初三数学圆知识点复习专题经典解析
九年级圆的全部知识点归纳
九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。
在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。
本文将对九年级学习中的圆相关知识点进行归纳总结。
一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。
2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。
3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。
4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。
5. 弧:圆上的两点间的部分称为弧。
6. 弦:圆上任意两点之间的线段称为弦。
二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。
即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。
2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。
3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。
4. 弦切定理:一条弦上的两个切线所截的弧相等。
5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。
三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。
2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。
利用弧度可以简便地描述与计算圆的相关问题。
3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。
4. 平行弦定理:平行弦所对应的圆心角相等。
5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。
四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。
比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。
总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)
圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
初三上册数学圆的知识点归纳总结
初三上册数学圆的知识点归纳总结数学中的圆是一种重要的几何图形,在初中数学的学习中也占据着重要的地位。
下面对初三上册数学中关于圆的知识点进行归纳总结,以帮助同学们更好地理解和掌握相关内容。
一、圆的定义和性质1. 定义:圆是一个平面上与一个固定点距离相等的点的集合。
2. 元素:圆心、半径、弦、弧、切线等。
3. 性质:(1) 圆上所有点到圆心的距离相等。
(2) 圆上的弦的垂直平分线通过圆心。
(3) 圆上的任意一条弧都小于或等于圆周长的一半。
二、圆的线段关系1. 半径与弦:如果一个线段的两个端点都在圆上,且其中一个是圆心,那么这个线段就是半径;如果这个线段的两个端点都在圆上但不是圆心,那么这个线段就是弦。
2. 弦的性质:(1) 通过圆心的弦是直径,直径是圆上最长的弦。
(2) 在同一个圆或等圆中,等长的弦所对的圆心角相等。
(3) 如果一个弦与另一个弦交于圆内的一点,那么两个弦所对的弧相等。
三、圆的圆周角和弧度制1. 圆周角的定义:以圆心为顶点的角,角的两边是圆上的两条弧。
圆周角的度数等于所对的圆弧的度数。
2. 弧度制:将圆的一周等分为360份,每份称为一度,每度又等分为60分,每分又等分为60秒。
弧度是用弧长等于半径的圆周长所对应的角中的弧所对应的角。
3. 弧度制与角度的换算:(1) 1度= π/180弧度(2) 1弧度≈ 57.3度四、切线与切线定理1. 切线定义:如果一条直线与圆相交于圆上的一点,且在该点处的切线与这条直线垂直,那么这条直线就是圆的切线。
2. 切线定理:切线与半径垂直。
(1) 如果一条直线与圆相交于圆上的一点,并且通过圆心,那么这条直线就是切线。
(2) 反之,如果一条直线与圆相交于圆上的一点,并且与通过圆心的切线垂直,那么这条直线就通过圆心,也是切线。
五、圆的面积和周长1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径。
2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径。
初三数学圆的知识点总结及经典例题详解
