分离定律知识点
简述分离定律、自由组合定律及其实质
![简述分离定律、自由组合定律及其实质](https://img.taocdn.com/s3/m/0e11e5f127d3240c8447effd.png)
简述分离定律、自由组合定律及其实质。
1)分离定律:
内容:在生物的体细胞中,决定生物体遗传性状的一对遗传因子不相融合,在配子的形成过程中彼此分离,随机分别进入不同的配子中,随配子遗传给后代。
实质:分离定律揭示了一个基因座上等位基因的遗传规律——等位基因随同源染色体的分开而分离。
2)自由组合定律:
内容:具有独立性的两对或多对相对性状的遗传因子进行杂交时,在子一代产生配子时,在同一对遗传因子分离的同时,不同对的遗传因子表现为自由组合。
实质:形成配子时非同源染色体上的基因自由组合。
《分离定律的应用》 知识清单
![《分离定律的应用》 知识清单](https://img.taocdn.com/s3/m/9fa1f39805a1b0717fd5360cba1aa81144318fe5.png)
《分离定律的应用》知识清单在遗传学中,分离定律是孟德尔遗传定律的重要组成部分,它为我们理解遗传现象和解决相关问题提供了基础。
下面让我们来详细了解一下分离定律的应用。
一、解释生物的遗传现象分离定律可以很好地解释为什么亲代的性状会在子代中出现不同的表现。
例如,对于豌豆的高茎和矮茎这一对相对性状,亲代是纯合的高茎(DD)和纯合的矮茎(dd),它们杂交产生的子一代(F1)都是杂合的高茎(Dd)。
当 F1 自交时,根据分离定律,D 和 d 会在减数分裂过程中彼此分离,随机地进入配子中。
这样就会产生两种比例相等的配子:D 和 d。
配子随机结合,就会产生 DD、Dd、dD 和 dd 四种基因型,其比例为 1:2:1。
由于 DD、Dd 和 dD 都表现为高茎,dd 表现为矮茎,所以高茎与矮茎的比例为 3:1。
二、预测子代的基因型和表现型比例已知亲本的基因型,我们可以运用分离定律来预测子代的基因型和表现型比例。
比如,亲本分别为杂合的高茎(Dd)和纯合的矮茎(dd),它们杂交产生的子代基因型及比例为 Dd:dd = 1:1,表现型及比例为高茎:矮茎= 1:1。
三、指导动植物的育种工作1、杂交育种在杂交育种中,分离定律起着关键作用。
例如,想要选育出纯合的抗病小麦品种。
首先选择具有抗病性状和不抗病性状的亲本进行杂交,得到 F1 代。
F1 代往往是杂合子,表现为抗病。
然后让 F1 代自交,根据分离定律,在 F2 代中会出现性状分离,既有抗病的个体,也有不抗病的个体。
通过不断地自交和筛选,最终可以得到纯合的抗病品种。
2、杂种优势的利用杂种优势是指两个遗传组成不同的亲本杂交产生的杂种第一代,在生长势、生活力、繁殖力、抗逆性、产量和品质等方面优于双亲的现象。
但杂种第一代自交后,会出现性状分离,杂种优势减弱。
因此,在农业生产中,常常利用杂种第一代,而不进行留种自交。
四、医学上对遗传病的诊断和预防1、遗传咨询对于有家族遗传病的夫妇,通过分析家族病史和基因组成,运用分离定律可以预测子代患病的概率,为他们提供生育建议。
分离定律知识点
![分离定律知识点](https://img.taocdn.com/s3/m/c10bbf1a16fc700abb68fc4f.png)
最新考纲理论部分:孟德尔遗传实验的科学方法Ⅱ基因的分离定律和自由组合定律Ⅱ细胞的减数分裂Ⅱ脊椎动物配子的形成过程Ⅱ脊椎动物的受精过程Ⅱ伴性遗传Ⅱ实验实习部分:观察细胞的减数分裂调查常见的人类遗传病考纲解读.基因分离定律和自由组合定律的实质及应用亲子代基因型、表现型的判定及其概率的计算运用分离定律解决自由组合定律有关问题应用遗传基本规律分析解决一些生产、生活中生物的遗传问题减数分裂过程中染色体、DNA的数量变化与曲线分析精子和卵细胞形成过程的比较伴X显性、伴X隐性及伴Y遗传的特点减数分裂与遗传规律,伴性遗传和人类遗传病的联系遗传图谱分析及概率运算第1讲孟德尔的豌豆杂交实验(一)知识点一一对相对性状的杂交实验.选用豌豆作为实验材料的优点(1)豌豆是①________传粉植物,而且是②________受粉,所以自然状态下一般是纯种(提醒用纯种作为实验材料进行杂交实验(2)豌豆具有许多③________的相对性状,这些性状能够稳定地遗传给后代。
杂交实验过程图解杂交实验操作要点比一比:果蝇、玉米为什么都适合做遗传实验的常用材料?知识点二对分离现象的解释由此可见,F性状表现及比例为________,F的基因型及比例为DD∶Dd∶dd=________。
提醒①孟德尔发现遗传定律的时代“基因”这一名词还未提出来,孟德尔用“遗传因子”表示。
配子的种类是指雌、雄配子分别有两种:D和d,D和d的比例为1∶1,而不是雌、雄配子的比例为1∶1。
生物雄配子的数量一般远远多于雌配子的数量。
知识点三对分离现象解释的验证——测交实验议一议:为什么用测交的方法能证明F产生配子的类型及比例?知识点四分离定律分离定律:在生物的体细胞中,控制________的遗传因子________存在,不相融合;在形成________时,成对的遗传因子发生________,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代知识点五几组基本概念(要求:在理解的基础上要熟记)遗传常用符号及意义(识别)(亲本)、F(子一代)、F(子二代)、♂(父本、雄性)、♀(母本、雌性)、(杂交)、(自交)。
《分离定律的应用》 知识清单
![《分离定律的应用》 知识清单](https://img.taocdn.com/s3/m/e692ccebd1d233d4b14e852458fb770bf78a3b38.png)
《分离定律的应用》知识清单一、分离定律的基本概念分离定律是遗传学中的基本定律之一,又称为孟德尔第一定律。
它指出在生物体的细胞中,控制同一性状的遗传因子(基因)成对存在,在形成配子时,成对的遗传因子会彼此分离,分别进入不同的配子中,配子只含有成对遗传因子中的一个。
例如,对于豌豆的高茎和矮茎这一对相对性状,控制高茎的基因用D 表示,控制矮茎的基因用 d 表示。
纯合高茎植株的基因型为 DD,纯合矮茎植株的基因型为 dd。
当它们产生配子时,DD 植株产生的配子只有 D,dd 植株产生的配子只有 d。
