160°;②如图4中,结论:∠PFC−∠AEP=20°,理由如下:a______,b=______;(1)直接写出=轴上一点,且三角形ABP的面积为12,求点P=,设OC mAE BDQ∥,\ADQ=(1)求B 点的坐标时,小明是这样想的:先设B 点坐标为以()m n ,是方程2x y -=-的解;又因为B 点在直线BC 解,从而m ,n 满足228m n m n -=-ìí+=î,据此可求出B 点坐标为______;C 点坐标为______.(均直接写出结果)(2)若线段BC 上存在一点D ,使12OCD ABC S S =△△(O∵S△ABM+S梯形AMNF=S△FBN,∴1 2×4×4+12(4+FN)×3=12×FN×7,∴FN=7,∴F(-5,-3),过点∠MDQ=90°,△MDQ是等腰直角三角形,过点D作DG⊥x轴于E,过点M作MG⊥DG于G,同理得△BOA≌△AED,△MGD≌△DEQ,∴DE=MG=OA=2,OE=2+6=8,∴OE=8=m+2,∴m=6,∴OQ=OE+EQ=OE+DG=8+2+3m-6=3m+4=22,∴Q(22,0);③如图4,∠MDQ=90°,△MDQ 是等腰直角三角形,过点D作DE⊥x轴于E,过M作MG∥y轴,过点D作DG⊥MG于G,同理得:OA=DE=DG=2,∴m=2+6+2=10,∴OQ=EQ-OE=MG-OE=2+3m-6-8=18,∴Q(-18,0);综上,点Q的坐标为(-3,0)或(22,0)或(-18,0).【点睛】本题是三角形的综合题,考查了坐标与图形性质及非负数的性质,等腰直角三角形的性质和判定,三角形全等的性质和判定等知识,解决本题的关键是作辅助线构建三角形全等.过点过点过点(1)求点A ,B 的坐标;(2)如图1,将AB 平移到A B ¢¢,使点B 的对应点B ¢落在x 轴的正半轴上,在且20ABP Ð=°,试判断PB A ¢¢Ð与B PB ¢Ð之间的数量关系,并说明理由;(3)如图2,线段AB 与y 轴交于点M ,将AB 平移到A B ¢¢,连接MA ¢∵由平移得:AB A B ¢¢∥∴PQ A B ¢¢∥∴QPB PB A ¢¢¢Ð=Ð,20QPB PBA Ð=Ð=°∴PB A QPB B PB QPB B PB PBA ¢¢¢¢¢Ð=Ð=Ð+Ð=Ð+Ð∵ACDB ACOM OMDBS S S =+梯形梯形梯形∴()()(111826246222m ´´+=´++´´解得:4m =如图3,过点A ¢、B ¢构造矩形A GEF ¢∴A B M A GB MEB A GEF S S S S ¢¢¢¢¢¢=---矩形△△△(1118884488222n n =´-´´-´×-´×-64162324n n---+216n =+\Ð∵Q由平移可得:,MN PQ ∥180,MNQ PQN EQP MNE ENQ EQN \Ð+Ð=°=Ð+Ð+Ð+Ð 180,NEQ ENQ EQN Ð+Ð+Ð=°Q,NEQ EQP MNE \Ð=Ð+Ð如图,当E 在NQ 的右边,直线MN 的左边时,(包括E 在这两条直线上),同理可得:180,180,MNQ PQN QNE NEQ NQE Ð+Ð=°Ð+Ð+Ð=° 360,MNE NEQ EQP \Ð+Ð+Ð=°如图,当E 在直线MN 的右边时,记直线MN 与EQ 的交点为F ,同理,当C 点平移后的点不是“自大点时”, 1t …或3t …,\当平移后的正方形边界及其内部的所有点都不是“自大点”时,1t …或7t …,故答案为:1t …或7t ….【点睛】本题主要考查正方形的性质,坐标与图形的平移变化,根据题意,准确找出“自大点”的纵横坐标满足的关系是解答此题的关键.。
七(下)培优训练(三)平面直角坐标系综合问题(压轴题)
培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△AB C的面积;(2)如果在第二象限内有一点P(a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△AB C的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .图1y xDO CB A图2y xDOCB AyxOBAyxOBA(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D在第一象限内,且S△ACD =5,求C、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△AB C向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A、C的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C的位置不变,当点Q在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过B作BD ∥AC 交y 轴于D,且AE ,D E分别平分∠CA B,∠ODB ,如图2,求∠AE D的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形A CP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形AB CD 各顶点的坐标分别是A(0,0),B(7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C点, 过O点作O G⊥C E, 垂足为G ;(2) 在(1)的条件下, 求证: ∠C OG =∠E DF ; (3)求运动过程中线段A B扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C(-5,4),点A 是x轴负半轴上一点,S四边形A OBC =24.图1yxHOFEDAC B(1)线段B C的长为 ,点A的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CA H,CF ⊥A E点F,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线C B与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON平分AOP ∠,BN 交ON 于N,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA=4,O C=8,四边形ABC O是平行四边形.A(-2,0)B(0,-3)y x 0(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQ B与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形Q BPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D 连结AC ,B D. (1)求点C ,D 的坐标及四边形ABD C的面积S 四边形ABDC ;(2)在y轴上是否存在一点P ,连结P A ,PB ,使S △PAB =S △明理由;(3)若点Q自O 点以0.5个单位/s 的速度在线段AB上移动,运动到B点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△AB C的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A (0,a),B (0,b),C (m ,b)且(a -4)2+|b+3|=0,S △ABC =14. (1)求C点坐标(2)作DE ⊥DC,交y 轴于E点,EF 为∠AED 的平分线,且∠DF E=900.求证:FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连E C,点P为A C延长线上一点,EM 平分∠AEC,且PM ⊥EM,PN ⊥x 轴于N点,PQ 平分∠APN,交x轴于Q点,则E 在运动过程中,错误!的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7), (1)求C点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q从C 点出发也以每秒1位的速度沿y轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
【专题培优】人教版2019年 七年级数学下册 平面直角坐标系压轴题专项培优(含答案)
人教版2019年七年级数学下册平面直角坐标系压轴题专项培优1.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.2.如图在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,0.5),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△AOP的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.3.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.4.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D.(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).5.如图,已知在平面直角坐标系中,△ABO的面积为8, OA=OB, BC=12,点P的坐标是(a, 6).(1)求△ABC三个顶点A, B, C的坐标;(2)若点P坐标为(1, 6),连接PA, PB,则△PAB的面积为 ;(3)是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标.6.如图,已知平面直角坐标系内A (2a-1,4) , B (-3,3b+1),A、B;两点关于y轴对称.(1)求A、B的坐标;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,点的速度是每秒2个单位长度,Q点的速度是每秒4个单位长度,设P、Q的运时间为t秒,用含t的代数式表示三角形OPQ的面积S,并写出t的取值范围;(3)在平面直角坐标系中存在一点M,点M的横纵坐标相等,且满足S△PQM:S△OPQ=3:2,求出点M的坐标,并求出当S△AQM=15时,三角形OPQ的面积.7.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.8.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a-b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.9.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a= ,b= ,△BCD的面积为;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP 平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由.10.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.11.已知A(0,a),B(b,0),a、b满足.(1)求a、b的值;(2)在坐标轴上找一点D,使三角形ABD的面积等于三角形OAB面积的一半,求D点坐标;(3)做∠BAO平分线与∠AOC平分线BE的反向延长线交于P点,求∠P的度数.12.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发5.5s时,试求三角形PQC的面积;(3)设两点运动的时间为ts,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).13.三角形ABC在平面直角坐标系中的位置如图所示,三个顶点A,B,C的坐标分别是(﹣1,4)(﹣4,﹣1)(1,1).(1)将三角形ABC向右平移5个单位长度,再向上平移1个单位长度,得到三角形A′B′C′,请画出平移后的三角形A′B′C′,并写出A′,B′,C′的坐标.(2)若在第四象限内有一点M(4,m),试用含m的式子表示四边形AOMB′的面积.(3)在(2)的条件下,是否存在点M,使得四边形A′OMB′的面积与三角形A′B′C′的面积相等?若存在,请求出点M的坐标;若不存在,请说明理由.14.已知,在平面直角坐标系中,点A, B的坐标分别是(a, 0),(b, 0)且.(1)求a, b的值;(2)在y车由上是否存在点C,使三角形ABC的面积是12?若存在,求出点C的坐标;若不存在,请说明理由.(3)已知点P是y车由正半轴上一点,且到x车由的距离为3,若点P沿x轴负半轴方向以每秒1个单位长度平移至点Q,当运动时间t为多少秒时,四边形ABPQ的面积S为15个平方单位?写出此时点Q的坐标.答案1.解:(1)图略.(2)过点C 向x 轴,y 轴作垂线,垂足分别为点D ,E ,∴S 四边形DOEC =3×4=12,S 三角形BCD =21×2×3=3,S 三角形ACE =21×2×4=4,S 三角形AOB =21×2×1=1.∴S 三角形ABC =S 四边形DOEC -S 三角形BCD -S 三角形ACE -S 三角形AOB =12-3-4-1=4.(3)当点P 在x 轴上时,S 三角形ABP =21AO ·BP=4,即21×1×BP=4,解得BP=8,∴点P 的坐标为(10,0)或(-6,0); 当点P 在y 轴上时,S 三角形ABP =21·BO ·AP=4,即21×2×AP=4,解得AP=4,∴点P 的坐标为(0,5)或(0,-3).故点P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0). 2.解:3.解:(1)C (0,2),D (4,2),四边形ABCD 的面积=(3+1)×2=8;(2)假设y 轴上存在P (0,b )点,则S △PAB =S 四边形ABDC ∴|AB|•|b|=8,∴b=±4,∴P (0,4)或P (0,﹣4).4.解:(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为:(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x主,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±2(负值舍去),∴m=4+2;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+2,0)或(2,0)或(6,0).5.6.7.解:8.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2).∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.9.解:10.解:11.解:12.解:(1)a=-4,b=8;(2)D(-6,0),(-2,0),(0,4),(0,12);(3)45°. 13.解:14.解:15.略。