1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 .A.100° B.130° C.80° D.50°3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cmD.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.507.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100° B.130° C.200° D.508. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是.A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 .A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定•BADO C•CBAO•BOCAD•BOCAD•BOCAD•DBAO •D BAO •DBCAO圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切35.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.cmC.10cmD.5πcm102.正三角形外接圆的半径为2,那么它内切圆的半径为.32A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.23A. 2B. 1C.D.24.扇形的面积为,半径为2,那么这个扇形的圆心角为= .3A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为 .A.R B.RC.RD.212R 36.圆的周长为C,那么这个圆的面积S= .A.B.C. D.2C ππ2C π22C π42C 7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:C.:2D.1:3328. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.C πC ππ2CπC9.已知,正方形的边长为2,那么这个正方形外接圆的直径为 .A.2B.4C.2D.22310.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为 .A. 3B.C.3D.3323。
九年级圆知识点归纳总结
九年级圆知识点归纳总结圆是数学中的一个基本几何概念,在九年级的几何学学习中占据重要的地位。
了解和掌握圆的相关知识点对于解决与圆相关的问题至关重要。
本文将对九年级圆的知识点进行归纳总结,帮助学生们更好地理解和应用这些知识。
一、圆的定义与性质1. 圆的定义:圆是一个平面上所有到圆心的距离都相等的点的轨迹。
2. 圆的要素:圆心、半径。
3. 圆的性质:- 圆上的任意一点到圆心的距离都相等。
- 圆的直径是通过圆心的一条线段,它的长度等于圆的半径的两倍。
- 圆的周长是圆周上的任意一点至邻近点的距离之和,也可以通过公式C=2πr计算(其中C表示圆的周长,r表示半径)。
- 圆的面积是圆内所有点构成的区域,可以通过公式A=πr²计算(其中A表示圆的面积)。
二、圆与直线的关系1. 切线:切线是与圆相切于一点的直线,且与半径垂直。
2. 弦:弦是圆上任意两点所确定的线段。
3. 弧:弧是圆周上两点之间的一段弧线。
4. 弧度与弧长的关系:弧度是角度的一种衡量单位,可以用弧长与半径之比来表示。
弧度制中一周对应的弧长等于圆的周长,即2πr。
三、圆的角关系1. 圆心角:由半径的两条边所夹的角称为圆心角。
2. 圆周角:由两条弧线所夹的角称为圆周角。
3. 圆心角与弧度的关系:圆心角的度数等于它所对应的弧度的长度。
四、圆的相交关系1. 相离:两个圆没有任何交点。
2. 外切:两个圆相切于一点,且其中一个圆位于另一个圆的外部。
3. 内切:两个圆相切于一点,且其中一个圆位于另一个圆的内部。
4. 相交:两个圆有两个交点。
五、圆的应用1. 利用圆求解问题:通过已知条件和圆的性质,可以解决与圆相关的实际问题,如求解圆的面积、周长等。
2. 圆的建模:在数学建模中,圆的概念具有广泛应用,可用于描述自然界中的许多现象和实际问题,如行星运动、电子轨道等。
六、圆的常见误区与解决方法1. 误区一:将弦与半径混淆。
解决方法:理解弦是由圆上的两点所确定的线段,半径是由圆心到圆上一点的线段。
九年级数学圆知识点归纳
一、圆的基本性质:1.定义:平面上离定点距离等于定长的点的轨迹叫做圆。
2.圆的要素:圆心、半径。
3.圆的元素之间的关系:a.半径相等的圆互相重合。
b.位于同一直线上且相交的两个圆的交点两两相互重合。
c.等圆的圆心位于同一直线上。
二、圆的方程与切线:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
2.切线的定义:与圆仅有一个公共点的直线叫做圆的切线。
切点为圆上的点,切线与半径垂直。
3.切点的判别条件:圆心到直线的距离等于半径,即直线与半径的垂直平分线重合。
4.切线方程的求解:a.公式法:将切点代入圆的方程求解。
b.几何法:通过圆心到切线的垂线求解。
三、圆的内接三角形:1.内接三角形定义:将一个圆放置在一个三角形内,使得三角形的每一边都与圆相切,则称这个三角形为内接三角形。