二、分离定律的适用范围1、进行有性生殖的生物有性生殖过程中涉及到减数分裂,基因的分离发生在减数第一次分裂后期。
2、细胞核中的遗传因子细胞质中的遗传因子(如线粒体、叶绿体中的基因)不遵循分离定律。
3、一对相对性状的遗传如果涉及多对相对性状,需要分别分析每一对相对性状的遗传规律。
三、分离定律在农业生产中的应用1、培育优良品种通过杂交和自交等方法,可以将优良性状集中在一个品种中。
例如,想要培育抗病的小麦品种,可以将具有抗病基因的小麦与不抗病但其他性状优良的小麦进行杂交,然后经过多次自交和筛选,最终获得稳定遗传的抗病小麦品种。
2、预测杂种后代的性状比例已知亲本的基因型,可以根据分离定律预测杂种后代中不同性状的比例。
比如,亲本基因型为 Dd 和 Dd 的杂交组合,后代中高茎(D_)与矮茎(dd)的比例为 3:1。
四、分离定律在医学中的应用1、遗传疾病的诊断对于一些由单个基因突变引起的遗传疾病,如镰状细胞贫血、白化病等,可以通过分析家族遗传图谱,结合分离定律,判断个体是否携带致病基因,从而进行疾病的诊断和遗传咨询。
2、近亲结婚的风险评估近亲结婚会增加隐性致病基因纯合的概率,从而导致遗传疾病的发生。
根据分离定律,可以计算出近亲结婚后代患病的风险,为人们的婚姻决策提供科学依据。
五、分离定律在动植物育种中的应用1、动物育种在畜牧业中,为了获得优良的家畜品种,如产奶量高的奶牛、生长速度快的肉猪等,可以利用分离定律进行选育。
分离定律知识点总结(必备6篇)
![分离定律知识点总结(必备6篇)](https://img.taocdn.com/s3/m/c7d7f6e2f021dd36a32d7375a417866fb94ac001.png)
分离定律知识点总结第1篇1.理论解释(1)生物的性状是由遗传因子决定的。
(2)体细胞中遗传因子是成对存在的。
(3)在形成生殖细胞时,成对的遗传因子彼此分离,分别进入不同的配子中,配子中只含有每对遗传因子中的一个。
(4)受精时,雌雄配子的结合是随机的。
2.遗传图解[解惑]F1配子的种类有两种是指雌雄配子分别为两种(D和d),D和d的比例为1∶1,而不是雌雄配子的比例为1∶1。
分离定律知识点总结第2篇1.有性生殖生物的性状遗传基因分离定律的实质是等位基因随同源染色体的分开而分离,而同源染色体的分开是有性生殖生物产生有性生殖细胞的减数分裂特有的行为2.真核生物的性状遗3.细胞核遗传只有真核生物细胞核内的基因随染色体的规律性变化而呈规律性变化。
细胞质内遗传物质数目不稳定,遵循细胞质母系遗传规律。
4.一对相对性状的遗传两对或两对以上相对性状的遗传问题,分离规律不能直接解决,说明分离规律适用范围的局限性。
分离定律知识点总结第3篇①杂合子(Aa)产生的雌雄配子数量不相等。
基因型为Aa的杂合子产生的雌配子有两种,即A∶a=1∶1或产生的雄配子有两种,即A∶a=1∶1,但雌雄配子的数量不相等,通常生物产生的雄配子数远远多于雌配子数。
②符合基因分离定律并不一定就会出现特定的性状分离比(针对完全显性)。
原因如下:a.F2中3∶1的结果必须在统计大量子代后才能得到;若子代数目较少,不一定符合预期的分离比。
b.某些致死基因可能导致性状分离比变化,如隐性致死、纯合致死、显性致死等。
分离定律知识点总结第4篇1.异花传粉的步骤:①→②→③→②。
(①去雄,②套袋处理,③人工授粉)2.常用符号及含义P:亲本;F1:子一代;F2:子二代;×:杂交;⊗:自交;♀:母本;♂:父本。
3.过程图解P纯种高茎×纯种矮茎↓F1 高茎↓⊗F2高茎矮茎比例 3 ∶14.归纳总结:(1)F1全部为高茎;(2)F2发生了性状分离。
分离定律知识点总结第5篇1.掌握最基本的六种杂交组合①DD×DD→DD;②dd×dd→dd;③DD×dd→Dd;④Dd×dd→Dd∶dd=1∶1;⑤Dd×Dd→(1DD、2Dd)∶1dd=3∶1;⑥Dd×Dd→DD∶Dd=1∶1(全显)根据后代的分离比直接推知亲代的基因型与表现型:①若后代性状分离比为显性:隐性=3:1,则双亲一定是杂合子。
《分离定律的应用》 知识清单
![《分离定律的应用》 知识清单](https://img.taocdn.com/s3/m/0ede7b06793e0912a21614791711cc7930b77808.png)
《分离定律的应用》知识清单在遗传学的领域中,分离定律是一个非常基础且重要的概念。
它由孟德尔通过豌豆杂交实验发现,并为我们理解遗传现象和遗传规律提供了关键的理论支持。
掌握分离定律的应用,对于解决各种遗传学问题、预测遗传结果以及指导育种实践等方面都具有重要意义。
一、分离定律的基本内容分离定律指出,在生物体的细胞中,控制同一性状的遗传因子(基因)成对存在。
在形成配子时,成对的遗传因子会彼此分离,分别进入不同的配子中。
这意味着,配子中只含有每对遗传因子中的一个。
例如,对于豌豆的高茎和矮茎这对相对性状,假设控制高茎的基因为D,控制矮茎的基因为d,那么在纯合高茎(DD)个体产生配子时,只会产生含有 D 的配子;纯合矮茎(dd)个体产生配子时,只会产生含有 d 的配子;杂合高茎(Dd)个体产生配子时,则会产生含有 D 和含有 d 的两种配子,且比例为 1:1。
二、分离定律在遗传学中的应用1、解释生物的遗传现象通过分离定律,我们可以解释为什么亲代的性状会在子代中以一定的比例出现。
例如,一对双眼皮的夫妇(假设均为杂合子 Aa),他们的子女可能是双眼皮(AA 或 Aa),也可能是单眼皮(aa),其比例为 3:1。
2、预测子代的基因型和表现型比例已知亲代的基因型,我们可以运用分离定律预测子代的基因型和表现型比例。
比如,两个杂合黄色豌豆(Yy)杂交,子代的基因型比例为 YY:Yy:yy = 1:2:1,表现型比例为黄色:绿色= 3:1。
3、推断亲代的基因型在已知子代的表现型和比例的情况下,我们可以反推亲代的基因型。
比如,子代中出现 3:1 的性状分离比,亲代很可能是杂合子自交。
4、进行遗传咨询对于有遗传疾病家族史的个体,分离定律可以帮助预测子代患病的概率,为家庭生育计划提供科学依据。
例如,一对夫妻中,一方患有常染色体显性遗传病(假设致病基因为 A),另一方正常(aa),那么他们的子女患病的概率为 50%。
三、分离定律在农业和畜牧业中的应用1、作物育种在作物育种中,分离定律有助于选育优良品种。
生物必修二第一章分离定律知识点总结
