小升初数学专题复习讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③分数的除法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3.整数四则运算中各部分间的关系
(1)加法:和=加数+加数;加数=和-另一个加数
(2)减法:差=被减数-减数;减数=被减数-差;被减数=减数+差
(3)乘法:积=因数×因数;一个因数=积÷另一个因数
(4)除法:商=被除数÷除数;除数=被除数÷商;被除数=除数×商
2.数的整除,常见的数的整除特征
(1)2:个位是偶数;
(2)3:各个数位之和是3的倍数;
(3)5:个位是 0或5;
(4)4、25:后两位可以被4(25)整除;
(5)8、125:后三位可以被8(125)整除;
(6)9:各个数位之和是9的倍数;
(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数;
(1)在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算;
(2)在有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
抛砖引玉
【例1】求几个加数的和的简便运算叫做乘法。(判断对错)
【解析】本题考察整数的乘法及应用。由乘法的意义可得:求几个相同加数和的简便运算叫乘法。
(2)乘法的计算方法
①整数的乘法:从低位到高位分别用因数的每一位去乘另一个因数;用一个因数的哪一位去乘,求得的数的末位就要和那一位对齐;然后把几次求得的积加起来;
②小数乘法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点;
③分数乘法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(5)整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少;
(6)分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算;
(7)整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.四则运算的计算方法
(1)加减法的计算方法
①整数的加法:相同数位对齐,从低位加起,哪一位上的数相加满十,就要向前一位进一;
5.一根绳子长21米,剪8米做一根长跳绳,剩下的每2米做一根短跳绳.可以做多少根短跳绳?还剩下多少米?
实战演练
1.(2016•广州)一个两位数除以5余3,除以7余5,这个两位数最大是( )
A.72 B.37 C.33 D.68
2.(2016•长沙)某同学在计算一道除法时,误将除数35写成53,所得的商是35余12,正确的商与余数的和是.
数学
专题一 数论
考点扫描
数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。
1.数的奇偶性
奇数+奇数=偶数 奇数+偶数=奇数 偶数+偶数=偶数
奇数×奇数=奇数 偶数×偶数=偶数 奇数×偶数=偶数
奇数个奇数相加=奇数 偶数个奇数相加=偶数
(只要式子中含有偶数,那么相乘结果就是偶数)
【解析】(1)根据2、3、5的倍数的倍数特征可知;同时是2、3、5的倍数的倍数,只要是个位是0,十位满足是3的倍数即可,十位满足是3的倍数的有3、6、9,其中3是最小的,解答即可;(2)根据是2、3的倍数的数的特征:是2的倍数的数的个位都是偶数,是3的倍数的数各个位上的数相加所得的和能被3整除,所以能同时被2、3整除的最小三位数,百位应是1,十位是0、个位是2;然后要使能同时被2、3整除的三位数最大,则百位和十位上是9,个位上的数是偶数,而且能被3整除,只能是6,所以最大的三位数是996,解答即可
4.四则运算定律、运算性质
(1)运算定律
加法结合律:两个数相加,交换加数的位置,它们的和不变。即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后面两个数相加,再和第一个相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c)
乘法交换律:两个数相乘,交换因数的位置,它们的积不变。即:a×b=b×a
A.2 B.3 C.4
2.一列队伍,从第一个人向后按1至6顺序循环报数,最后一个人报的是3,这支队伍的人数一定是( )的倍数。
A.2 B.3 C.5 D.6
3.三个连续偶数的和是120,其中最大的一个数是.
4.同学们献爱心捐款,有五名同学共捐了410元,他们的捐款数恰好是5个连续的偶数,这五名同学各捐了多少钱?
21÷=7
÷3=9
30÷=5
+80=120
﹣30=90
9×=81
÷6=60
【解析】本题考察整数的乘法及应用、整数的加法和减法、整数的除法及应用、乘与除的互逆关系。(1)(2)(9)根据一个因数=积÷另一个因数求解;(3)(5)(10)根据被除数=除数×商进行求解;(4)(6)根据除数=被除数÷商求解;(7)根据一个加数=和﹣另一个加数求解;(8)根据被减数=减数+差求解。
专题二 数的运算
考点扫描
1.四则运算的意义
(1)整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算;
(2)整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算;
(3)整数乘法的意义:求几个相同加数的和的简便运算;
(4)小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几……是多少;
②整数的减法:相同数位对齐,从低位减起,哪一位上的数不够减要从前一位上退一,在本位上加上10再减;
③小数的加减法:计算小数加减法时,先把小数点对齐(也就是相同的数位对齐),再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点;
④分数的加减法:同分母的分数相加减,分母不变,只把分子相加减;异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。
乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。即:a×b×c=(a×b)×c=a×(b×c)
乘法分配律:两个数的和与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积加起来。即:(a+b)×c=a×c+b×c;a×(b+c)=a×b+a×c
答案:30;102;996.