2.内接三角形的性质:a.每个内接角等于其对应的弧所对的圆心角的一半。
b.三条内角的和等于180°。
c.角平分线上的垂足连线到对边的垂线与切线垂直。
d.内接三角形与圆心连线的中点连线到对边的垂线等于半径。
e.内接三角形的面积等于半周长与半径的乘积。
除了上述知识点外,还可以探讨其他与圆相关的内容,如:1.圆的面积公式:S=πr²。
2.弧长公式:L=2πr(θ/360°),其中θ为圆心角度数。
3.扇形面积公式:S=a/360°*πr²,其中a为弧所对的圆心角度数。
4.球的表面积与体积公式:对于半径为r的球,其表面积为4πr²,体积为(4/3)πr³。
总结:九年级数学中关于圆的知识点主要涵盖了圆的基本性质、圆的方程与切线、圆的内接三角形等内容。
对这些知识点的掌握和理解对于学生的数学学习和解题能力具有重要的意义。
九年级数学圆形知识点归纳
九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。
本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。
一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。
圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。
2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。
3. 圆的弧是两个点在圆上连线所得到的曲线部分。
4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。
二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。
以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S表示圆的面积。
三、圆的相关定理1. 同圆弧所对的圆心角相等。
2. 等弧所对的圆心角相等。
3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。
4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。
四、切线和切点的性质1. 切线是与圆只有一个交点的直线。
2. 在切点处,切线垂直于半径。
3. 半径和切线之间的夹角是直角。
五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。
2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。
六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。
以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。
2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。
3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。
通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。
九年级圆的知识点总结
九年级圆的知识点总结圆是九年级数学中的一个重要内容,它具有独特的性质和广泛的应用。
下面我们来对九年级圆的知识点进行一个全面的总结。
一、圆的定义圆是平面内到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$为圆心坐标,$r$为半径。
二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。
2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。
3、弧:圆上任意两点间的部分叫做弧。
弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。
4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
5、等圆:能够重合的两个圆叫做等圆。
6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论:同弧或等弧所对的圆周角相等。
半圆(或直径)所对的圆周角是直角,$90^{\circ}$的圆周角所对的弦是直径。
四、圆的位置关系1、点与圆的位置关系设点$P$到圆心的距离为$d$,圆的半径为$r$,则有:点$P$在圆外$\Leftrightarrow$ $d > r$点$P$在圆上$\Leftrightarrow$ $d = r$点$P$在圆内$\Leftrightarrow$ $d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离$\Leftrightarrow$ $d > r$,此时直线与圆没有公共点。
初三数学圆知识点总结
初三数学圆知识点总结圆是初中数学中非常重要的一个概念,几乎涵盖了整个数学知识体系中的各个方面。