![生物必修二第一章分离定律知识点总结](https://img.taocdn.com/s3/m/ce03bed6162ded630b1c59eef8c75fbfc67d9450.png)
生物必修二第一章分离定律知识点总结一、遗传的分离定律1.孟德尔遗传实验的科学方法(1)遗传学实验的科学杂交实验包括:人工去雄、套袋、授粉、套袋。
(2)孟德尔获得成功的原因:首先选择了相对性状明显和严格自花传粉的植物进行杂交,其次运用了科学的统计学分析方法和以严谨的科学态度进行研究。
2.基因分离定律和自由组合定律(3)分离定律的内容是在杂合体进行自交形成配子时,等位基因随着一对同源染色体的分离而彼此分开,分别进入不同的配子中。
(4)分离定律的实质是等位基因彼此分离。
(5)分离定律在杂交育种方面的应用是:选育出显性性状的个体后需要进行不断的自交,以获得纯合子;选育隐性性状的个体时无需连续自交即可获得所需的纯合子。
拓展:①判断性状的显隐性关系:两表现不同的亲本杂交子代表现的性状为显性性状;或亲本杂交出现3:1时,比例高者为显性性状。
②一个生物是纯合子还是杂合子?可以从亲本自交是否出现性状分离来判断,出现分离则为杂合子。
二、遗传的自由组合定律1.基因的自由组合定律内容(1)基因自由组合定律的实质是等位基因彼此分离的同时非同源染色体上的非等位基因自由组合;发生的时间为减数分裂形成配子时。
拓展:验证基因的分离定律和自由组合定律是通过测交实验,若测交实验出现1:1,则证明符合分离定律;如出现1:1:1:1则符合基因的自由组合定律。
(验证决定两对相对性状的基因是否位于一对同源染色体上可通过杂合子自交,如符合9:3:3:1及其变式比,则两对基因位于两对同源染色体上,如不符合9:3:3:1,则两对基因位于一对同源染色体上。
)(2)熟练记住杂交组合后代的基因型、表现型的种类和比例,并能熟练应用。
2.基因与性状的关系(3)基因控制生物性状的两种方式:一是通过控制酶的合成来控制代谢过程,进而控制生物体的性状;而是通过控制蛋白质的结构直接控制生物体的性状。
高中生物必修一必备知识细胞器——系统内的分工合作分离各种细胞器的方法:差速离心法一、细胞器之间分工(1)双层膜叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
分离定律知识点总结
![分离定律知识点总结](https://img.taocdn.com/s3/m/869317e6c8d376eeaeaa31c7.png)
分离定律知识点总结一、基因分离定律的适用范围1.有性生殖生物的性状遗传基因分离定律的实质是等位基因随同源染色体的分开而分离,而同源染色体的分开是有性生殖生物产生有性生殖细胞的减数分裂特有的行为2.真核生物的性状遗3.细胞核遗传只有真核生物细胞核内的基因随染色体的规律性变化而呈规律性变化。
细胞质内遗传物质数目不稳定,遵循细胞质母系遗传规律。
4.一对相对性状的遗传两对或两对以上相对性状的遗传问题,分离规律不能直接解决,说明分离规律适用范围的局限性。
二、基因分离定律的限制因素基因分离定律的F1和F2要表现特定的分离比应具备以下条件:1.所研究的每一对相对性状只受一对等基因控制,而且等位基因要完全显性。
2.不同类型的雌、雄配子都能发育良好,且受精的机会均等。
3.所有后代都应处于比较一致的环境中,而且存活率相同。
4.供实验的群体要大、个体数量要足够多。
三、基因分离定律的解题点拨1.掌握最基本的六种杂交组合①DD×DD→DD;②dd×dd→dd;③DD×dd→Dd;④Dd×dd→Dd∶dd=1∶1;⑤Dd×Dd→(1DD、2Dd)∶1dd=3∶1;⑥Dd×Dd→DD∶Dd=1∶1(全显)根据后代的分离比直接推知亲代的基因型与表现型:①若后代性状分离比为显性:隐性=3:1,则双亲一定是杂合子。
②若后代性状分离比为显性:隐性=1:1,则双亲一定是测交类型。
③若后代性状只有显性性状,则双亲至少有一方为显性纯合子。
(2)配子的确定①一对等位基因遵循基因分离规律。
如Aa形成两种配子A和a.②一对相同基因只形成一种配子。
如AA形成配子A;aa形成配子a.(3)基因型的确定①表现型为隐性,基因型肯定由两个隐性基因组成aa.表现型为显性,至少有一个显性基因,另一个不能确定,Aa或AA.做题时用“A_”表示。
②测交后代性状不分离,被测者为纯合体,测交后代性状分离,被测者为杂合体Aa.③自交后代性状不分离,亲本是纯合体;自交后代性状分离,亲本是杂合体:Aa×Aa.④双亲均为显性,杂交后代仍为显性,亲本之一是显性纯合体,另一方是AA或Aa.杂交后代有隐性纯合体分离出来,双亲一定是Aa.⑷显隐性的确定①具有相对性状的纯合体杂交,F1表现出的那个性状为显性②杂种后代有性状分离,数量占3/4的性状为显性。
生物知识点整理分离定律
![生物知识点整理分离定律](https://img.taocdn.com/s3/m/b06f16fdbd64783e08122ba4.png)
生物知识点整理分离定律生物知识点整理分离定律高一生物知识点整理:基因分离定律一、基因分离定律的适用范围1.有性生殖生物的性状遗传基因分离定律的实质是等位基因随同源染色体的分开而分离,而同源染色体的分开是有性生殖生物产生有性生殖细胞的减数分裂特有的行为2.真核生物的性状遗3.细胞核遗传只有真核生物细胞核内的基因随染色体的规律性变化而呈规律性变化。
细胞质内遗传物质数目不稳定,遵循细胞质母系遗传规律。
4.一对相对性状的遗传两对或两对以上相对性状的遗传问题,分离规律不能直接解决,说明分离规律适用范围的局限性。
二、基因分离定律的限制因素基因分离定律的F1和F2要表现特定的分离比应具备以下条件:1.所研究的每一对相对性状只受一对等基因控制,而且等位基因要完全显性。
2.不同类型的雌、雄配子都能发育良好,且受精的机会均等。
3.所有后代都应处于比较一致的环境中,而且存活率相同。
4.供实验的群体要大、个体数量要足够多。
三、基因分离定律的解题点拨1.掌握最基本的六种杂交组合①DD×DD→DD;②dd×dd→dd;③DD×dd→Dd;④Dd×dd→Dd∶dd=1∶1;⑤Dd×Dd→(1DD、2Dd)∶1dd=3∶1;⑥Dd×Dd→DD∶Dd=1∶1(全显)根据后代的.分离比直接推知亲代的基因型与表现型:①若后代性状分离比为显性:隐性=3:1,则双亲一定是杂合子。