人教版七年级数学下册《专题2.3平面直角坐标系压轴培优强化卷》解析版
人教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题2.3平面直角坐标系压轴培优强化卷班级:_________ 姓名:______________ 座号:__________ 分数:___________注意事项:本试卷共26题.其中选择10道,填空8道,解答8道。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级、座号填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•南山区期末)在平面直角坐标系中,下列说法正确的是()A.点P(3,2)到x轴的距离是3B.若ab=0,则点P(a,b)表示原点C.若A(2,﹣2)、B(2,2),则直线AB∥x轴D.第三象限内点的坐标,横纵坐标同号【分析】根据点的坐标的几何意义进行判断.【解析】A、点P(3,2)到x轴的距离是2,故本选项不符合题意.B、若ab=0,则点P(a,b)表示原点或坐标轴上的点,故本选项不符合题意.C、若A(2,﹣2)、B(2,2),则直线AB∥y轴,故本选项不符合题意.D、第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D.2.(2020秋•市北区期末)点M到x轴的距离为3,到y轴的距离为2,且在第一象限内,则点M的坐标为()A.(﹣2,3)B.(2,3)C.(3,2)D.不能确定【分析】根据第一象限内的点的坐标(+,+),可得答案.【解析】M到x轴的距离为3,到y轴距离为2,且在第一象限内,则点M的坐标为(2,3),故选:B.3.(2020秋•邛崃市期末)如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)【分析】直接利用文化馆的位置是(﹣2,1),超市的位置是(3,﹣3)得出原点位置,进而得出市场的位置.【解析】如图所示:市场的位置是(5,3),故选:D.4.(2019春•磁县期末)若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)【分析】根据有理数的乘法判断出x、y的值,再根据坐标轴上点的坐标特征解答.【解析】∵xy=0,∴x=0或y=0,当x=0时,点P在x轴上,当y=0时,点P在y轴上,∵x≠y,∴点P不是原点,综上所述,点P必在x轴上或y轴上(除原点).故选:D.点评:本题考查了点的坐标,主要利用了坐标轴上点的坐标特征,需熟记.5.(2020秋•建邺区期末)如图,在平面直角坐标系中,线段AB的两个端点是A(1,3),B(2,1).将线段AB沿某一方向平移后,若点A的对应点A′的坐标为(﹣2,0),则点B的对应点B′的坐标为()A.(﹣3,2)B.(﹣1,﹣3)C.(﹣1,﹣2)D.(0,﹣2)【分析】利用平移变换的性质解决问题即可.【解析】观察图象可知,点B的对应点B′的坐标为(﹣1,﹣2).故选:C.6.(2020春•丛台区校级期末)若点A(6,6),AB∥x轴,且AB=2,则B点坐标为()A.(4,6)B.(6,4)或(6,8)C.(6,4)D.(4,6)或(8,6)【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况讨论求解.【解析】∵A(6,6),AB∥x轴,∴点B的纵坐标为6,点B在点A的左边时,6﹣2=4,此时点B的坐标为(4,6),点B在点A的右边时,6+2=8,此时,点B的坐标为(8,6),综上所述,点B的坐标为(4,6)或(8,6).故选:D.7.(2019春•杭锦后旗期末)已知点P(0,a)在y轴的负半轴上,则点Q(﹣a2﹣1,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴负半轴上点的纵坐标是负数求出a的取值范围,再求出点Q的横坐标与纵坐标的正负情况,然后求解即可.【解析】∵点P(0,a)在y轴的负半轴上,∴a<0,∴﹣a2﹣1<0,﹣a+1>0,∴点Q在第二象限.故选:B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(2020秋•织金县期末)已知点Q的坐标为(﹣2+a,2a﹣7),且点Q到两坐标轴的距离相等,则点Q 的坐标是()A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(3,3)或(1,﹣1)【分析】根据点Q到坐标轴的距离相等列出绝对值方程,然后求出a的值,再解答即可.【解析】∵点Q(﹣2+a,2a﹣7)到两坐标轴的距离相等,∴|﹣2+a|=|2a﹣7|,∴﹣2+a=2a﹣7或﹣2+a=﹣(2a﹣7),解得a=5或a=3,所以,点Q的坐标为(3,3)或(1,﹣1).故选:D.9.(2019春•梁园区期末)平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C 是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解析】如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.点评:本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(2020春•丛台区校级期末)在平面直角坐标系中,若干个等腰三角形按如图所示的规律摆放.点P从原点O出发,沿着“O→A1→A2→A3→A4…”的路线运动(每秒一条直角边),已知A1坐标为(1,1),A2(2,0),A3(3,1),A4(4,0)…设第n秒运动到点P n(n为正整数),则点P2020的坐标是()A.(2020,0)B.(2019,1)C.(1010,0)D.(2020,﹣1)【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【解析】由题意知,A1(1,1)A2(2,0)A3(3,1)A4(4,0)A5(5,﹣1)A6(6,0)A7(7,1)…由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,﹣1,0这样循环,∴A2020(2020,0),故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(2019春•临河区期末)在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x 的值是.【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2﹣x|=3,从而可以求得x的值.【解析】∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为:﹣1或5.点评:本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.12.(2020秋•沙坪坝区校级期末)在平面直角坐标系中,已知点P(m﹣1,2m+2)位于x轴上,则P点坐标为(﹣2,0).【分析】根据x轴上点的纵坐标等于零,可得答案.【解析】由题意,得2m+2=0,解得m=﹣1,∴m﹣1=﹣2,∴点P的坐标为(﹣2,0),故答案为:(﹣2,0).13.(2020秋•芝罘区期末)若点A(a,b﹣2)在第二象限,则点B(﹣a,b+1)在第一象限.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列不等式求出a、b的取值范围,然后求解即可.【解析】∵点A(a,b﹣2)在第二象限,∴a<0,b﹣2>0,∴b>2,∴﹣a>0,b+1>3,∴点B(﹣a,b+1)在第一象限.故答案为:一.14.(2020秋•雁塔区校级期末)A、B两点的坐标分别为(1,0)、(0,2),落将线段AB平移至A1B1,点A1、B1的坐标分别为(﹣2,a),(b,3),则a+b=﹣2.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向右平移1个单位,向上平移了1个单位,然后再确定a、b的值,进而可得答案.【解析】由题意可得线段AB向左平移3个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(﹣2,1),(﹣3,3),∴a+b=1﹣3=﹣2,故答案为:﹣2.15.(2020秋•道里区期末)已知线段AB∥y轴,若点A的坐标为(5,n﹣1),B(n2+1,1),则n为﹣2.【分析】根据平行于y轴的点的横坐标相同可得n的值即可.【解析】∵线段AB∥y轴,点A的坐标为(5,n﹣1),B(n2+1,1),∴5=n2+1,n﹣1≠1,解得:n=﹣2,故答案为:﹣2.16.(2020春•无棣县期末)如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为(3,2).【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【解析】如图所示:棋子“炮”的坐标为(3,2).故答案是:(3,2).17.(2020春•嘉陵区期末)若点P(m+5,m﹣3)在第二、四象限角平分线上,则m=﹣1.【分析】根据第二、第四象限坐标轴夹角平分线上的点,横纵坐标互为相反数,由此就可以得到关于m 的方程,即可解出m的值.【解析】∵点P(5+m,m﹣3)在第二、四象限的角平分线上,∴5+m+m﹣3=0,解得:m=﹣1,故答案为:﹣1.18.(2020春•镜湖区期末)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,若点A的坐标为(a,b),则点A2021的坐标为(﹣b+1,a+1).【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【解析】∵A的坐标为(a,b),∴A1(﹣b+1,a+1),A2(﹣a,﹣b+2),A3(b﹣1,﹣a+1),A4(a,b),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505余1,∴点A2021的坐标与A1的坐标相同,为(﹣b+1,a+1);故答案为:(﹣b+1,a+1).三、解答题(本大题共8小题,满分66分)19.(2020春•临颍县期末)平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.【分析】(1)点在x 轴上,该点的纵坐标为0;(2)根据第二象限的点的横坐标小于0,纵坐标大于0解答即可;(3)根据点到y 轴的距离为1,则该点的横坐标的绝对值为1,据此计算即可.【解析】(1)要使点M 在x 轴上,a 应满足2a +7=0,解得a =−72,所以,当a =−72时,点M 在x 轴上;(2)要使点M 在第二象限,a 应满足{a −1<02a +7>0,解得−72<a <1, 所以,当−72<a <1时,点M 在第二象限;(3)要使点M 到y 轴距离是1,a 应满足|a ﹣1|=1,解得a =2或a =0,所以,当a =2或a =0时,点M 到y 轴距离是1.20.(2020秋•白银期末)小明和爸爸、妈妈到白银水川湿地公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点、x 轴及y 轴.只知道长廊E 的坐标为(4,﹣3)和农家乐B 的坐标为(﹣5,3),请你帮他画出平面直角坐标系,并写出其他各点的坐标.【分析】由长廊E 的坐标为(4,﹣3)和农家乐B 的坐标为(﹣5,3),可以确定平面直角坐标系中原点的位置,以及坐标轴的位置,从而可以确定其它点的坐标.【解析】由题意可知,本题是以点D 为坐标原点(0,0),DA 为y 轴的正半轴,建立平面直角坐标系. 则A 、C 、F 的坐标分别为:A (0,4);C (﹣3,﹣2);F (5,5).21.