【例3】2309至少加上是3的倍数,至少减去才是5的倍数。
【解析】根据能被2整除的特征:个位上是0、2、4、6、8的数,能被5整除的数的特征:个位上的数字是0或者5的数,解答即可.由分析可知:2+3+9=14;因为15能被3整除,所以至少应加上1;因为2309的个位是9,只有个位数是0或5时,才能被5整除,所以至少减去4。
(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;
(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;
(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
3.余数的性质
(2)运算性质
减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c
除法的运算性质(除数不为0):
a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c
5.四则混合运算的顺序
四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
答案:
4×6=24
30×2=60
480÷8=60
21÷3=7
27÷3=9
30÷6=5
40+80=120
120﹣30=90
9×9=81
120÷6=60
【例8】
计算下面各题(能简算的简算)。
A.商是8余3 B.商是80余2 C.商是8余30
【解析】本题考察有余数的除法。根据整数的除法计算。750÷90=8…30,所以商是8,余数是30。
答案:C.
【例4】三位数除以一位数,商是( )
A.两位数 Bwk.baidu.com三位数 C.可能是三位数也可能是两位数
【解析】三位数除以一位数,先用百位上的数字去除以一位数,看够不够除。就是说百位上的数字和一位数数字比较,如果比一位数大或相等就够除,商在百位上,就是一个三位数;如果百位上的数字比一位数小,就要用百位和十位的数组成一个两位数去除以一位数,商要商在十位上,就是一个两位数。
(3)除法的计算方法
①整数的除法:从被除数的高位除起,除数有几位就先看被除数的前几位,如果前几位比除数小,就多取一位再除,除到哪一位,商就写在那一位的上面;每次除得的余数必须比除数小;在求出商的最高位以后,如果被除数的哪一位上不够商1,就在那一位上写0;
②小数除法:除数是整数时,按照整数除法进行计算,商的小数点要与被除数的小数点对齐。除数是小数时,要先把除数转化成整数,同时把被除数扩大相同的倍数,然后按照除数是整数的除法进行计算;
答案:1;4.
【例4】三个连续偶数的和是90,这三个数分别是、、.
【解析】自然数中,相邻的两个偶数相差2,由此可设和为90的三个连续偶数中的最小的一个为x,则另两个分别为x+2,x+4,由此可得等量关系式:x+x+2+x+4=90.解此方程即可。
答案:28;30;32.
【例5】养鸡场一天收160千克鸡蛋,每18千克鸡蛋装一箱,可以装多少箱?还剩多少千克?
【例1】下列各数中,( )同时是3和5的倍数.
A.18 B.102 C.45
【解析】同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。
答案:C.
【例2】 能同时被2、3、5整除的最小两位数是,能同时被2、3整除的最小三位数是,最大三位数是.
【解析】要求160千克鸡蛋可以装几箱,还剩多少千克,也就是求160里面有几个18,用除法计算,得到的商是箱数,余数就是剩下的千克数.
答案:解:160÷18=8(箱)…16(千克);
答:可以装8箱,还剩16千克。
沙场点兵
1.从0、1、5、7四个数中任选三个数组成一个三位数,这个数既是2的倍数,又是3的倍数,还是5的倍数,这样的三位数有( )个。
(1)余数的可加性:和的余数等于余数的和;
(2)余数的可减性:差的余数等于余数的差;
(3)余数的可乘性:积得余数等于余数的积;
(4)同余的性质:
对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除;
对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。
抛砖引玉
答案:错误
【例2】在一道减法算式中,被减数、减数与差的和是48,被减数是( )
A.24 B.12 C.16 D.18
【解析】本题考察整数的加法和减法。根据被减数=减数+差,可得被减数、减数与差的和是被减数的2倍,用48除以2,求出被减数是24,48÷2=24。
答案:A.
【例3】750÷90等于( )
A.36÷1.8÷2 B.36×1.8÷2 C.36÷1.8×0.5 D.36×1.8×0.5
【解析】本题考察小数四则混合运算。首先用36除以1.8,求出这个数是多少;然后用它除以2,求出这个数的一半是多少。36÷1.8÷2=20÷2=10。
答案:A.
【例7】把算式补充完整。
4×=24
30×=60
÷8=60
3.(2016•东莞)三个连续奇数的和是645.这三个奇数中,最小的奇数是.
4.(2017•漳州)既能被2整除,又能被3整除的最大两位数是,既能被3整除,又能被5整除的最小三位数是.
5.(2017•枞阳县)列式计算:一个数除以99,商是10,余数是整数,这个数最大是多少?
6.(2017•德化县)学校进行团体操表演,每行站20人,正好站24排.如果要站成16排,那么每行需要站多少人?
答案:C.
【例5】两个数相除,商50余30,如果被除数和除数同时缩小10倍,所得的商和余数是( )
A.商5余3 B.商50余3 C.商5余30 D.商50余30
【解析】被除数和除数同时缩小10倍,商还是50,因为被除数缩小10倍,所以余数也缩小10倍为3。
答案:B.
【例6】一个数的1.8倍是36,求这个数的一半是多少?( )
相关文档
最新文档