②若后代性状分离比为显性:隐性=1:1,则双亲一定是测交类型。
③若后代性状只有显性性状,则双亲至少有一方为显性纯合子。
(2)配子的确定①一对等位基因遵循基因分离规律。
如Aa形成两种配子A和a.②一对相同基因只形成一种配子。
如AA形成配子A;aa形成配子a.(3)基因型的确定①表现型为隐性,基因型肯定由两个隐性基因组成aa.表现型为显性,至少有一个显性基因,另一个不能确定,Aa或AA.做题时用“A_”表示。
分离定律和组合定律
![分离定律和组合定律](https://img.taocdn.com/s3/m/732465cb7d1cfad6195f312b3169a4517623e55b.png)
分离定律和组合定律
分离定律和组合定律是概率论中的两个基本性质。
1. 分离定律(Law of Separation):假设有两个事件A和B,
如果A和B是互斥的(即A和B不可能同时发生),那么它
们的并集的概率等于它们的概率之和。
即P(A∪B) = P(A) + P(B),其中A和B是互斥的。
例如,假设A表示抛一次硬币出现正面的事件,B表示抛一
次硬币出现反面的事件。
由于硬币只可能出现正面或反面,所以A和B是互斥的。
根据分离定律,P(A∪B) = P(A) + P(B),
即抛一次硬币出现正面或者反面的概率等于抛一次硬币出现正面的概率加上抛一次硬币出现反面的概率。
2. 组合定律(Law of Combination):假设有两个事件A和B,它们不一定是互斥的,那么它们的并集的概率可以通过减去它们的交集的概率来计算。
即P(A∪B) = P(A) + P(B) - P(A∩B)。
例如,假设A表示抛一次骰子得到的数是偶数的事件,B表
示抛一次骰子得到的数是大于3的事件。
根据组合定律,
P(A∪B) = P(A) + P(B) - P(A∩B),即抛一次骰子得到的数是偶
数或者大于3的概率等于抛一次骰子得到的数是偶数的概率加上抛一次骰子得到的数是大于3的概率再减去抛一次骰子得到的数即既是偶数又大于3的概率。
分离定律和组合定律是概率论中常用的计算概率的方法,可以用于推导和计算复杂事件的概率。
分离定律知识点总结
![分离定律知识点总结](https://img.taocdn.com/s3/m/202342321611cc7931b765ce05087632311274d1.png)
分离定律知识点总结在物理学中,分离定律是一个重要的理论定律,它描述了原子核物质在分离过程中的行为规律。
分离定律的研究对于我们理解原子核结构和核能研究具有重要意义。
本文将对分离定律的基本概念、应用和相关知识点进行总结,希望能够帮助读者更好地理解这一重要的物理定律。
1. 分离定律的基本概念分离定律是原子核物质在分离过程中所遵循的定律,它描述了分离过程中原子核物质的行为规律。
具体来说,分离定律可以用来描述原子核物质在放射性衰变、核裂变和核聚变等过程中的行为。
在放射性衰变过程中,分离定律可以描述放射性核素在衰变过程中产生的粒子的行为规律。
在核裂变和核聚变过程中,分离定律可以描述原子核物质在裂变或聚变过程中的行为规律。
分离定律的基本原理是基于原子核物质中核子之间的相互作用和相对运动的特性,通过对这些特性的研究,我们可以得出分离定律的数学表达式,并用其来描述原子核分离过程中的行为规律。
2. 分离定律的数学表达式分离定律的数学表达式一般采用微分方程的形式来描述原子核分离过程中粒子数目的变化规律。
在放射性衰变过程中,分离定律可以用指数函数描述,即N(t) = N0 * e^(-λt),其中N(t)表示时间t时刻放射性核素的粒子数,N0表示初始时刻放射性核素的粒子数,λ表示衰变常数。
在核裂变和核聚变过程中,分离定律的数学表达式会根据具体的裂变方式和聚变方式而有所不同,但一般会使用微分方程的形式来描述原子核分离过程中粒子数目的变化规律。
3. 分离定律的应用分离定律在核物理领域有着广泛的应用,其中最为重要的应用就是用来描述放射性核素的衰变规律。
通过对放射性核素的衰变规律的研究,我们可以确定放射性核素的半衰期、衰变常数等重要参数,这些参数对于核物理研究以及核能应用具有重要的意义。
另外,分离定律还可以用来描述核聚变和核裂变过程中原子核物质的行为规律,这对于核聚变反应堆的设计和运行、核裂变反应堆的设计和运行等方面具有重要的意义。
分离定律的相关知识点总结
![分离定律的相关知识点总结](https://img.taocdn.com/s3/m/b90e884e91c69ec3d5bbfd0a79563c1ec5dad7af.png)
分离定律的相关知识点总结1. 分离定律的历史背景分离定律最早是由格里高利·孟德尔在1865年提出的,当时他通过豌豆杂交的实验观察到了一些有趣的现象,比如红花和白花豌豆杂交后,后代的花色呈现出一定的比例,白花的呈现频率总是低于红花的。
这些实验结果最终让孟德尔得出了分离定律的结论。
值得注意的是,当时这些发现并没有引起学术界的广泛关注,直到20世纪初,孟德尔的实验结果才被重新发现并获得了广泛的认可。
这一发现对于后来遗传学的发展产生了深远的影响,成为了遗传学的基石之一。
2. 等位基因和分离定律在理解分离定律之前,我们需要先了解等位基因的概念。
等位基因是指同一基因位点上不同的基因形式。
比如在豌豆的花色基因中,有红色花的等位基因R和白色花的等位基因r。
在分离定律中,我们假设每个个体有两个等位基因,一个来自母亲,一个来自父亲。
当这两个等位基因不同的时候,我们称之为杂合子,当两个等位基因相同的时候,我们称之为纯合子。
根据分离定律,当杂合子进行生殖细胞的形成时,这两个等位基因会分离开来,分别进入不同的生殖细胞。
因此,每个生殖细胞最终只会携带一个等位基因,这也解释了为什么孟德尔在豌豆杂交实验中得到了一定比例的红花和白花后代。
3. 分离定律的遗传规律分离定律描述了等位基因在生殖细胞形成过程中的分离规律,它为后代遗传特质提供了一个简单而有效的规律。
根据分离定律,一个纯合子向子代传递它的等位基因时,每个子代只传递一个等位基因。
当两个纯合子杂交时,它们的等位基因会随机组合,从而产生不同的基因型和表现型。
这个过程被称为孟德尔遗传规律。
4. 分离定律的意义分离定律对于遗传学的发展具有深远的影响。
首先,它提供了一个简单而有效的规律来描述基因的遗传方式。
这一规律为后来的遗传学研究奠定了基础,帮助人们理解了遗传物质是如何在子代中传递的。