(2020秋•松北区期末)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)点A的坐标为(﹣4,2);(2)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1.(3)△A1B1C1的面积为 5.5.【分析】(1)直接利用平面直角坐标系得出A点坐标;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用△A1B1C1的所在矩形面积减去多于三角形面积进而得出答案.【解析】(1)如图所示:点A的坐标为(﹣4,2);故答案为:(﹣4,2);(2)如图所示:△A1B1C1,即为所求;(3)△A1B1C1的面积为:3×4−12×1×3−12×2×3−12×1×4=5.5.故答案为:5.5.22.(2019春•阳东区期末)在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)割补法求解可得.【解析】(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;②点B的坐标为(6,3),故答案为:右、3、上、5、(6,3);(2)如图,S△ABC=6×4−12×4×4−12×2×3−12×6×1=10.点评:本题主要考查作图﹣平移变换,熟练掌握平移变换的定义及其性质是解题的关键.23.(2020春•郯城县期末)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.【分析】(1)根据x轴上的点的纵坐标为0,可得关于a的方程,解得a的值,再求得点P的横坐标即可得出答案.(2)根据平行于y轴的直线的横坐标相等,可得关于a的方程,解得a的值,再求得其纵坐标即可得出答案.(3)根据第二象限的点的横纵坐标的符号特点及它到x轴、y轴的距离相等,可得关于a的方程,解得a的值,再代入要求的式子计算即可.【解析】(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2020+2020=(﹣1)2020+2020=2021.∴a2020+2020的值为2021.24.(2020春•兴城市期末)把三角形ABC放在直角坐标系中如图所示,现将三角形ABC向上平移1个单位长度,再向右平移3个单位长度就得到三角形A1B1C1.(1)在图中画出三角形A1B1C1,并写出A1、B1、C1的坐标;(2)点P在x轴上,且三角形P AC与三角形ABC面积相等,请直接写出点P的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可,再利用坐标系确定A1、B1、C1的坐标;(2)根据三角形的面积公式可得三角形的面积,然后再确定P点坐标即可.【解析】(1)如图所示:A1(4,4)、B1、(1,2)、C1(4,﹣1);(2)点P的坐标(﹣2,0),(4,0).25.(2020春•兴国县期末)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14);(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义,结合点的坐标即可得出结论.(3)根据关联点的定义和点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上,即可求出P′的坐标.【解析】(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知{5a +b =9a +5b =−3, 解得:{a =2b =−1, ∴点P 的坐标为(2,﹣1);(3)∵点P (m ﹣1,2m )的“﹣3级关联点”为P ′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)×2m ),①P ′位于x 轴上,∴m ﹣1+(﹣3)×2m =0,解得:m =−15,∴﹣3(m ﹣1)+2m =165,∴P ′(165,0).②P ′位于y 轴上,∴﹣3(m ﹣1)+2m =0,解得:m =3∴m ﹣1+(﹣3)×2m =﹣16,∴P ′(0,﹣16).综上所述,点P ′的坐标为(165,0)或(0,﹣16).26.(2019春•惠城区期末)如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC →CD ”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t = 秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当3秒<t <5秒时,设∠CBP =x °,∠P AD =y °,∠BP A =z °,试问x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.【分析】(1)根据平移的性质即可得到结论;(2)①由点C的坐标为(﹣3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.【解析】(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(﹣2,0);故答案为:(﹣2,0);(2)①∵点C的坐标为(﹣3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BP A=∠1+∠2=x°+y°=z°,∴z=x+y.点评:本题考查了坐标与图形的性质,坐标与图形的变化﹣平移,平行线的性质,正确的作出辅助线是解题的关键.。
七(下)培优训练(三)平面直角坐标系综合问题(压轴题).docx
实用文案培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例 1 】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).( 1)求△ABC 的面积;( 2)如果在第二象限内有一点P( a,0.5),试用 a 的式子表示四边形ABOP 的面积;( 3)在( 2)的条件下,是否存在这样的点P,使四边形 ABOP 的面积与△ ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yCAPO B x【例 2 】在平面直角坐标系中,已知A(-3,0), B(-2, -2 ),将线段AB平移至线段CD .y y yyDDA AAC O O xAOCxOxxBB BB图1图2图3图4(1)如图 1 ,直接写出图中相等的线段,平行的线段;( 2 )如图 2 ,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、 D 的坐标;( 3 )若点C在y轴的正半轴上,点 D 在第一象限内,且S△ACD=5 ,求C、D的坐标;(4 )在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为 10 ,若存在,求出P、Q的坐标,若不存在,说明理由;【例 3 】如图,△ABC 的三个顶点位置分别是A(1,0),B(- 2 ,3 ),(- 3, 0).C( 1 )求△ABC的面积;( 2)若把△ABC 向下平移2个单位长度,再向右平移 3 个单位长度,得到△A B C,请你在图中画出△ABC ;( 3)若点 A、 C 的位置不变,当点 P 在 y 轴上什么位置时,使S V ACP2S V ABC;( 4 )若点B、C的位置不变,当点Q 在 x 轴上什么位置时,使S V BCQ2S V ABC.【例 4 】如图 1,在平面直角坐标系中,A(a,0), C( b ,2),且满足(a2) 2 b 2 0 ,过C作CB⊥x轴于 B.( 1 )求三角形ABC 的面积;( 2 )若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图 2 ,求∠AED的度数;( 3 )在y轴上是否存在点P,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例 5 】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7 )(1 )在坐标系中,画出此四边形;(2 )求此四边形的面积;( 3 )在坐标轴上,你能否找一个点P,使S△PBC=50,若能,求出P 点坐标,若不能,说明理由.实用文案【例 6 】如图,A点坐标为(- 2 , 0),B点坐标为( 0,-3 ).(1) 作图,将△ABO沿x轴正方向平移 4 个单位,得到△DEF,延长 ED 交 y 轴于yC 点,过 O 点作 OG ⊥CE,垂足为 G;(2) 在 (1) 的条件下,求证 : ∠COG=∠EDF;A(-2,0)0xB(0,-3)( 3 )求运动过程中线段AB 扫过的图形的面积.【例 7 】在平面直角坐标系中,点B(0,4),C(-5,4),点 A 是 x 轴负半轴上一点,S 四边形AOBC=24.yD C B EFHA O x图1( 1 )线段BC的长为,点A的坐标为;(2 )如图 1 ,EA平分∠CAO,DA平分∠CAH, CF⊥AE 点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;( 3 )若点P是在直线CB 与直线 AO 之间的一点,连接BP、OP ,BN 平分CBP ,ON平分AOP ,BN交ON实用文案于 N ,请依题意画出图形,给出BPO 与BNO 之间满足的数量关系式,并说明理由.【例 8 】在平面直角坐标系中,OA =4, OC=8,四边形 ABCO 是平行四边形.yyA BBAQxxO P CO C( 1 )求点B的坐标及的面积S四边形 ABCO;(2)若点P从点 C以2单位长度 / 秒的速度沿CO方向移动,同时点Q从点O以 1 单位长度 / 秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为S AQB,S BPC,是否存在某个时间,使SAQBS四边形OQBP=,若存在,求出 t 的值,若不存在,试说明理由;3(3 )在( 2)的条件下,四边形QBPO的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例 9 】如图,在平面直角坐标系中,点A, B 的坐标分别为(-1, 0 ),( 3 , 0 ),现同时将点A, B 分别向上平移 2 个单位,再向右平移 1 个单位,分别得到点A,B的对应点C,D y连结 AC, BD.y(1) 求点C,D的坐标及四边形ABDC的面积 S 四边形ABDC;C D C DA B A B( 2 )在y轴上是否存在一点P,连结 PA, PB,使S△PAB=S△PDB,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;( 3 )若点Q自O点以 0.5 个单位 /s 的速度在线段AB 上移动,运动到 B 点就停止,设移动的时间为t 秒,( 1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?yCDA B-1oQ3x( 4 )是否是否存在一个时刻,使得梯形CDQB 的面积等于△ ACO 面积的二分之一?yB【例 10 】在直角坐标系中,△ABC的顶点A(— 2 ,0),B( 2, 4),C( 5, 0).( 1 )求△ABC的面积 A O C x( 2 )点D为y负半轴上一动点,连BD 交 x 轴于 E,是否存在点 D 使得S ADE S BCE?若存在,请求出点 D 的坐标;若不存在,请说明理由.( 3 )点 F( 5 ,n)是第一象限内一点,,连BF,CF,G是x轴上一点,若△ABG的面积等于四边形ABDC 的面积,则点 G 的坐标为(用含n的式子表示)yBFA O C x二、坐标与几何:【例 1 】如图,已知A(0 , a) ,B( 0 , b ), C( m ,b )且( a -4 )2+ |b + 3| =0 ,S△ABC= 14.(1)求 C 点坐标(2)作 DE⊥ DC ,交 y 轴于 E 点, EF 为∠AED 的平分线,且∠ DFE= 90 0.求证: FD 平分∠ADO ;(3) E 在 y 轴负半轴上运动时,连 EC,点 P 为 AC 延长线上一点, EM 平分∠AEC,且 PM ⊥EM , PN ⊥x 轴于∠MPQN 点, PQ 平分∠APN ,交 x 轴于 Q 点,则 E 在运动过程中,的大小是否发生变化,若不变,求出∠ECA其值 .yyAAF D No D o Q xxE MCB C PE【例 2 】如图,在平面直角坐标系中,已知点A(-5,0 ), B( 5.0 ), D( 2 ,7 ),( 1)求 C 点的坐标;(2 )动点 P 从 B 点出发以每秒 1 个单位的速度沿BA 方向运动,同时动点Q 从 C 点出发也以每秒 1 位的速度沿 y 轴正半轴方向运动(当P 点运动到 A 点时,两点都停止运动)。
中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)
中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。
专题4.1 平面直角坐标系中的规律问题(压轴题专项讲练)(浙教版)(解析版)