圆的性质和应用广泛,不仅在数学中有着重要的地位,而且在生活和实际应用中也有着广泛的应用。
本文将对初三数学圆的知识进行总结和归纳。
一、基本概念和性质1. 圆的定义:圆是由平面上离定点(圆心)的距离相等于定长(半径)的所有点的轨迹构成。
圆的边界称为圆周,圆周上的任意两点与圆心的线段称为弦,通过圆心的连线称为直径。
2. 圆的要素:圆心、半径、直径、圆周等是圆的基本要素。
圆心用字母O表示,半径用字母r表示,直径用字母d表示,圆周用字母C表示。
3. 圆的性质:圆周上的任意一点到圆心的距离相等;圆的直径是圆周的一种特殊的弦,它的长度等于半径的两倍;圆的任意弦都可以作为其两点连线的中垂线。
二、圆的要素之间的关系1. 圆心角和弧度:圆心角是指以圆心为顶点,两条弦为腰的角。
它的大小是圆周上这两个点所对的弧所夹的角度。
弧度是用来度量圆心角大小的单位,1弧度等于圆心角所对的弧长与半径的比值。
2. 弧长和扇形面积:弧长是指圆周上的一段弧的长度,它等于圆心角的大小乘以半径的长度。
扇形是以圆心角为顶角,圆的一部分为底边的图形。
扇形的面积等于圆心角所对的弧长与圆周长的比值乘以圆的面积。
3. 弦长和正弦定理:弦长是指圆上任意两点所确定的线段的长度。
正弦定理是指在一个圆内,三角形的三个边与其对角的正弦值之间的关系。
三、圆的重要定理和公式1. 切线定理和割线定理:切线定理是指从同一外点向圆引切线,切线上的切点到引线点距离的平方等于切点到圆心距离的平方。
割线定理是指从同一外点向圆引割线,割线上的切点到引线点的两部分距离的乘积等于引线点到圆心距离的平方减去割线长的平方。
2. 求圆内切多边形的边长和面积:对于正多边形,可以利用正多边形内接圆与外接圆之间的关系来求解多边形的边长和面积。
3. 余弦定理和正弦定理:余弦定理是它描述了一个三角形的边与角之间的关系。
初三圆的知识点归纳总结
初三圆的知识点归纳总结圆是初中数学中一个重要的几何概念,它涉及到的知识点较多。
下面将对初三圆的知识点进行归纳总结,以便于读者更好地理解和掌握。
1. 圆的定义与性质圆是平面上的一条曲线,其上的任意两点到圆心的距离相等。
圆由无数点组成,其中最重要的是圆心和半径。
- 圆心:圆上所有点到圆心的距离相等,通常用字母O表示。
- 半径:连接圆心和圆上任意一点的线段,通常用字母r表示。
2. 相关公式与计算圆的周长和面积是初三学习中需要重点掌握的计算公式。
- 圆的周长公式:C = 2πr,其中π取近似值3.14,r为半径。
- 圆的面积公式:S = πr²,其中π取近似值3.14,r为半径。
3. 弧与弦圆上的弧是圆上两点之间的曲线段,弧由圆心角所确定。
圆上任意两点之间的线段称为弦。
- 弧长:弧长可以通过圆心角与圆的周长的比例来计算,通常用字母l表示。
l = (θ/360) × 2πr,其中θ为圆心角的度数。
- 弦长:弦长可以通过半径和圆心角来计算,通常用字母s表示。
s = 2r × sin(θ/2),其中θ为圆心角的度数。
4. 切线与切点在圆上,过圆上一点的直线称为切线,该点称为切点。
圆的切线与半径的关系如下:- 切线与半径的垂直关系:切线与通过切点的半径垂直相交。
- 切线的长度:切线的长度可以通过直角三角形的定理计算。
假设切点坐标为(x₀, y₀),半径为r,则切线长为L = √(x₀² +y₀²)。
5. 弧度制与角度制圆的度量可以用角度制和弧度制来表示。
- 角度制:一个圆的360°被等分为若干个小部分,每个小部分被称为1度(1°)。
- 弧度制:一个圆的一周对应的弧长为2π,定义为2π弧度(2π rad),因此1弧度约等于57.3°。
6. 圆的其他性质- 在同一个圆上,相等弧所对圆心角相等,圆心角相等则所对弧相等。
- 在同一个圆上,位于圆上的两条弦相等,则其所对的圆心角相等。
初三数学知识点总结归纳圆
初三数学知识点总结归纳圆圆是初中数学中的一个基础概念,它在几何学和代数学中都有重要的应用。
本文将对初三数学中与圆相关的知识点进行总结归纳。
一、圆的定义和基本性质在几何学中,圆是由平面上距离固定点相等的所有点组成的集合。
圆由以下几个要素组成:1. 圆心:圆心是圆上每一个点到圆心的距离都相等的点,通常用字母O表示。
2. 半径:半径是圆心到圆上任意一点的距离,通常用字母r表示。
3. 直径:直径是圆上通过圆心的一条线段,它的两个端点都在圆上。
4. 弦:弦是圆上连接两点的线段,它的两个端点可以在圆内、圆上或圆外。
基本性质:1. 圆上任意两点之间的距离都等于半径的长度。
2. 圆上的任意弦垂直于该弦所对应的圆心角。
3. 圆上的任意弦,如果和圆心的连线垂直,则它所对应的圆心角为直角。
4. 圆上的任意弦和半径所夹的圆心角相等。
5. 圆上的圆心角是弦所对应的两个弧所夹的角的一半。
二、圆的常见问题和计算公式1. 弧长和扇形面积:- 弧长公式:弧长 = 弧所对应的圆心角(单位:弧度) * 半径- 扇形面积公式:扇形面积 = 弧所对应的圆心角(单位:弧度) / 2 * 半径的平方2. 圆的周长和面积:- 周长公式:周长= 2 * π * 半径- 面积公式:面积= π * 半径的平方3. 相关角:- 同位角:同位角是两个弧之间或角之间所对应的相等的角。
- 对顶角:对顶角是两个相交弧所对应的两对相等角。
4. 切线与切点:- 切线是与圆只有一个交点的直线。