其次,分离定律也为人类的育种工作提供了重要的理论基础。
通过遗传学的知识,人类可以更好地培育出一些具有特定特质的生物,比如高产量的作物或者优良的牲畜。
分离定律概念
![分离定律概念](https://img.taocdn.com/s3/m/87784b3453ea551810a6f524ccbff121dd36c5f1.png)
分离定律概念1. 概念定义分离定律(Law of Separation)是指在统计学中,将总体分解为两个或多个组成部分的过程,并利用这些部分之间的关系来进行统计推断的一种方法。
它是多元统计学中常用的一种技术,用于研究总体内部的结构和关系。
2. 重要性分离定律在统计学中具有重要的意义和应用价值。
它可以帮助我们理解总体内部的结构和关系,揭示变量之间的相互作用,并提供有关总体特征、规律和趋势等方面的信息。
通过对总体进行分解和分析,我们可以更好地把握问题本质,找到影响因素,从而做出更准确、科学的决策。
具体来说,分离定律在以下几个方面具有重要作用:2.1 数据降维在实际应用中,我们常常面临大量高维数据的处理问题。
通过应用分离定律,我们可以将原始数据进行降维处理,提取出最具代表性和区分度的变量,减少冗余信息,并保留尽可能多的有效信息。
这样不仅可以简化数据分析的复杂度,还可以提高模型的准确性和预测能力。
2.2 变量选择在建立统计模型时,我们需要从众多变量中选择出对目标变量有显著影响的关键变量。
通过分离定律,我们可以将变量按照其与目标变量之间的相关性进行排序,选择出对目标变量具有重要影响的关键变量。
这样可以提高模型的解释能力和预测效果。
2.3 因果关系分析分离定律还可以用于分析变量之间的因果关系。
通过将总体分解为不同的组成部分,并观察这些部分之间的关系,我们可以判断不同变量之间是否存在因果关系,并进一步研究其机制和作用方式。
这对于深入理解问题本质、推断原因和制定对策具有重要意义。
2.4 总体结构研究通过应用分离定律,我们可以揭示总体内部的结构和组成方式。
例如,在社会科学研究中,我们可以将总体按照不同维度(如年龄、性别、职业等)进行分解,并观察不同维度上的差异和联系。
这有助于我们理解总体的特征、规律和趋势,为社会政策制定和管理决策提供科学依据。
3. 应用案例分离定律在实际应用中有广泛的应用,下面举几个常见的应用案例:3.1 主成分分析(Principal Component Analysis, PCA)主成分分析是一种常用的数据降维方法,通过将原始数据进行线性变换,得到一组互相无关的新变量,这些新变量被称为主成分。
分离定律的核心内容
![分离定律的核心内容](https://img.taocdn.com/s3/m/cc09c819f011f18583d049649b6648d7c1c7088e.png)
分离定律的核心内容
分离定律是指在布尔代数中,将一个复合命题中含有多个逻辑运算符的命题,按照不同的优先级分别计算,得到的结果是一样的。
其核心内容包括以下几点:
1. 逻辑运算符的优先级:在计算复合命题时,不同的逻辑运算符具有不同的优先级,例如,先计算括号内的命题,再计算非运算,接着是与运算、或运算等。
2. 逻辑运算符的结合性:同一级别的逻辑运算符有不同的结合性,即左结合或右结合。
左结合意味着先计算左边的操作数,右结合则相反。
3. 逻辑运算符的短路特性:在布尔运算中,当某个操作数已经可以确定整个命题的值时,就可以停止计算后面的操作数了。
例如,在逻辑与运算中,若第一个操作数为假,则整个命题的值为假,后面的操作数不需要计算。
通过上述核心内容的正确应用,可以使得复合命题的计算变得更加简单、高效。
- 1 -。
高考生物知识点
![高考生物知识点](https://img.taocdn.com/s3/m/904a3f5a7ed5360cba1aa8114431b90d6d858946.png)
2022年高考生物知识点高考生物知识点1.分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
2.自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
3.两条遗传基本规律的精髓是:遗传的不是性状的本身,而是控制性状的遗传因子。
4.孟德尔成功的原因:正确的选用实验材料;现研究一对相对性状的遗传,再研究两对或多对性状的遗传;应用统计学方法对实验结果进行分析;基于对大量数据的分析而提出假说,再设计新的实验来验证。
5.孟德尔对分离现象的原因提出如下假说:生物的性状是由遗传因子决定的;体细胞中遗传因子是成对存在的;生物体再形成生殖细胞—配子时,成对的遗传因子彼此分离,分别进入不同的配子中;受精时,雌雄配子的结合是随机的。
6.萨顿的假说:基因和染色体行为存在明显的平行关系。
(通过类比推理提出)基因在杂交过程中保持完整性和独立性;在体细胞中基因成对存在,染色体也是成对的;体细胞中成对的基因一个来自父方,一个来自母方,同源染色体也是如此;非等位基因在形成配子时自由组合,非同源染色体在减数第一次分裂后期也是自由组合的。
萨顿由此推论:基因是由染色体携带着从秦代传递给下一代的。
即基因就在染色体上。
7.减数分裂是进行有性生殖的生物,在产生成熟的生殖细胞时进行的染色体数目减半的细胞分裂。
在减数分裂的过程中,染色体只复制一次,而细胞分裂两次。
减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。
8.配对的两条染色体,形状大小一般相同,一条来自父方,一条来自母方,叫做同源染色体。
同源染色体两两配对的现象叫做联会。
联会后的每对同源染色体含有四条染色单体,叫做四分体。
9.减数分裂过程中染色体数目减半发生在减数第一次分裂。
分离定律的核心内容
![分离定律的核心内容](https://img.taocdn.com/s3/m/d9a5a903e3bd960590c69ec3d5bbfd0a7956d529.png)
分离定律的核心内容
分离定律是指在布尔代数中,任何一个逻辑表达式都可以被分解为两个部分,即“与”运算和“或”运算。
其核心内容包括以下几个方面:
1. “与”运算与“或”运算是布尔代数中最基本的运算符号,它们分别对应于逻辑中的“与”和“或”关系。