专题4.1 平面直角坐标系中的规律问题【典例1】综合与实践:(1)动手探索在平面直角坐标系内,已知点A(−6,3),B(−4,−5),C(8,0),D(2,7),连接AB,BC,CD,DA,BD,并依次取AB,BC,CD,DA,BD的中点E,F,G,H,I,分别写出E,F,G,H的坐标;(2)观察归纳以上各线段两端点的横、纵坐标与该线段中点的横、纵坐标之间的对应关系,猜想:若线段PQ两端点坐标分别为P(x1,y1)、Q(x2,y2),线段PQ的中点是R(x0,y0),请用等式表示你所观察的规律,并用G,I的坐标验证规律是否正确(填“是”或“否” );(3)实践运用利用上面探索得到的规律解决问题:①若点M1(−9,5),点M2(11,17),则线段M1M2的中点M的坐标为;②已知点N是线段N1N2的中点,且点N1(−12,−15),N(1,2),求点N2的坐标.(1)根据图形可以直接读取坐标即可得到答案;(2)根据观察得到规律并写出等式,再利用B、C、D、G、I五点坐标即可验证所得规律,得到答案;(3)①根据(2)中发现的规律,即可得到线段M1M2的中点M的坐标;②设点N2的坐标为(m,n),根据根据(2)中发现的规律解方程求解即可得到点N2的坐标.(1)解:根据图形可以直接读取各点坐标,E(−5,−1),F(2,−52),G(5,72),H(−2,5),I(−1,1),∴E ,F ,G ,H 的坐标分别为:E(−5,−1),F(2,−52),G(5,72),H(−2,5);(2)解:根据各点坐标可以发现,线段中点坐标的纵坐标值为线段两端点纵坐标和的一半,线段中点坐标的横坐标值为线段两端点横坐标和的一半,∵P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点是R (x 0,y 0),∴ x 0=2y 0=y 1y 22,∵B(−4,−5),C(8,0),D(2,7),G(5,72),I(−1,1),G 、I 分别为线段CD 、BD 的中点,∴=822=072 ,−1=21=−572,∴通过G ,I 的坐标验证规律是正确的,故答案为:x 0=x 1x 2y 0= ;是;(3)解:①∵点M 1(−9,5),点M 2(11,17),∴根据(2)中发现的规律,线段M1M 2的中点M=(1,11),故答案为:(1,11);②设点N 2的坐标为(m,n),∵点N 是线段N 1N 2的中点,且点N 1(−12,−15),N(1,2),∴ =12 ,∴ m =14n =19 ,∴点N 2的坐标为(14,19).1.(2023春·全国·七年级专题练习)如图,正方形的边长依次为2,4,6,8,……,他们在直角坐标系中的位置如图所示,其中A 1(1,1),A 2(−1,1),A 3(−1,−1),A 4(1,−1),A 5(2,2),A 6(−2,2),A 7(−2,−2),A 8(2,−2),A9(3,3),A10(−3,3),……,按此规律接下去,则A2016的坐标为( )A.(−504,−504)B.(504,−504)C.(−504,504)D.(504,504)【思路点拨】由正方形的中心都是位于原点,边长依次为2,4,6,8,…,可得第n个正方形的顶点横坐标与纵坐标的绝对值都是n.计算2016÷4,根据商和余数知道是第几个正方形的顶点,且在哪一个象限,进而得出A2016的坐标.【解题过程】解:∵2016÷4=504,∴顶点A2016是第504个正方形的顶点,且在第四象限,横坐标是504,纵坐标是−504,∴A2016(504,−504),故选:B.2.(2023·全国·七年级专题练习)如图,在一张无穷大的格纸上,格点的位置可用数对(m,n)表示,如点A 的位置为(3,3),点B的位置为(6,2).点M从(0,0)开始移动,规律为:第1次向右移动1个单位到(1,0),第2次向上移动2个单位到(1,2),第3次向右移动3个单位到(4,2),…,第n次移动n个单位(n为奇数时向右,n 为偶数时向上),那么点M第27次移动到的位置为( )A.(182,169)B.(169,182)C.(196,182)D.(196,210)【思路点拨】数对表示位置的方法是:第一个表示列,第二个表示行,当向右移动时,列的数字发生变化,行的数字不变,向上移动时,行的数字发生变化,列的数字不变,据此即可得解.【解题过程】解:根据题意可知:当向右移动时,列的数字发生变化,行的数字不变,当向上移动时,行的数字发生变化,列的数字不变,∴点M第27次移动到的位置时,列的数字是1~27中所有奇数的和,行的数字是1~27中所有偶数的和,∴1+3+5+7+9+11+⋯+27=196,2+4+6+8+10+⋯+26=182,∴点M第27次移动到的位置为(196,182),故选:C.3.(2023秋·江苏扬州·八年级统考期末)如图,平面直角坐标系xOy内,动点P第1次从点P0−3,4运动到点P1−2,2,第2次运动到点P2−1,1,第3次运动到点P30,−1,……按这样的规律,第2023次运动到点P2023的坐标是( )A.2020,1B.2021,1C.2020,−1D.2021,−1【思路点拨】根据图象可得出:横坐标为运动次数,纵坐标依次为4,2,1,−1,2,4,每5次一轮,进而即可求出答案.【解题过程】解:根据动点P0−3,4在平面直角坐标系中的运动,P1−2,2,P2−1,1,P30,−1,P41,2,P52,4,P63,2,…,∴横坐标为运动次数,经过第2023次运动后,点P2023的横坐标是2020,纵坐标依次为4,2,1,−1,2,每5次一轮,∴(2023+1)÷5=404⋅⋅⋅⋅⋅4,∴经过第2023次运动后,点P2023的坐标是2020,−1,故选:C.4.(2023春·全国·七年级专题练习)如图,在平面直角坐标系中,A1,1,B−1,1,C−1,−2,D 1,−2,把一条长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A.1,−1B.−1,1C.−1,−2D.1,−2【思路点拨】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解题过程】解:∵A1,1,B−1,1,C−1,−2,D1,−2,∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201⋯⋯5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,∴点的坐标为−1,−2.故选:C.5.(2022春·河北廊坊·七年级校考阶段练习)如图,在平面直角坐标系中,动点A从点A10,0出发,由A1跳动至点A20,2,依次跳动至点A32,−1,点A42,0,点A52,2…根据这个规律,则点A2022的坐标是()A.(1348,-1)B.(1348,2)C.(674,-1)D.(674,2)【思路点拨】观察可知A1−A3,A4−A6,A7−A9,⋯,每三个点为一组,纵坐标为0,2,-1循环,每个循环内横坐标增加2,据此求解即可.【解题过程】解:∵动点A从点A10,0出发,由A1跳动至点A20,2,依次跳动至点A32,−1,点A42,0,点A5 2,2…∴A1−A3,A4−A6,A7−A9,⋯,每三个点为一组,纵坐标为0,2,-1循环,每个循环内横坐标增加2,∵2022÷3=674,∴点A2022的纵坐标与点A3的纵坐标相同,即为-1,点A2022横坐标为674×2=1348,∴点A2022的坐标为(1348,-1).故选:A.6.(2023春·全国·七年级专题练习)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1 (−1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2021与点A2022之间的距离是( )A.2023B.2022C.2021D.2020【思路点拨】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.【解题过程】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(−1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012−(−1011)=2023,故选:A.7.(2022秋·江苏·八年级专题练习)如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),……,按此规律下去,则点A2021的坐标是().A.(673,2021)B.(674,2021)C.(-673,2021)D.(-674,2021)【思路点拨】根据已知点的坐标寻找规律并应用解答即可.【解题过程】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),∵3×674-1=2021,∴n=674,所以A 2021(674,2021).故选B.8.(2022春·山东济宁·七年级统考期中)在平面直角坐标系中,一只小蛤蟆从原点O出发,第一次向上蹦到A1,第二次向右蹦到A2,第三次向下蹦到A3,第四次向右蹦到A4,第五次向上蹦到A5,…,按照此规律依次不间断蹦,每次蹦1个单位,其蹦的路线如图所示.那么按照上述规律,点A2022的坐标是()A.(1010,1)B.(1010,0)C.(1011,0)D.(1011,1)【思路点拨】根据图象可得移动4次图象完成一个循环,再由2022÷4=505……2,可得点A2022在第505个循环的第2个点的位置,即纵坐标与A1的相同,为1,再由A4(2,0),A8(4,0),A12(6,0),……,可得A4n (2n,0),从而得到A2020的坐标是(1010,0),从而可得出点A2022的坐标.【解题过程】解:根据题意得:点A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),……∴每移动4次图象完成一个循环,∵2022÷4=505……2,∴点A2022在第505个循环的第2个点的位置,即纵坐标与A1的相同,为1,∵A4(2,0),A8(4,0),A12(6,0),……,∴A4n(2n,0),∴A2020的坐标是(1010,0),∴A2022的坐标是(1010+1,1),即A2022的坐标是(1011,1).故选:D.9.(2022·全国·七年级假期作业)如图所示,在平面直角坐标系中,将点A(-1,0)做如下的连续平移,A (-1,0)→A1(-1,1)→A2(2,1)→A3(2,-4)→A4(-5,-4)→A5(-5,5)…,按此规律平移下去,则A102的点坐标是()A.(100,101)B.(101,100)C.(102,101)D.(103,102)【思路点拨】根据题意可知,点A平移时每4次为一个周期,由102÷4=25•••2,可知点A102的坐标与A4n+2的点的坐标规律相同,分别求出A2,A6,A10的坐标,找出规律,进而求解即可.【解题过程】解:由题意可知,将点A(-1,0)向上平移1个单位长度得到A1(-1,1),再向右平移3个单位长度得到A2(2,1),再向下平移5个单位长度得到A3(2,-4),再向左平移7个单位长度得到A4(-5,-4);再向上平移9个单位长度得到A5(-5,5)…,∴点A平移时每4次为一个周期.∵102÷4=25•••2,∴点A102的坐标与A4n+2的点的坐标规律相同.∵A2(2,1),A6(6,5),A10(10,9),以此类推,∴A4n+2(4n+2,4n+1),∴A102的点坐标是(102,101).故选:C.10.(2023秋·山东东营·七年级统考期末)如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2022的坐标为______.【思路点拨】观察发现,每6个点形成一个循环,再根据点A6的坐标及2022÷6所得的整数及余数,可计算出点A2022的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解题过程】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2022÷6=337,∴点A2022的位于第337个循环组的第6个,∴点A2022的横坐标为6×337=2022,其纵坐标为:0,∴点A2022的坐标为(2022,0).故答案为:(2022,0).11.(2023·全国·九年级专题练习)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2017次运动后,动点P的坐标是______,经过第2018次运动后,动点P的坐标是______.【思路点拨】观察前几次运动后点的坐标,不难发现动点P的横坐标等于运动的次数,而纵坐标的变化为1,0,2,0,1,0,2,0…,4个一循环;接下来通过总结得到的规律,再结合2017÷4=504……1,即可求出经过2017次运动后动点P的坐标了,同理可找到2018次运动后动点P的坐标.【解题过程】根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…∴横坐标为运动次数,经过第2017次运动后,动点P的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,∴经过第2017次运动后,动点P的纵坐标为:2017÷4=504……1,故纵坐标为四个数中第一个,即1,∴经过第2017次运动后,动点P的坐标是(2017,1).∵2018÷4=504……2,∴经过第2018次运动后,动点P的坐标是(2018,0).故答案为(2017,1),(2018,0) .12.(2022秋·浙江·八年级专题练习)如图,已知点A1的坐标是(1,2),线段OA1从原点出发后,在第一象限内按如下有规律的方式前行:A1A2⊥OA1,A1A2=OA1;A2A3⊥A1A2,A2A3=A1A2;A3A4⊥A2A3,A3A1=A 2A 3;…;则点A 2023的坐标是______.【思路点拨】先得出A 1(1,2),A 2(3,1),A 3(4,3),A 4(6,2),A 5(7,4),A 6(9,3)的坐标,观察可得A 的纵坐标的规律,然后确定A 的横坐标与下标之间的关系即可求解.