切线与半径所构成的夹角是直角。
- 切点是切线与圆的交点,切点到圆心的线段与切线垂直。
三、圆的相关定理1. 弧长和扇形面积等于整个圆的弧长和面积。
- 弧长:一个弧的弧长等于整个圆的弧长(360度)乘以弧所对应的圆心角度数除以360。
- 扇形面积:一个扇形的面积等于整个圆的面积乘以扇形所对应的圆心角度数除以360。
2. 切线与半径垂直- 切线与切点的切线垂直。
3. 弦上的角等于其所对应的弧所对应的圆心角的一半。
初三下册数学第三章圆知识点要点
初三下册数学第三章圆知识点要点一. 正切:正切.. 即的邻边的对边A A A ∠∠=tan ; 正弦,即斜边的对边A A ∠=sin ;余弦,即斜边的邻边A A ∠=cos ;①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=sin 2A+cos 2A=1第三章 圆一. 点与圆的位置关系及其数量特征:如果圆的半径为r ,点到圆心的距离为d ,则 ①点在圆上 <===> d____r; ②点在圆内 <===> d____r; ③点在圆外 <===> d____r. 二. 圆的对称性:※1. 与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角.... 2. 圆即是轴对称图形,又是___________。
3. 垂径定理:_________________________,并且平分弦所对的两条弧。
垂径定理的逆定理:平分弦(不是直径)的直径_______,并且平分弦______________。
推论1: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等. 推论2: 同弧或等弧所对的________相等;推论3: 半圆或直径所对的圆周角是_____;90°的圆周角所对的弦是_____.三. 圆周角和圆心角的关系:1. 圆周角的定义:顶点在圆上,并且_____________,叫做圆周角.2. 圆周角定理: 一条弧所对的圆周角等于____________________. 四. 确定圆的条件:1.定理: 不在同一直线上的______确定一个圆.2. 三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心. (3)三角形的外心的性质:三角形外心到__________ 相等.五. 直线与圆的位置关系1. 设⊙O 的半径为r ,圆心O 到直线的距离为d ;①d<r <===> 直线L 和⊙O_____. ②d=r <===> 直线L 和⊙O______. ③d>r <===> 直线L 和⊙O______.2. 切线的判定定理: 经过________________________________的直线是圆的切线.3. 切线的性质定理:圆的切线垂直于______________.4. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的_______,内切圆的圆心叫做____________.5. 三角形内心的性质:三角形的内心到___________相等.六.切线长定理:过圆外一点所画的圆的两条___________.性质:圆心和这一点的连线平分两条切线的夹角。
(完整版)初三数学圆知识点复习专题经典
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结
初三数学常考圆的知识点归纳
初三数学常考圆的知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初三数学常考圆的知识点归纳在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](基础)
新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](基础)1)相交圆的位置关系:两圆相交于两点,相切于一点,相离于两点.2)内切圆和外切圆的位置关系:内切圆和外切圆的切点在圆心连线上,内切圆和外切圆的圆心连线垂直于切点所在的直线.要点诠释:在解决两圆位置关系问题时,需要注意圆心的位置关系,切点的位置关系以及圆心连线与切点所在直线的垂直关系.要点二、切线及其性质1.切线的定义:过圆上一点,且与圆相交于该点的直线叫做圆的切线.2.切线的性质:1)切线与半径的关系:切线与过切点的圆的半径垂直.2)切线定理:切线与半径的关系可以推出切线定理:过圆外一点作圆的切线,切点与此点的连线垂直于切线.3)切线的判定方法:切线与圆的位置关系可以通过勾股定理、切线定理和判别式来进行判定.要点诠释:切线是圆的一个重要性质,切线定理是判定切线的重要工具,切线的判定方法可以根据具体情况选择不同的方法.要点三、圆的面积和弧长1.圆的面积公式:S=πr².2.弧长公式:L=αr(α为圆心角的度数).3.扇形的面积公式:S=(α/360°)πr².要点诠释:圆的面积公式和弧长公式是圆的基本公式,扇形的面积公式可以通过弧长公式和圆的面积公式来推导得出.要点四、圆锥的侧面积和全面积1.圆锥的侧面积公式:S=πrl.2.圆锥的全面积公式:S=πr(l+r).要点诠释:圆锥的侧面积公式和全面积公式是圆锥的基本公式,其中l为斜高,r为底面半径.1) 两个圆是轴对称图形,其对称轴是连接两圆心的直线。