2. 根据分离定律,任何逻辑表达式都可以被分解为两个部分,其中一个部分由若干个变量的“与”运算组成,另一个部分由若干个变量的“或”运算组成。
3. 分离定律的应用可以使逻辑表达式更加简单明了,便于逻辑推理和计算机程序设计等领域的应用。
4. 分离定律在布尔代数中具有很高的实用价值,常常被用于化简逻辑表达式、构造逻辑电路等方面。
总之,分离定律是布尔代数中最重要的定理之一,它的核心内容涉及到布尔运算、逻辑推理、计算机程序设计等领域,具有广泛的应用价值。
- 1 -。
分离定律全面知识点总结
![分离定律全面知识点总结](https://img.taocdn.com/s3/m/0572cd820408763231126edb6f1aff00bfd57040.png)
分离定律全面知识点总结本文将从分离定律的基本原理、实验证据、适用范围、临床意义等方面进行全面的总结和解析。
基本原理分离定律的基本原理可以用以下几点来概括:1. 每个体细胞中都有一对基因(allele)控制着某一特定性状的表达;一个来自父亲,一个来自母亲。
2. 在生殖细胞(配子)形成的过程中,这对基因会分离开来,只有一个基因会被随机地传递给后代。
3. 子代的基因型和表现型会根据传递给它的基因来确定。
如果两个基因是相同的,则表现为纯合子;如果两个基因是不同的,则表现为杂合子。
4. 同时,在受精胚胎的形成过程中,两个来自母亲和父亲的基因会再次组合在一起,产生新的基因型和表现型。
以上是分离定律的四个基本原理,它们为我们解释遗传现象提供了理论基础和解释框架。
实验证据曼德尔通过豌豆杂交实验得出的结果是分离定律的最有力的实验证据。
他通过对不同特征的豌豆品种进行杂交实验,观察到了各种基因型的比例,进而提出了分离定律。
豌豆种子形状和颜色的遗传律本是相互独立的两个性状,即两个性状之间并不存在紧密的联系。
豌豆的种子形状可能是圆形(R)或者是皱形(r),种子颜色可能是黄色(Y)或者是绿色(y)。
曼德尔分别选取了纯合子(RRYY)和(rryy)的豌豆杂交,并观察了它们子代的基因型和表现型。
结果显示在F₁代,全部为杂合子(RrYy),而在F₂代中,基因型和表型的比例正好符合1:2:1的比例。
这个比例正好是RrYy的基因型能够产生的四种配子(RY, Ry, rY, ry)的结果。
这一结果使曼德尔得出结论:在配子形成的过程中,基因是独立分离的。
除了豌豆的实验外,现代遗传学也通过许多其他实验和观察收集了大量的实验证据,验证了分离定律的正确性。
适用范围分离定律是普遍适用于几乎所有的生物物种的遗传学规律。
它在解释基因在性状遗传传递过程中的行为、基因型和表型的组合、新的基因型的形成等方面都发挥着重要的作用。
分离定律不仅适用于经典的孟德尔遗传实验所使用的豌豆等植物,也同样适用于人类、动物及微生物等各种生物。
新教材高中生物基因的分离定律专题讲义(无答案)新人教版必修2
![新教材高中生物基因的分离定律专题讲义(无答案)新人教版必修2](https://img.taocdn.com/s3/m/36451134cd1755270722192e453610661ed95aba.png)
1.1.3 基因的分离定律专题知识点一基因分离定律的特殊现象【知识点梳理】1.基因分离定律中其他特殊情况分析(1)不完全显性:如等位基因A和a分别控制红花和白花,在完全显性时,Aa自交后代中红:白=3:1,在不完全显性时,Aa自交后代中红(AA):粉红(Aa):白(aa)=1:2:1。
特别提醒:完全显性、不完全显性、共显性、镶嵌显性的辨析①完全显性:具有一对相对性状的两个纯合亲本杂交,F1的全部个体都表现出显性性状,并且在表现程度上和显性亲本完全一样。
这充分体现了显性遗传因子的绝对性,即在成对的遗传因子中,只有显性遗传因子可表达出基因产物,而隐性遗传因子的表达受抑制。
完全显性现象在生物界中普遍存在。
②不完全显性:在生物性状的遗传中如果F1的性状表现介于显性和隐性之间,这种显性表现叫不完全显性。
例如紫茉莉的花色遗传中,纯合的红花和白花杂交,F1为粉色花。
③共显性:在生物性状的遗传中,如果两个亲本的性状同时在F1的同一个体上显现出来,这种显性表现叫共显性。
例如红毛马与白毛马交配,F1是两色掺杂的混花毛马(红色和白色的毛发均匀混合,遍布周身)。
④镶嵌显性:双亲的性状在后代的同一个体的不同部位表现出来,形成镶嵌图式,这种显性现象称为镶嵌显性。
镶嵌显性与共显性并没有实质性差异,共显性是在同一组织或同一部位表现双亲各自的特点,而镶嵌显性是在不同的部位分别表现了双亲的特点,其实质是在个体发育过程中一对遗传因子表达的时间不同。
例如大豆有黄色种皮(俗称黄豆)和黑色种皮(俗称黑豆),若用黄豆与黑豆杂交,F1的种皮颜色为黑黄镶嵌(俗称花脸豆)。
(2)复等位基因:复等位基因是指一对同源染色体的同一位置上的基因有多个。
复等位基因尽管有多个,但遗传时仍符合分离定律,彼此之间有显隐性关系,表现特定的性状,最常见的如人类ABO血型的遗传,涉及三个基因——I A、I B、i,组成六种基因型:I A I A、I A i、I B I B、I B i、I A I B、ii。
生物高一下册知识点笔记归纳
![生物高一下册知识点笔记归纳](https://img.taocdn.com/s3/m/82fa53d4cd22bcd126fff705cc17552707225e3a.png)
生物高一下册知识点笔记归纳(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!生物高一下册知识点笔记归纳本店铺为大家整理的,在平日的学习中,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。
分离定律知识点
![分离定律知识点](https://img.taocdn.com/s3/m/199b5f9a770bf78a64295425.png)