【解题过程】解:A 1(1,2),A 2(3,1),A 3(4,3),A 4(6,2),A 5(7,4),A 6(9,3),…,可得:A 1横坐标为:112×3−2=1,纵坐标为:112+1=2;A 3横坐标为:312×3−2=4,纵坐标为:312+1=3;A 5横坐标为:512×3−2=7,纵坐标为:512+1=4,…;∴下标为奇数时,横坐标依次为:1,4,7,…,纵坐标为:2,3,4,…;∴A 2023横坐标为:202312×3−2=3034,纵坐标为:202312+1=1013…;∴A 2023的坐标为:(3034,1013),故答案为:(3034,1013).13.(2023春·七年级单元测试)如图,在平面直角坐标系中,点A 从A 1(−4,0)依次跳动到A 2−4,1,A 3(−3,1),A 4−3,0,A 5−2,0,A 6−2,3,A 7−1,3,A 8−1,0,A 9−1,−3,A 100,−3,A 110,0,…,按此规律,则点A 2022的坐标是______________【思路点拨】根据图形可以发现规律,从A1到A11是一个循环,一个循环周期是10,一个循环后又回到x轴上,且一个循环后横坐标增加4个单位,先求出点A2021的坐标(804,0),再求点A2022的坐标即可.【解题过程】解:观察图形可知,n为正整数时,A n的纵坐标为0,1,3,﹣3纵坐标为0的点:A1,A4A5,A8A11,A14⋯⋯纵坐标为1的点:A2,A3A12,A13A22,A23⋯⋯纵坐标为3的点:A6,A7A16,A17A26,A27⋯⋯纵坐标为﹣3的点:A9,A10A19,A20A29,A30⋯⋯可以看出纵坐标为1,3,﹣3时,n取连续的两个数为一组,则10个10个的增加,∵2021=10×202+1,纵坐标为1的规律A2+10(n−1),A2+10(n−1)+1∴A2022的纵坐标为1,由2+10(n−1)=2022,解得n=203,∵A2022正好是A2往右循环203次,∴A2022横坐标为﹣4+(203-1)×4=804,∴点A2022的坐标是(804,1),故答案为:(804,1)14.(2022秋·河北邯郸·八年级校考开学考试)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…,根据这个规律探索可得,第10个点的坐标为______,第55个点的坐标为______.【思路点拨】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【解题过程】解:在横坐标上,第一列有一个点,第二列有2个点…第n列有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为:n,n−1−1…n2偶数列的坐标为:n,n−1…n,2由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为4,2,第55个点的坐标为10,5.故答案为:4,210,5.15.(2022春·北京·七年级北京市第五中学分校校考期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…照此规律,点P第2022次跳动至点P2022的坐标是________.【思路点拨】设第n次跳动至点P n,根据部分点的坐标找出变化规律“P4n n+1,2n,P4n+1n+1,2n+1,P4n+2−n−1,2n+1,P4n+3−n−1,2n+2”,照此规律由2022=4×505+2代入求解即可.【解题过程】解:设第n次跳动至点P n,由图知,P11,1、P2−1,1、P3−1,2、P42,2、P52,3、P6−2,3、P7−2,4、P83,4、…,∴可得:点的变化规律为P4n n+1,2n,P4n+1n+1,2n+1,P4n+2−n−1,2n+1,P4n+3−n−1,2n+2,∵2022=4×505+2,∴P2022−505−1,2×505+1,即P2022−506,1011,故答案为:(−506,1011).16.(2022春·山东青岛·八年级校考期中)如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按照此规律走下去,相对于点O,机器人走到A6时,点A6的坐标是______,点A2022的坐标是______.【思路点拨】根据题意求出点A1的坐标为(3,0);点A2的坐标为(3,6);点A3的坐标为(−6,6);点A4的坐标为(−6,−6);点A5的坐标为(9,−6);点A6的坐标为(9,12),依此类推,从点A2开始,每走动4次一个循环,从而得到点A2022位于第一象限内,再由落在第一象限内的点每个循环,横坐标增加6,纵坐标增加6,即可求解.【解题过程】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,∴点A1的坐标为(3,0);点A2的坐标为(3,0+6),即(3,6);点A3的坐标为(3−9,6),即(−6,6);点A4的坐标为(−6,6−12),即(−6,−6);点A5的坐标为(−6+15,−6),即(9,−6);依此类推,可得点A6的坐标为(9,−6+18),即(9,12).由此发现,从点A2开始,每走动4次一个循环,∵(2022−1)÷4=505⋯⋯1,∴点A2022位于第一象限内,∵点A2的坐标为(3,6),点A6的坐标为(9,12),点A10的坐标为(15,18),∴落在第一象限内的点每个循环,横坐标增加6,纵坐标增加6,∴点A2022的坐标为(505×6+3,505×6+6),即(3033,3036).故答案为①(9,12),②(3033,3036).17.(2022秋·全国·八年级专题练习)如图,在平面直角坐标系中,有若干个整数点.其顺序按照图中“→”方向排列,即(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…….根据这个规律,探究可得到第110个点的坐标为______.【思路点拨】观察点的坐标特点寻找规律,找到横坐标和纵坐标的变化特点即可解答.【解题过程】解:横坐标为1的点有1个,纵坐标为0;横坐标为2的点有2个,纵坐标为0,1;横坐标为3的点有3个,纵坐标为0,1,2;横坐标为4的点有4个,纵坐标为0,1,2,3;…,发现规律:因为1+2+3+4+…+14=105,因为在第14行点的走向为向上,所以第105个点的坐标为(14,13),因为第15行点的走向为向下,故第110个点在此行上,横坐标为15,纵坐标为从106个点(15,14)向下数5个点,即为10;故第110个点的坐标为(15,10)故答案为:(15,10).18.(2023秋·湖北孝感·九年级校考期末)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第25个点的坐标为________,第2022个点的坐标为________.【思路点拨】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解题过程】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,①∵52=25,5是奇数,∴第25个点是(5,0),②∵452=2025,45是奇数,∴第2025个点是(45,0),即第2022个点是(45,3)故答案为(5,0),(45,3).19.(2022春·河北邢台·七年级校考期末)如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D,C,P,H在x轴上,A(1,2),B(−1,2),D(−3,0),E(−3,−2),G(3,−2).(1)若点M在线段EG上,当点M与点A的距离最小时,点M的坐标为____;(2)把一条长为2022个单位长度且无弹性的细线(粗细忽略不计)的一端固定在A处,并按A→B→C→D→E→F→G→H→P→A⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标为____.【思路点拨】(1)根据两点之间线段最短即可求出答案;(2)计算“凸”形图中各线段的长度,绕一周需要多少个单位长度,因为是周期变化,所以计算出绕了多少周,余下的线段落在哪里即可求出答案.【解题过程】(1)解:根据题意,画图如下,∵两点之间线段最短,∴当点M在AP⊥EG的直线上时,点M与点A的距离最小,且点M在线段EG上,∴点M的坐标是(1,−2),故答案是:(1,−2).(2)解:∵A(1,2),B(−1,2),D(−3,0),E(−3,−2),G(3,−2),从点A→B→C→D→E→F→G→H→P→A的线段之和为AB+BC+CD+DE+EG+GH+HP+PA,即2+2+2+2+6+2+2+2=20,∴2022÷20=101⋯⋯2,即绕了101周余下2个单位长度,也就是落在点B,∴细线的另一端所在位置的点的坐标是(−1,2),故答案是:(−1,2).20.(2022秋·全国·八年级专题练习)小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图).他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…,A n,图形与y轴正半轴的交点依次记作B(0,2),B2(0,6),…,B n,图形与x轴负半轴的交点依次记作C1(−3,0),C2(–7,0),…,C n,图形与y轴负半轴的交点依次记作D1(0,−4),D2(0,−8),…,D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3__________,B3__________,C3__________,D3__________.(2)请分别写出下列点的坐标:A n__________,B n__________,C n__________,D n__________.(3)请求出四边形A5B5C5D5的面积.【思路点拨】(1)根据点的坐标规律即可写出.(2)根据点的坐标规律即可写出.(3)四边形A5B5C5D5的面积为S△A5oB5+S△B5oC5+S△C5oD5+S△D5oA5计算即可.【解题过程】由题意得:A n的横坐标为4n−3,纵坐标为0,得出A3(9,0)B n的横坐标为0,纵坐标为4n−2,得出B3(0,10)C n的横坐标为−4n+1,纵坐标为0,得出C3(−11,0)D n的横坐标为0,纵坐标为−4n,得出D3(0,−12)故答案为:(9,0),(0,10),(−11,0),(0,−12)(2)根据上式得出的规律,直接即可写出(4n−3,0),(0,4n−2),(−4n+1,0),(0,−4n)故答案为:(4n−3,0),(0,4n−2),(−4n+1,0),(0,−4n)(3)∵A5(17,0),B5(0,18),C5(−19,0),D5(0,−20),∴四边形A5B5C5D5的面积为S△A5oB5+S△B5oC5+S△C5oD5+S△D5oA5=12×17×18+12×18×19+12×19×20+12×20×17=684。
专题2.3 平面直角坐标系全章五类必考压轴题(原卷版)
专题2.3 平面直角坐标系全章五类必考压轴题【人教版】1.在平面直角坐标系内原点O 0,0第一次跳动到点A 10,1,第二次从点A 1跳动到点A 21,2,第三次从点A 2跳动到点A 3−1,3,第四次从点A 3跳动到点A 4−1,4,…,按此规律下去,则点A 2022的坐标是( )A .674,2022B .675,2022C .−674,2022D .−675,20222.如图,动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2023次运动到点( )A .(2023,0)B .(2023,1)C .(2023,2)D .(2022,0)3.如图,在平面直角坐标系上有点A (1,0),点A 第一次跳动至点A 1(−1,1),第二次点A 1跳动至点A 2(2,1),第三次点A 2跳动至点A 3(−2,2),第四次点A 3跳动至点A 4(3,2),……依此规律跳动下去,则点A 2021与点A 2022之间的距离是( )A.2023B.2022C.2021D.20204.如图,在直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2,…第n次移动到点A n,则点A2023的坐标是()A.1011,0B.1012,1C.1012,0D.1011,15.如图所示,在平面直角坐标系中.有若干个整数点,其顺序按图中箭头方向排列.如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得.第2022个点的坐标为()A.(64,4)B.(63,0)C.(63,4)D.(64,5)6.如图,在平面直角坐标系中,半径均为2个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π个单位长度,则第2023秒时,点P的坐标是()A .(4044,2)B .(4046,−2)C .(4046,0)D .(2023,−2)7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列.如1,0,2,0,2,1,1,1,1,2,2,2…根据这个规律,第2022个点的坐标为___________.1.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,观察每次变换前后的三角形的变化规律,找出规律,推测A n 、B n 的坐标分别是( )A .(n,3),(n 2,0)B .(n,3),(2n ,0)C .(2n ,3),(2n ,0)D .(2n ,3),(2n +1,0)2.