2) 相交的两个圆的连心线垂直平分它们的公共弦,相切的两个圆的连心线经过切点。
4.与圆有关的角度1) 圆心角是以圆心为顶点的角度。
圆心角的度数等于它所对应的弧的度数。
2) 圆周角是顶点在圆上,两边都与圆相交的角度。
圆周角的性质包括:①圆周角等于它所对应的弧所对应的圆心角的一半;②同弧或等弧所对应的圆周角相等;在同圆或等圆中,相等的圆周角所对应的弧相等;③90度的圆周角所对应的弦为直径;半圆或直径所对应的圆周角为直角;④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;⑤圆内接四边形的对角互补;外角等于它的内对角。
九年级数学圆知识点讲解
九年级数学圆知识点讲解九年级数学-圆知识点讲解在九年级的数学学习中,圆是一个非常重要的几何形状。
掌握了圆的相关知识,不仅能够应对九年级的考试,还能够在进一步的数学学习中打下坚实的基础。
本文将为大家讲解九年级数学中的圆知识点,希望能够帮助大家更好地学习和理解。
一、圆的基本概念圆是平面上离一个固定点距离相等的所有点的集合。
这个固定点被称为圆心,到圆心的距离被称为半径。
圆的半径用字母r表示。
二、圆的性质1. 圆是由无数个点组成的,其中任意两个点之间的距离都是半径r。
2. 圆的直径是通过圆心并且两端点在圆上的线段,直径的长度是半径长度的两倍。
3. 圆的弦是圆上的任意两个点之间的线段,并且它的两端点在圆上。
弦的长度可以大于、等于或小于直径的长度。
4. 圆的弧是圆上的两个点之间的曲线部分。
弧也有所谓的弧长,弧长等于它所对应的圆心角的度数。
5. 圆的周长也叫做圆周长,它等于圆的直径乘以π(圆周率)。
记作C=2πr,其中π≈3.14159。
三、圆的相关定理1. 直径定理:如果一条线段恰好通过圆的圆心,并且两个端点都在圆上,那么这条线段就是圆的直径。
2. 弧度制和角度制:圆心角扫过的弧所对应的圆心角的弧度数等于该弧的弧长与圆的半径的比值。
一圆周角(360°)对应的弧度数等于2π。
3. 弧长定理:圆心角相同的两个弧,长的弧所对应的圆心角较大。
4. 切线定理:如果有一条直线和圆相切,那么这条直线和圆的半径在相切点处垂直。
5. 弦切角定理:当一个角的顶点在圆上,弦和切线的交点在圆外时,这个角等于它所对应的弦上的圆心角的一半。
四、九年级数学常见题型1. 计算题:求圆的周长、面积等。
2. 推理题:根据已知条件,推导出某个角度、弧长等的值。
3. 证明题:证明某个性质或定理。
4. 应用题:结合实际问题,运用圆的知识进行解题。
五、总结通过对九年级数学圆的知识点进行讲解,我们了解到了圆的基本概念、性质和相关定理,并且介绍了九年级数学中常见的圆题型。
初三年级数学圆的知识点归纳
【导语】学习时集中精⼒,养成良好学习习惯,是节省学习时间和提⾼学习效率的最为基本的⽅法。
搜集的《初三年级数学圆的知识点归纳》,希望对同学们有帮助。
【篇⼀】 1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆⼼的距离为d,则 ①点在圆上<===>d=r;②点在圆内<===>dd>r. ⼆.圆的对称性: 1.与圆相关的概念: ④同⼼圆:圆⼼相同,半径不等的两个圆叫做同⼼圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆⼼⾓:顶点在圆⼼的⾓叫做圆⼼⾓. ⑧弦⼼距:从圆⼼到弦的距离叫做弦⼼距. 2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有⽆数条对称轴。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于⼀个圆和⼀条直线来说,如果具备: ①过圆⼼;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
4.定理:在同圆或等圆中,相等的圆⼼⾓所对弧相等、所对的弦相等、所对的弦⼼距相等。
推论:在同圆或等圆中,如果两个圆⼼⾓、两条弧、两条弦或两条弦的弦⼼距中有⼀组量相等,那么它们所对应的其余各组量都分别相等. 三.圆周⾓和圆⼼⾓的关系: 1.圆周⾓的定义:顶点在圆上,并且两边都与圆相交的⾓,叫做圆周⾓. 2.圆周⾓定理;⼀条弧所对的圆周⾓等于它所对的圆⼼⾓的⼀半. 推论1:同弧或等弧所对圆周⾓相等;反之,在同圆或等圆中,相等圆周⾓所对弧也相等; 推论2:半圆或直径所对的圆周⾓是直⾓;90°的圆周⾓所对的弦是直径; 四.确定圆的条件: 1.理解确定⼀个圆必须的具备两个条件: 经过⼀点可以作⽆数个圆,经过两点也可以作⽆数个圆,其圆⼼在这个两点线段的垂直平分线上. 2.定理:不在同⼀直线上的三个点确定⼀个圆. 3.三⾓形的外接圆、三⾓形的外⼼、圆的内接三⾓形的概念: (1)三⾓形的外接圆和圆的内接三⾓形:经过⼀个三⾓形三个顶点的圆叫做这个三⾓形的外接圆,这个三⾓形叫做圆的内接三⾓形. (2)三⾓形的外⼼:三⾓形外接圆的圆⼼叫做这个三⾓形的外⼼. (3)三⾓形的外⼼的性质:三⾓形外⼼到三顶点的距离相等. 【篇⼆】 1.在⼀个平⾯内,线段OA绕它固定的⼀个端点O旋转⼀周,另⼀个端点A所形成的图形叫做圆。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