最新考纲理论部分:孟德尔遗传实验的科学方法Ⅱ基因的分离定律和自由组合定律Ⅱ细胞的减数分裂Ⅱ脊椎动物配子的形成过程Ⅱ脊椎动物的受精过程Ⅱ伴性遗传Ⅱ实验实习部分:观察细胞的减数分裂调查常见的人类遗传病考纲解读.基因分离定律和自由组合定律的实质及应用亲子代基因型、表现型的判定及其概率的计算运用分离定律解决自由组合定律有关问题应用遗传基本规律分析解决一些生产、生活中生物的遗传问题减数分裂过程中染色体、DNA 的数量变化与曲线分析精子和卵细胞形成过程的比较伴X显性、伴X隐性及伴Y 遗传的特点减数分裂与遗传规律,伴性遗传和人类遗传病的联系遗传图谱分析及概率运算第1 讲孟德尔的豌豆杂交实验(一)知识点一一对相对性状的杂交实验.选用豌豆作为实验材料的优点(1)豌豆是①_______ 传粉植物,而且是②___________ 受粉,所以自然状态下一般是纯种(提醒用纯种作为实验材料进行杂交实验(2)豌豆具有许多③ ________ 的相对性状,这些性状能够稳定地遗传给后代。
杂交实验过程图解杂交实验操作要点比一比:果蝇、玉米为什么都适合做遗传实验的常用材料?知识点二对分离现象的解释由此可见,F性状表现及比例为__________ ,F的基因型及比例为DD∶Dd∶dd=____________ 。
提醒① 孟德尔发现遗传定律的时代“基因”这一名词还未提出来,孟德尔用“遗传因子”表示。
配子的种类是指雌、雄配子分别有两种:D和d,D和d 的比例为1∶1,而不是雌、雄配子的比例为1∶1。
生物雄配子的数量一般远远多于雌配子的数量。
知识点三对分离现象解释的验证——测交实验议一议:为什么用测交的方法能证明F产生配子的类型及比例?知识点四分离定律分离定律:在生物的体细胞中,控制 _______________ 的遗传因子 _________ 存在,不相融合;在形成________ 时,成对的遗传因子发生___________ ,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代知识点五几组基本概念(要求:在理解的基础上要熟记)遗传常用符号及意义(识别)(亲本)、F(子一代)、F(子二代)、♂(父本、雄性)、♀(母本、雌性)、(杂交)、(自交)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新考纲理论部分:孟德尔遗传实验的科学方法Ⅱ基因的分离定律和自由组合定律Ⅱ细胞的减数分裂Ⅱ脊椎动物配子的形成过程Ⅱ脊椎动物的受精过程Ⅱ伴性遗传Ⅱ实验实习部分:观察细胞的减数分裂调查常见的人类遗传病考纲解读.基因分离定律和自由组合定律的实质及应用亲子代基因型、表现型的判定及其概率的计算运用分离定律解决自由组合定律有关问题应用遗传基本规律分析解决一些生产、生活中生物的遗传问题减数分裂过程中染色体、DNA的数量变化与曲线分析精子和卵细胞形成过程的比较伴X显性、伴X隐性及伴Y遗传的特点减数分裂与遗传规律,伴性遗传和人类遗传病的联系遗传图谱分析及概率运算第1讲孟德尔的豌豆杂交实验(一)知识点一一对相对性状的杂交实验.选用豌豆作为实验材料的优点(1)豌豆是①________传粉植物,而且是②________受粉,所以自然状态下一般是纯种(提醒用纯种作为实验材料进行杂交实验(2)豌豆具有许多③________的相对性状,这些性状能够稳定地遗传给后代。
杂交实验过程图解杂交实验操作要点比一比:果蝇、玉米为什么都适合做遗传实验的常用材料?知识点二对分离现象的解释由此可见,F性状表现及比例为________,F的基因型及比例为DD∶Dd∶dd=________。
提醒①孟德尔发现遗传定律的时代“基因”这一名词还未提出来,孟德尔用“遗传因子”表示。
配子的种类是指雌、雄配子分别有两种:D和d,D和d的比例为1∶1,而不是雌、雄配子的比例为1∶1。
生物雄配子的数量一般远远多于雌配子的数量。
知识点三对分离现象解释的验证——测交实验议一议:为什么用测交的方法能证明F产生配子的类型及比例?知识点四分离定律分离定律:在生物的体细胞中,控制________的遗传因子________存在,不相融合;在形成________时,成对的遗传因子发生________,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代知识点五几组基本概念(要求:在理解的基础上要熟记)遗传常用符号及意义(识别)(亲本)、F(子一代)、F(子二代)、♂(父本、雄性)、♀(母本、雌性)、(杂交)、(自交)。
人的(你的性状表现属于哪一种?)你的性状表现属于哪一种?闪记:相对性状——两“同”一“不同”等位基因——两“同”一“不同”完全显性:多数相对性状F 时只表现一种亲本性状,如Dd表现为高茎不完全显性:红花(RR)×白花(rr)―→粉红花(Rr)普通金鱼(不透明)×透明金IAIB―→AB型血、I、ii分别为A型、B型和O型血(其中控制血型的等位基因有I、I、i,这种等位基因超过两个的现象叫复等位基因)学习笔记:自我校对:自花②闭花③易于区分④高茎⑤母本⑥父3高∶1矮1∶2∶1 F1杂种表现型相同基因不同基因基因型不同基因型相同隐性个体乙甲比一比:(1)相对性状明显;(2)繁殖周期短;(3)子代数量多。
议一议:因为测交子代的表现型和比例能真实地反映出F产生配子的类型及比例,从而也能够推知F的基因型。
,基因分离定律与假说—演绎法分离定律的假说演绎过程细胞学基础及实质减数分裂中随同源染色体分离,等位基因分开,如图所示:实质:在杂合子内,成对的遗传因子(等位基因)分别位于一对同源染色体上,具有一定的独立性,在杂合子形成配子时,等位基因随着同源染色体的分开而分离,分别进入两个不同的配子中,独立地随着配子遗传给后代。
遗传学相关概念解读本节的概念比较多,要注意联系在一起,多作比较,可以采用如下的图解,帮助理解记【概念辨析】等位基因与非等位基因(1)等位基因:位于同源染色体的同一位置上,控制相对性状的基因。
如图中A和a、D和d、E和e都是等位基因,而B和B、C和C虽然位于同源染色体的同一位置上,但不是控制相对性状的基因,它们是控制相同性状的基因,称为相同基因,而不能称为等位基因。
(2)非等位基因在体细胞内有两种存在方式一是非同A和E或e,E与A或a等,其遗传方式遵循自由组合定律;二是位于同源染色体上不同位置(座位)上的基因,互为非等位基因,如图中A和D或d等,其遗传方式不遵循自由组合定律。
基因型与表现型(1)基因型:与表现型有关的基因组成;表现型:生物个体表现出来的性状。
(2)关系:在相同的环境条件下,基因型相同,表现型一定相同;在不同环境中,即使基因型相同,表现型也未必相同。
表现型是基因型与环境共同作用的结果。
本考点在理综试卷中单独命题的频次较低,为冷考点,但是本考点涉及遗传学最基础的实验方法和概念系统,因而仍应认真复习掌握。