在平面直角坐标系中,点P (x,y )经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P (x,y )的终结点,已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样由P 1依次得到P 2,P 3,P 4⋅⋅⋅⋅⋅⋅p n ,若点P 1的坐标为(2,0),则点P 2023的坐标为( )A .(2,0)B .(−2,−1)C .(−3,3)D .(1,4)3.如图所示,已知点A (−1,2),将长方形ABOC 沿x 轴正方向连续翻转2022次,点A 依次落在点A 1,A 2,A 3,……,A 2022的位置,则A 2022的坐标是______.4.如图,在平面直角坐标系中,将△ABC 绕点A 顺时针旋转到△AB 1C 1的位置,点B ,O 分别落在点B 1,C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,再将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去,…,若点A(3,0),B(0,4),AB =5,则点B 2022的坐标为________.5.如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为(1,1),弧AA 1是以点B 为圆心,BA 为半径的圆弧;弧A 1A 2是以点O 为圆心,OA 1为半径的圆弧;弧A 2A 3是以点C 为圆心,CA 2为半径的圆弧;弧A 3A 4是以点A 为圆心,AA 3为半径的圆弧,继续以点B ,O ,C ,A 为圆心,按上述作法得到的曲线AA 1A 2A 3A 4A 5…,称为正方形的“渐开线”,则A 4的坐标是______,那么A 4n +1的坐标为______.1.如图,在平面直角坐标系中,点A ,B 坐标分别为(a,0),(a,b),点C 在y 轴上,且BC ∥x 轴,a ,b 满足|a−3|=0.一动点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线运动(点P 首次回到点O 时停止),运动时间为t 秒(t ≠0).(1)直接写出点A,B的坐标;(2)点P在运动过程中,连接PO,若PO把四边形ABCO的面积分成1:2的两部分,求出点P的坐标.t个单位长度的情况,若存在,求出点P的坐标,若(3)点P在运动过程中,是否存在点P到x轴的距离为12不存在,请说明理由.2.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a−2|+(b−3)2 =0和(c−4)2=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P m m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.3.在平面直角坐标系中,已知点A(a,0),B(0,b),C(c,0),且a,b,c满足关系式(a−4)2+|b−3|+=0,点P(m,n)在第一象限.(1)求a,b,c的值;(2)如图1,当n=5时,△ABP的面积等于10,求m的值;(3)如图2,连接BC,当△ABC的面积等于△ABP的面积时,求满足上述条件的整点P(m,n都是整数)的坐标.4.在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0)+(a−b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.(1)求出点A,B的坐标;(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD的度数;(用含a的代数式表示).(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.5.在平面直角坐标中有三个点A(a,0),B(b,0),C(0,c),且a,b,c满足(a+6)2+|b−2|+=0,点P、Q是平面直角坐标系上两个点.(1)直接写出a,b,c的值;(2)如图,若点P从点A出发以每秒2个单位的速度沿射线AB方向运动;点Q从C点出发以每秒1个单位的速度沿射线OC方向运动.当△QAC的面积等于△PBC面积的2倍时,求P、Q两点的坐标.6.如图,在平面直角坐标系中,A(a,0),B(b,0),且满足(a+2)2+0,过点B作直线m⊥x轴,点P 是直线m上一动点,连接AP,过点B作BC∥AP交y轴于C点,AD,CD分别平分∠PAB,∠OCB.(1)填空:a =_______,b =______;(2)在点P 的运动过程中,∠ADC 的度数是否变化?若不变,请求出它的度数;若变化,请说明理由;(3)若点P 的纵坐标为−4,在y 轴上是否存在点Q ,使得△APQ 的面积和△ABP 的面积相等?若存在,求出Q 点坐标;若不存在,请说明理由.1.在平面直角坐标系中,A(a,0),B(b,0),C(−1,2)(见图①),且|a +2|+0.(1)求a 、b 的值;(2)在坐标轴的其它位置是否存在点M ,使△COM 的面积等于12△ABC 的面积仍然成立?若存在,请直接写出符合条件的点M 的坐标;(3)如图②,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上的一动点,连OP ,OE 平分∠AOP ,OF ⊥OE ,当点P 运动时,∠OPD ∠DOE 的值是否会改变?若不变,求其值;若改变,说明理由.2.已知点A (1,a ),将线段OA 平移至线段CB (A 的对应点是B 点),B (b ,0),a 是m +6n 的算术平3,nm <n ,正数b 满足(b +1)2=16.(1)求出:A、B、C三点坐标.(2)如图1,连接AB、OC,求四边形AOCB的面积;(3)如图2,若∠AOB=α,点P为y轴正半轴上一动点,试探究∠CPO与∠BCP之间的数量关系.3.在平面直角坐标系中,有点A(m,0),B(0,n),且m,n满足m=1(1)求A、B两点坐标;(2)如图1,直线l⊥x轴,垂足为点Q(1,0).点P为直线l上任意一点,若△PAB的面积为7,求点P的坐标;2(3)如图2,点D为y轴负半轴上一点,过点D作CD∥AB,E为线段AB上任意一点,以O为顶点作∠EOF,∠AEO.当点E 使∠EOF=90°,OF交CD于F.点G为线段AB与线段CD之间一点,连接GE,GF,且∠AEG=13在线段AB上运动时,EG始终垂直于GF,试写出∠CFG与∠GFO之间的数量关系,并证明你的结论.4.如图1,以直角△AOC的直角项点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0+|b−8|=0.(1)直接写出点A,点C的坐标;(2)如图1,坐标轴上有两动点P,Q同时出发,点P从点C出发沿x轴负方向以每秒2个单位长度的速度匀速运动,点Q从点O出发沿y轴正方向以每秒1个单位长的速度匀速运动,当点P到达点O整个运动随之结束;点D的坐标是(4,3),设运动时间为t秒.是否存在t,使得△DOP与△DOQ的面积相等?若存在,求出t的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且OA平分∠DOG,点E是线段OA上一动点,连接CE交OD于点H,当点E在OA上运动的过程中,①说明GO∥AC的理由②直接写出∠DOG,∠OHC,∠ACE之间的数量关系.5.如图,点A的坐标为(a,0),点B在y轴上,将△OAB沿x轴负方向平移,平移后的图形为△DEC,且点C的坐标为(b,2),且a,b+|b+3|=0.(1)点E的坐标为______,点B的坐标为______;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=______时,点P的横坐标与纵坐标互为相反数;②当3<t<5时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,请问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,若不能,请说明理由;③当点P运动到什么位置时,直线OP将四边形ABCD的面积分成2:5两部分.6.如图,在平面直角坐标系中,A (0,3),C (2,0).(1)若点B 在x 轴上,使得三角形BAC 的面积是三角形AOC 的面积的2倍,求出点B 的坐标;(2)若点F 在AC 上,且∠COF =∠FCO ,∠AOG =∠AOF .①求证:AC //OG ;②若点E 是线段OA 上一动点,连结CE 交OF 于点H ,探求∠OHC ∠ACE ∠OEC的值是否会发生变化?若不变,求出它的值;若变化,说明理由.1.将长方形OABC 的顶点O 放在直角坐标系中,点C ,A 分别在x 轴,y 轴上,点B (a ,b ),且a ,b 满足|a−2b|+(b−4)2=0.(1)求B 点的坐标(2)若过O 点的直线OD 交长方形的边于点D ,且直线OD 把长方形的周长分为2:3两部分,求点D 的坐标;(3)若点P 从点C 出发,以2单位/秒的速度向O 点运动(不超过O 点),同时点Q 从O 点出发以1单位/秒的速度向A 点运动(不超过A 点),试探究四边形BQOP 的面积在运动中是否会发生变化?若不变,求其值;若变化,求变化范围.2.已知A (0,a )、B (b ,0(b ﹣4)2=0.(1)直接写出点A 、B 的坐标;(2)点C 为x 轴负半轴上一点满足S △ABC =15.①如图1,平移直线AB 经过点C ,交y 轴于点E ,求点E 的坐标;②如图2,若点F (m ,10)满足S △ACF =10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l 上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.3.在平面直角坐标系中,A(a,0),B(1,b),a,b满足|a+b−1|+0,连接AB交y轴于C.(1)直接写出a=______,b=______;(2)如图1,点P是y轴上一点,且三角形ABP的面积为12,求点P的坐标;(3)如图2,直线BD交x轴于D(4,0),将直线BD平移经过点A,交y轴于E,点Q(x,y)在直线AE上,且三,求点Q横坐标x的取值范围.角形ABQ的面积不超过三角形ABD面积的134.如图,已知点A(a,0)、B(b,0)满足(3a+b)2+|b−3|=0.将线段AB先向上平移2个单位,再向右平移1个单位后得到线段CD,并连接AC、BD.(1)请求出点A和点B的坐标;(2)点M从O点出发,以每秒1个单位的速度向上平移运动.设运动时间为t秒,问:是否存在这样的t,使得四边形OMDB的面积等于9?若存在,请求出t的值:若不存在,请说明理由;(3)在(2)的条件下,点M从O点出发的同时,点N从点B出发,以每秒2个单位的速度向左平移运动,设射线DN交y轴于点E.设运动时间为t秒,问:SΔEMD−SΔOEN的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.5.如图,已知平面直角坐标系中,点A(a,0)、B(0,b),a、b+(4−b)2=0.将线段AB经过水平、竖直方向平移后得到线段A′B′,已知直线A′B′经过点C(4,0),A′的横坐标为5.(1)求A、B两点的坐标;(2)连接BC,BA′,求三角形ABC和三角形ABA′的面积.得S△ABC=____________;S△ABA′=________.(3)①求A′的纵坐标,并写出线段AB的平移方式,②直线A′B′上一点P(m,n),直接写出m、n之间的数量关系.6.如图1,在平面直角坐标系中,点A(a,2),B(b,4),且a,b满足关系式(a+5)20(1)直接写出A,B两点的坐标:A( , ),B( , );(2)线段AB以每秒2个单位长度的速度向右水平移动,A,B的对应点分别为A1,B1;(友情提示:S△ABO 表示三角形ABO的面积)①如图2,若线段A1B1交y轴于点C,当SΔA1B1O=32时,求平移时间t的值;②若直线A1B1交y轴于点C,当SΔA1COSΔB1CO =32时,试求出平移时间t的值,并直接写出点C的坐标.。
平面直角坐标系压轴题解题技巧
平面直角坐标系压轴题解题技巧
1. 嘿,你知道吗?善于找关键点在平面直角坐标系压轴题中超级重要啊!就像你在迷宫中找到那关键的出口一样。
比如看到一个复杂图形,先找到特殊的点,像那个坐标特别的顶点呀。
这是不是能一下打开解题的思路呢?
2. 哎呀呀,一定要注意计算准确啊!这可不能马虎,不然就前功尽弃啦。
就好比跑步比赛,最后冲刺时摔倒一样可惜。
像计算坐标时,仔细点,别出错呀!
3. 嘿,别忘了利用几何图形的性质呀!这就像有了一把神奇的钥匙,能解开难题的大门。
比如说知道一个三角形是直角三角形,那就能用勾股定理啦!
4. 哇塞,多画图很关键呀!把题目描述的图像清晰地画出来,就如同给自己建了一个清晰的导航。
比如给定一些点的坐标,迅速画出来,解题不就容易多了吗?
5. 千万千万要仔细审题呀!不然就会像迷路的小羊找不到方向。
就像看到题目说点在某条直线上,那你就得抓住这个重要信息呀!
6. 咦,善于转化条件也是很牛的技巧哟!这就仿佛把一块难啃的骨头变成了美味的蛋糕。
例如把文字描述转化为数学式子,解题还会难吗?
7. 哈哈,要学会类比呀!曾经做过的类似题就像是你的秘密武器。
当遇到新题时,想想之前的类似解法,不就有灵感了吗?
8. 哇哦,要有耐心呀!着急可不行,就像盖房子不能速成一样。
一道压轴题慢慢分析,总会找到答案的呢!
9. 记住啦,多总结经验能让你越来越厉害呢!每次做完题总结一下,就像给自己的知识库添砖加瓦。
以后再遇到平面直角坐标系压轴题,那都不是事儿!
我的观点就是掌握这些解题技巧,平面直角坐标系压轴题就没那么可怕啦!。
七年级下册数学培优训练平面直角坐标系综合问题(压轴题)
(1) 如图 1,直接写出图中相等的线段,平行的线段;(2) 如图 2,若线段 AB 移动到 CD , C 、D 两点恰好都在坐标轴上,求 C 、D 的坐标;(3) 若点 C 在 y 轴的正半轴上,点 D 在第一象限内,且 S △ ACD =5,求 C 、D 的坐标;培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例 1】如图,在平面直角坐标中, A(0,1) ,B(2, 0), C ( 2, 1.5).(1)求△ ABC 的面积; (2)如果在第二象限内有一点P ( a , 0.5),试用 a 的式子表示四边形 ABOP 的面积;(3)在( 2)的条件下,是否存在这样的点 P ,使四边形 ABOP 的面积与△ ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yCA POBx【例 2】在平面直角坐标系中,已知A ( -3, 0),B ( -2, -2),将线段 AB 平移至线段 CD .y y yyDDAAA O CO CxAOOxxxB BB 图 1B图2图3图4(4)在y 轴上是否存在一点P,使线段AB 平移至线段PQ 时,由A、B、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P、Q 的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).(1)求△ABC 的面积;(2)若把△ABC 向下平移 2 个单位长度,再向右平移 3 个单位长度,得到△A B C ,请你在图中画出△ A B C ;(3)若点A、C 的位置不变,当点P 在y 轴上什么位置时,使S V ACP 2S V ABC ;(4)若点B、C 的位置不变,当点Q 在x 轴上什么位置时,使S V BCQ 2 S V ABC .【例4】如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a2) 2b 2 0 ,过C 作CB⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过 B 作BD ∥AC 交y 轴于D ,且AE,DE 分别平分∠ CAB,∠ ODB ,如图2,求∠ AED 的度数;(3)在y 轴上是否存在点P,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)(1)在坐标系中,画出此四边形;(2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P,使S△PBC=50 ,若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2,0), B 点坐标为(0,-3).(1) 作图,将△ABO 沿x 轴正方向平移 4 个单位,得到△DEF ,延长ED 交y 轴于 Cy 点,过O 点作OG⊥CE ,垂足为G;(2) 在(1)的条件下,求证: ∠COG=∠EDF ;A(-2,0)0 xB(0,-3)(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B(0,4),C(-5,4),点 A 是x 轴负半轴上一点,S 四边形AOBC=24.yD C B EFH A Ox图1(1)线段BC 的长为,点 A 的坐标为;(2)如图1,EA 平分∠ CAO,DA 平分∠ CAH ,CF⊥AE 点F,试给出∠ ECF 与∠ DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP、OP,BN 平分CBP ,ON 平分AOP,BN 交ON 于N,请依题意画出图形,给出BPO与BNO之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA=4,OC=8,四边形ABCO 是平行四边形.yyA BA BQxxO P CO C(1)求点 B 的坐标及的面积S四边形ABCO ;(2)若点P 从点 C 以2 单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1 单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为S四边形OQBP SAQB ,SBPC ,是否存在某个时间,使SAQB =,若存在,求出t 的值,若不存在,试说明理由;3(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A,B 的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移 2 个单位,再向右平移 1 个单位,分别得到点A,B 的对应点C,D 连结AC,BD .yy(1) 求点C,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;C D C DA-1 oB A B3 x -1o 3 x(2)在y 轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB ,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;(3)若点Q 自O 点以0.5 个单位/s 的速度在线段AB 上移动,运动到 B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?yDCA B-1 o Q 3 x (4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?yB【例10】在直角坐标系中,△ABC 的顶点A(—2,0),B(2,4),C(5,0).(1)求△ ABC 的面积A O C x(2)点 D 为y 负半轴上一动点,连BD 交x 轴于E,是否存在点 D 使得S ADE S BCE ?若存在,请求出点 D 的坐标;若不存在,请说明理由.(3)点F(5,n)是第一象限内一点,,连BF,CF,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为(用含n 的式子表示)yBFA O C x【例 2】如图,在平面直角坐标系中,已知点A ( -5,0),B ( 5.0), D (2, 7),( 1)求 C 点的坐标;(2)动点 P 从 B 点出发以每秒 1 个单位的速度沿 BA 方向运动,同时动点 Q 从 C 点出发也以每秒 1 位的速度沿 y轴正半轴方向运动(当P 点运动到 A 点时,两点都停止运动) 。
专题07 平面直角坐标系的性质压轴题七种模型全攻略(解析版)
专题07平面直角坐标系的性质压轴题七种模型全攻略【考点导航】目录【典型例题】 (1)【考点一用有序数对表示位置/路线】 (1)【考点二判断点所在的象限】 (3)【考点三求点到坐标轴的距离】 (5)【考点四已知点所在的象限求参数】 (7)【考点五已知点在坐标轴上求点的坐标】 (8)【考点六已知点所在的直线平行于坐标轴求点的坐标】 (10)【考点七建立适当的平面直角坐标系并写出点的坐标】 (12)【过关检测】 (16)【典型例题】【考点一用有序数对表示位置/路线】【变式训练】3,150︒【答案】()【分析】根据题意,可得D【详解】解:根据图形可得D 在第三个圆上,OD 与正半轴的角度150︒,∴点D 的坐标可以表示为()3,150︒故答案为:()3,150︒.【点睛】本题考查了有序实数对表示位置,数形结合,理解题意是解题的关键.3.如图为某校局部分布图.如果规定列号写在前面,行号写在后面(竖列横行),试用数对的方法表示出图中各个地点的位置.实验楼______.教学楼______.图书馆______.花坛______.校门______.行政楼______.【答案】()68,,()97,,()66,,()45,,()23,,()83,【分析】根据图中的位置,即可一一求解.【详解】解:由图可知:实验楼()68,,教学楼()97,,图书馆()66,,花坛()45,,校门()23,,行政楼()83,,故答案为:()68,,()97,,()66,,()45,,()23,,()83,.【点睛】本题考查了用数对表示位置,理解题意要求是解决本题的关键.【考点二判断点所在的象限】【变式训练】【详解】解:∵a<0∴20a -<,50a ->∴点()25,P a a --位于第二象限∴点()25,P a a --关于x 轴的对称点在第三象限.故选C【点睛】本题考查坐标与图形,掌握数形相结合的思想是解题的关键.【考点三求点到坐标轴的距离】【变式训练】【考点四已知点所在的象限求参数】∴1020 aa-<⎧⎨+>⎩,解得:21a-<<.故答案为:21a-<<.【变式训练】【考点五已知点在坐标轴上求点的坐标】【答案】()03-,或()60,【分析】由()24,1P m m +-在坐标轴上,可知当240m +=,解得2m =-,13m -=-,即()3P -0,;当10m -=,解得1m =,246m +=,即()60P ,.【详解】解:∵()24,1P m m +-在坐标轴上,∴当240m +=,解得2m =-,13m -=-,即()3P -0,;当10m -=,解得1m =,246m +=,即()60P ,;故答案为:()03-,或()60,.【点睛】本题考查了点坐标的特征,解一元一次方程.解题的关键在于对知识的熟练掌握与灵活运用.【变式训练】【考点六已知点所在的直线平行于坐标轴求点的坐标】-,∴点N的坐标为(4,2)或(4,8)-.故答案为:(4,2)或(4,8)【变式训练】【考点七建立适当的平面直角坐标系并写出点的坐标】例题:(2023上·广东佛山·八年级校考期中)如图是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(3,1)-.(1)根据题意画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(1,1)--,餐厅的位置是(2,4)-,在图中标出它们的位置.【答案】(1)见解析(2)教学楼的位置是()1,0,体育馆的位置是()4,3-(3)见解析【分析】本题考查了坐标与图形的位置:(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(3,1)-得出原点的位置进而可求解;(2)利用所建立的平面直角坐标系即可求解;(3)根据点的坐标的定义即可求解;正确确定原点的位置是解题的关键.【详解】(1)解:依题意,建立如图所示平面直角坐标系:(2)由图得:教学楼的位置是()1,0,体育馆的位置是()4,3-.【变式训练】1.(2022下·河南三门峡·七年级校考阶段练习)如图,已知宾馆的坐标为()4,4,文化馆的坐标为()1,3-.(1)根据题意,画出平面直角坐标系;(2)写出体育场、火车站、超市的坐标;(3)已知公园A 、游乐场B 、图书馆C 的坐标分别为()0,5,()2,2--,()2,2-,请在图中标出点A B C ,,的位置.【答案】(1)见解析(2)()2,5-,()2,2,()41-,(3)见解析【分析】(1)根据宾馆的坐标为()4,4和文化馆的坐标为()1,3-,求得平面直角坐标系原点和各自正方向;(2)根据平面直角坐标系的格子依次体育场、火车站、超市的坐标;(3)根据平面直角坐标系的格子标定公园A 、游乐场B 、图书馆C .【详解】(1)解:(1)如图所示.(2)体育场的坐标为()2,5-,火车站的坐标为()2,2,超市的坐标为()41-,.【点睛】本题主要考查平面直角坐标系的求解和相关坐标的标注,熟练掌握直角坐标系中各象限坐标值的正负是解题的关键.2.(2023下·河北沧州·八年级校考阶段练习)如图,已知火车站的坐标为(2,2)-,文化宫的坐标为(1,1)--(1)请你根据题目条件画出平面直角坐标系.(2)写出体育场、市场、超市、医院的坐标.(3)已知游乐场A ,图书馆B ,公园C 的坐标分别为(0,5)-,(3,2),(3,3)--请在图中标出A 、B 、C 的位置.【答案】(1)见解析(2)体育场(2,1)-,市场(6,1),超市(4,5)-,医院(0,4)-(3)见解析【分析】(1)根据火车站的坐标为(2,2)-,文化宫的坐标为(1,1)--,即可求解;(2)根据坐标与图形的位置关系即可求解;(3)根据坐标与图形的位置关系即可求解.【详解】(1)解:已知火车站的坐标为(2,2)-,文化宫的坐标为(1,1)--,建立平面直角坐标系如图所示,(2)解:由(1)的平面直角坐标系可得,体育场(2,1)-,市场(6,1),超市(4,5)-,医院(0,4)-.(3)解:由(1)的平面直角坐标系即可标出A 、B 、C 的位置,如图所示,【点睛】本题主要考查根据坐标确定平面直角坐标系,根据坐标系表示地理位置,理解并掌握坐标与图形的表示方法是解题的关键.【过关检测】一、单选题1.(2024上·内蒙古包头·八年级统考期末)在平面直角坐标系中,下面的点在第二象限的是()A .()45-,B .()13,--C .()02,D .()76-,【答案】A【分析】本题主要考查了判断点所在的象限,熟知每个象限内点的坐标特点是解题的关键:第一象限()++,;第二象限()-+,;第三象限()--,;第四象限()+-,.【详解】解:∵第二象限内点的横坐标小于0,纵坐标大于0,∴只要()45-,在第二象限.故选:A .2.(2024上·陕西咸阳·八年级统考期末)若点()3,P a -在x 轴上,则点()3,1Q a a -+所在象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【分析】根据点P 在x 轴上,可得0a =,从而可得()3,1Q -,即可求解.【详解】解:点()3,P a -在x 轴上,∴0a =,∴()3,1Q -,∴点()3,1Q a a -+所在象限是第二象限,故选:B .3.(2024上·安徽安庆·八年级统考期末)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为()A .()4,5-B .()5,4-C .()4,5-D .()5,4-【答案】B 【分析】本题考查了点的坐标,熟练掌握平面直角坐标系每一象限点的坐标特征是解题的关键.根据平面直角坐标系中点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值,然后再根据第四象限内点的坐标特征,即可解答.