【典例1】(2011·海南单科,18)孟德尔对于遗传学的重要贡献之一是利用设计巧妙的实验否定了融合遗传方式。
为了验证孟德尔遗传方式的正确性()。
红花亲本与白花亲本杂交的F代全为红花红花亲本与白花亲本杂交的F代全为粉红花红花亲本与白花亲本杂交的F代按照一定比例出现花色分离红花亲本自交,子代全为红花;白花亲本自交,子代全为白花解析融合遗传主张子代的性状是亲代性状的平均结果,融合遗传方式传递F1表现显性亲本性状(或显性的相对性),F自交产生的F后代会出现一定的分离比。
故C正确。
答案C【训练1】(2012·烟台高三调研)果蝇的长翅(V)对残翅(v)为显性,但纯合长翅品系的幼虫,在35 ℃条件下培养成的成体果蝇为残翅。
下列叙述正确的是()。
条件下果蝇的长翅基因突变成B.果蝇的长翅和残翅是由环境温度决定的纯合的长翅果蝇幼虫在35 ℃条件下培养成的残翅性状是不能遗传的如果有一只残翅果蝇,只要让其与另一只异性的残翅果蝇交配,就能确定其基因型解析本题考查基因型与表现型的关系。
表现型是基因型与环境共同作用的结果,由环境引起的变异属于不可遗传的变异。
答案C知识拓展表现型=基因型(内因)+环境条件(外因),遗传物质改变(突变、重组)引起的变异可遗传,仅由环境引【训练2】(2012·江西师大附中、临川二中联考)孟德尔探索遗传规律时,运用了“假说—演绎”法,该方法的基本内容是:在观察与分析的基础上提出问题,通过推理和想象提出解决问题的假说,根据假说进行演绎推理,再通过实验证明假说。
下列相关叙述中正确的是()。
出现3∶1的性状分离比不是偶然的”属于孟德尔假说的内容豌豆在自然状态下一般是纯种”C.“测交实验”是对推理过程及结果进行的检验体细胞中遗传因子成对存在,并且位于同源染色体上”属于假说的内容解析A、B项所述内容均为实验存在事实或实验现象,不属于假说的内容。
因受科技发展水平的限制,孟德尔时期没有发现染色体结构,因此假说的内容不包含遗传因子与同源染色体的位置关系,D项错误。
答案C,显、隐性判定及纯一、一对相对性状的显隐性判断根据子代性状判断(1)不同性状的亲本杂交子代只出现一种性状子代所出现的性状为显性性状。
(2)相同性状的亲本杂交子代出现性状分离子代所出现的新性状为根据子代性状分离比判断具一对相对性状的亲本杂交代性状分离比为3∶1分离比为3的性状为显性性状。
设计实验,判断显隐性二、纯合子与杂合子的比较与鉴定纯合子杂合子特点①不含等位基因;①至少含一对等位基因;②自交后代不发生性状分离②自交后代会发生性状分离实验鉴定测交纯合子×隐性类型↓测交后代只有一种类型(表现型一致) 杂合子×隐性类型↓测交后代出现性状分离自交纯合子自交后代不发生性状分离杂合子自交后代发生性状分离花粉鉴定方法花粉的基因型只有一种花粉的基因型至少两种特别提醒①测交法应用的前提条件是已知生物性状的显隐性。
此方法常用于动物遗传因子组成的检测。
但待测对象若为生育后代少的雄性动物,注意应与多个隐性雌性个体交配,以使后代产生更多的个体,使结果更有说服力。
植物常用自交法,也可用测交法,但自交法更简便。
花粉鉴定法的原理:花粉中所含的直链淀粉和支链淀粉,可通过本考点作为遗传学的基本技能和方法几乎隐含在遗传综合题每个试题中,单独命题少见。
【典例2】(2012·合肥质量检测)已知马的栗色与白色为一对相对性状,由常染色体上的等位基因A与a控制,在自由放养多年的一群马中,两基因频率相等,每匹母马一次只生产1匹小马。
以下关于性状遗传的研究方法及推断不正确的是()。
选择多对栗色马和白色马杂交,若后代栗色马明显多于白色马则栗色为显性;反之,则白色为显性随机选出1匹栗色公马和4匹白色母马分别交配,若所产4匹马全部是白色,则白色为显性选择多对栗色马和栗色马杂交,若后代全部是栗色马,则说明栗色为隐性自由放养的马群自由交配,若后代栗色马明显多于白色马,则说明栗色马为显性解析若栗色马为显性,则其纯合子和杂合子都存在,当和白色马杂交时,后代栗色马的数量则多于白色马;孟德尔遗传规律是运用统计学的方法,采用的数量必须足够多,B选项的数量较少,无法准确得出结论;多对栗色马和栗色马杂交,后代没有发生性状分离,可判断该性状可能是隐性;显性杂合子和纯合子都表现为显性性状,因此当马群自由交配时,后代显性性状数目一定大于隐性性状数目。
答案B知识拓展判断显性性状和隐性性状的方法:(1)自交,看其后代有无性状分离,若有则亲本的性状为显性性状。
(2)具有相对性状的两亲本杂交,看后代的表现型,若后代只表现一种亲本性状,则此性状为显性性状。
(3)特殊情况下,设定基因来探究后代的表现型是否符合来确定性状的显隐性。
(4)隐性性状的亲本自交后代都是隐性性状。
【训练3】(经典题)采用下列哪一组方法,可以依次解决~()。
鉴定一只白羊是否是纯种②在一对相对性状中区分显隐性③不断提高小麦抗病品种的纯合度④检验杂种F的基因型杂交、自交、测交、测交B.测交、杂交、自交、测交测交、测交、杂交、自交D.杂交、杂交、杂交、测交解析鉴定某生物是否是纯种,对于植物来说可以采用自交、测交的方法,其中自交是最简便的方法,对于动物来说则只能用测交的方法。
要区分一对相答案B,分离定律的应用及适用范围一、表现型与基因型的相互推导由亲代推断子代的基因型与表现型[正推型]亲本子代基因型子代表现型AA×AA AA 全为显性=1∶1 全为显性AA×aa Aa 全为显性=1∶2∶1 显性∶隐性=3∶1Aa∶aa=1∶1 显性∶隐性=1∶1全为隐性2.由子代推断亲代的基因型[逆推型]二、分离定律的应正确解释某些遗传现象两个有病的双亲生出无病的孩子,即“有中生无”,肯定是显性遗传病,两个无病的双亲生出有病的孩子,即“无中生有”,肯定是隐性遗传病。
2.指导杂交育种(1)优良性状为显性性状:连续自交,直到不发生性状分离为止,收获性状不发生分离的植株上的种子,留种推广。
(2)优良性状为隐性性状:一旦出现就能稳定遗传,便可留种推广。
(3)优良性状为杂合子:两个纯合的不同性状个体杂杂合子Aa连续多代自交问题分析(1)杂合子Aa连续自交,第代的比例情况如下表:Fn 杂合子纯合子显性纯合子隐性纯合子显性性状个体隐性性状个体所占比例---+-(2)根据上表比例,纯合子、杂合子所占比例坐标曲线图为:由该曲线得到的启示:在育种过程中,选育符合人们要求的个体(显性),可进行连续自交,直到性状不再发生分离为止,即可留种推广使用。