【详解】解:在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为()5,4-,故选:B .4.(2024上·山西长治·九年级校联考期末)2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C 【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .5.(2024上·北京西城·八年级统考期末)如图,在平面直角坐标系xOy 中,已知点()2,0A ,()3,B b (0b >),AC AB ⊥且AC AB =,则点C 的横坐标为()A .1b --B .1b -C .2b -D .2b-【答案】D 【分析】本题主要考查坐标与图形,全等三角形的判定和性质,掌握“一线三等角”模型证明三角形全等是解题的关键.根据题意,分别作BD x ⊥轴,CE x ⊥轴,根据“一线三等角”模型证明ABD CAE ≌,由此即可求解.【详解】解:如图所示,过点B 作BD x ⊥轴于点D ,过点C 作CE x ⊥轴于点E ,∵()2,0A ,()()3,0B B b >,∴2OA =,3OD =,BD b =,∴321AD OD OA =-=-=,∵AC AB ⊥,∴90EAC CEAC DAB ∠+∠=∠+∠=︒,∴C DAB ∠=∠,在Rt ABD ,Rt CAE 中,90DAB C ADB CEA AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴()ABD CAE AAS ≌,∴AE BD b ==,1CE AD ==,∴2OE AE OA b =-=-,∵点E 在x 轴的负半轴上,∴点E 的横坐标为()22b b --=-,故选:D .二、填空题【答案】()2,10-【分析】本题考查了二元一次方程组的应用以及坐标与图形性质,设小长方形的长为的坐标为()14,6-,可列出关于三、解答题11.(2023上·浙江·八年级校联考期末)如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.(2)数对()9,7在图中表示什么地方?【答案】(1)()2,3;(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,∴校门的位置为数对()2,3;(2)解:数对()9,7表示的位置为第9列,第7行,由图可知,表示的地方为教学楼.12.(2024下·全国·七年级假期作业)在如图所示的平面直角坐标系中,描出下面六个点:()0,4A ,()4,0B -,()3,5C -,()3,5D --,()3,5E ,()2,0F .(1)到原点O 的距离为4的点是______,点E 到y 轴的距离是______;(2)将点F 向左平移5个单位长度,再向下平移5个单位长度,它与点______重合;(3)若连接CD ,则线段CD 与x 轴的位置关系是______.【答案】(1)A 和B ,3(2)D(3)平行【解析】略13.(2024上·广东深圳·八年级统考期末)已知点()24,1A a a --,根据条件解决下列问题:(1)若点A 在y 轴上,求点A 的坐标;(2)若点A 在过点()5,2P 且与x 轴平行的直线上,求线段AP 的长.【答案】(1)0,1()(2)3AP =【分析】本题考查坐标系下点的规律探究,熟练掌握与x 轴平行的直线上的点的纵坐标相同是解题的关键.(1)根据y 轴上点的横坐标等于零列式计算即可;(2)根据点A 在过点()5,2P 且与x 轴平行的直线上,得到A ,P 两点的纵坐标相同,求出a 的值,进而求出线段AP 的长即可.【详解】(1)∵241A a a --点(,)在y 轴上∴240a -=∴2a =∴点A 坐标()0,1;(2)241A a a --点(,)在过点()5,2P 且与x 轴平行的直线上∴12a -=∴3a =∴点A 坐标()2,2∴523AP =-=14.(2024下·全国·七年级假期作业)已知点()24,1P m m +-,试分别根据下列条件,求出点P 的坐标.(1)点P 的纵坐标比横坐标大3;(2)点P 在过点()2,3A -且与x 轴平行的直线上;(3)横、纵坐标的乘积等于0.【答案】(1)P ()12,9--(2)P ()0,3-(3)点P 的坐标为()0,3-或()6,0【详解】解:(1)由题意,得()1243m m -=++,解8m =-,∴点P 的坐标为()12,9--.(2)由题意,得13m -=-,解得2m =-,∴点P 的坐标为()0,3-.(3)由题意,得240m +=或10m -=,解得2m =-或1m =,∴点P 的坐标为()0,3-或()6,0.15.(2023上·辽宁沈阳·八年级沈阳市第一二六中学校考期中)在平面直角坐标系中,有()()()21142A a B a C b b -+--,,,,,三点.(1)当点C 在x 轴上时,点C 的坐标为________.(2)当点C 在y 轴上时,点C 的坐标为________.(3)当AB x 轴时,A B ,两点间的距离为________.(4)当CD x ⊥轴于点D ,且1CD =时,点C 的坐标为________.(1)如图1,当1m =,且A 、B 、C 按逆时针方向排列,求C (2)如图2,若A 、B 、C 按顺时针方向排列,(2,0)E -,连(3)如图3,当0m >时,若D 、B 两点关于直线AC 对称,请用含【答案】(1)()31C ,;(2)见解析;(2)解:过C 点作CH ∵90,ABC ∠=︒∴90ABO CBH ∠+∠=︒,又∵90ABO OAB ∠+∠=︒,∴CBH OAB∠=∠又∵AB BC =,∴ABO BCH ≌(AAS )∵90ABC ∠=︒∴90ABE CBF ∠∠+=︒,∴BAE CBF ∠∠=,∵AB BC =,∴ABE BCF ≌,∴BF AE =,CF BE =,(0,2),B(m,0)A同①可得()22D m +,,∴OBD S ∆=12OB h ⨯=12⨯综上所述可得OBD 的面积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. 【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD . (1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标; (3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由; 【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABCS S =V V ;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABCS S =V V .【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数; (3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由. 【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3).(1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积. 【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半A(-2,0)B(0,-3)y x轴上一点,S 四边形AOBC =24.(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形. (1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结P A ,PB ,使S △P AB =S △若不存在,试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 秒,(1)是否是否存在一个时刻,使得梯形CDQB (4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△【例10】在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得S ∆出点D 的坐标;若不存在,请说明理由. (3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标;②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等? 若存在,求E 的坐标,若不存在,说明理由?【例3】如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE 。
(1)求∠BAO 的度数; (2)求证:∠C=15°+12∠OAP(3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。
【例4】如图,A 为x 轴负半轴上一点,C (0,-2),D (-3,-2)。
(1)求△BCD 的面积;(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。
(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,∠E∠ABC 的值是否变化?若不变,求出其值;若变化,说明理由。
【例5】如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使点A 落在点D 处。
(1)写出D 点的坐标并求AD 的长;(2)EF 平分∠AED ,若∠ACF-∠AEF=15o ,求∠EFB 的度数。
【例6】如图,在直角坐标系中,已知B (b ,0),C (0,a ),且 | 6 – 2b | +(2c-8)2 =0. B D ⊥x 轴于B.(1)求B 、C 的坐标;(2)如图,AB //CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,求 ∠DQB+∠QBC+∠QPC 的值。
【例7】如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。
(1)若|m+2n-5|+|2m-n|=0,试分别求出1秒钟后A 、B 两点的坐标。
(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请说明理由。
(3)如图,延长BA 至E ,在∠ABO 的内部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH 和∠BGC 的大小关系如何?请写出你的结论并说明理由。
【例8】如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )2+|a-b+4|=0,过C 作C B ⊥x 轴于B 。
(1)求三角形ABC 的面积。
(2)若过B 作BD //AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。
(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点的坐标; 若不存在,请说明理由。
【例9】如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C. (1)若∠A=∠AOC ,求证:∠B=∠BOC ; (2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠度数; (3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问∠P 的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.【例10】如图,y 轴的负半轴平分∠AOB , P 为y 轴负半轴上的一动点,过点P 作x 轴的平行线分别交OA 、OB 于点M 、N.(1)如图1, MN ⊥y 轴吗?为什么?(2)如图2,当点P 在y 轴的负半轴上运动到AB 与y 轴的交点处, 其他条件都不变时,等式∠APM=21(∠OBA -∠A )是否成立?为什么? (3)当点P 在y 轴的负半轴上运动到图3处(Q 为BA 、NM 的延长线的交点),其他条件都不变时,试问∠Q 、∠OAB 、∠OBA 之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.【例11】在平面直角坐标系中,点)0,(a A ,)0,(b B ,),0(c C ,且满足342+-=++-c b a ,过点C 作x MN //轴,D 是MN 上一动点. (1)求A BC ∆的面积;(2)如图1,若点D 的横坐标为-3,AD 交O C 于E ,求点E 的坐标;(3)如图2,若B 35AD ∠=o,P 是A D 上的点,Q 是射线DM 上的点,射线QG 平分PQM ∠,射线PH 平分APQ ∠,//PF QG ,请你补全图形,并求HPFADN∠∠的值.【例12】如图,直角坐标系中,C 点是第二象限一点,CB ⊥y 轴于B ,且B (0,b )是y 轴正半轴上一点,A (a ,0)是x 轴负半轴上一点,且()2230a b ++-=,S 四边形xy CBA o x y OED CBA x y O CB A AO B QMPNyx 图3(1)求C点坐标;(2)设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交与点P,求∠APD的度数?(3)当D点在线段OB上运动时,作DM⊥AD交CB于M,∠BMD,∠DAO动的过程中∠N【例13】在直角坐标系中,A(-4,0),B(2,0),点C在y轴正半轴上,且S△(1)求点C的坐标;(2)是否存在位于坐标轴上的点P,S△ACP =12S△ABC.若存在,请求出P【例14】如图,(1)DO平分∠EDC,探究∠E,∠C,∠DOC的关系.(2)在直角坐标系中,第一象限AB方向放有一个平面镜,一束光线CD 线DH交y轴于点H.交x轴于点F(∠DCE>∠DEC),若平面镜AB绕点D 整数k,使∠DCE -∠DEC = k∠OHF.若存在,请求出kCDOHF.x。