(完整版)九年级数学圆的知识点总结大全
第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²—r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》一、圆的概念概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;ArRd图3rR d五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧 例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm. r Rd 图4rRd图5r RdO EDCAOCDAB2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.例题3、度数问题1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径.2、 已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。
例题4、相交问题如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.例题5、平行问题在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为b a ,.求证:22b a BD AD -=⋅.例题7、平行与相似已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证:FD EC =.A B DC EO AE F六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?BBABA O【例2】如图,已知⊙O 中,AB 为直径,AB=10cm ,弦AC=6cm ,∠ACB 的平分线交⊙O 于D ,求BC 、AD 和BD 的长.【例3】如图所示,已知AB 为⊙O 的直径,AC 为弦,OD ∥BC ,交AC 于D ,BC=4cm .(1)求证:AC ⊥OD ; (2)求OD 的长; (3)若2sinA -1=0,求⊙O 的直径.【例4】四边形ABCD 中,AB ∥DC ,BC=b ,AB=AC=AD=a ,如图,求BD 的长.【例5】如图1,AB 是半⊙O 的直径,过A 、B 两点作半⊙O 的弦,当两弦交点恰好落在半⊙O 上C 点时,则有AC ·AC +BC ·BC=AB 2.(1)如图2,若两弦交于点P 在半⊙O 内,则AP ·AC +BP ·BD=AB 2是否成立?请说明理由. (2)如图3,若两弦AC 、BD 的延长线交于P 点,则AB 2=.参照(1)填写相应结论,并证明你填写结论的正确性.八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,∵四边形ABCD 是内接四边形 ∴180C BAD ∠+∠=︒180B D ∠+∠=︒EDCBADAE C ∠=∠例1、如图7-107,⊙O 中,两弦AB ∥CD ,M 是AB 的中点,过M 点作弦DE .求证:E ,M ,O ,C 四点共圆.九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠利用切线性质计算线段的长度例1:如图,已知:AB 是⊙O 的直径,P 为延长线上的一点,PC 切⊙O 于C ,CD ⊥AB 于D ,又PC=4,⊙O 的半径为3.求:OD 的长.NMOBO利用切线性质计算角的度数例2:如图,已知:AB是⊙O的直径,CD切⊙O于C,AE⊥CD于E,BC的延长线与AE的延长线交于F,且AF=BF.求:∠A的度数.利用切线性质证明角相等例3:如图,已知:AB为⊙O的直径,过A作弦AC、AD,并延长与过B的切线交于M、N.求证:∠MCN=∠MDN.利用切线性质证线段相等例4:如图,已知:AB是⊙O直径,CO⊥AB,CD切⊙O于D,AD交CO于E.求证:CD=CE.利用切线性质证两直线垂直例5:如图,已知:△ABC中,AB=AC,以AB为直径作⊙O,交BC于D,DE切⊙O于D,交AC于E.求证:DE⊥AC.十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅例1.如图1,正方形ABCD 的边长为1,以BC 为直径。
在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。
例2.⊙O 中的两条弦AB 与CD 相交于E ,若AE =6cm ,BE =2cm ,CD =7cm ,那么CE =_________cm 。
PO DCBAO EDCBADCB PAO图2例3.如图3,P 是⊙O 外一点,PC 切⊙O 于点C ,PAB 是⊙O 的割线,交⊙O 于A 、B 两点,如果PA :PB =1:4,PC =12cm ,⊙O 的半径为10cm ,则圆心O 到AB 的距离是___________cm 。
图3例4.如图4,AB 为⊙O 的直径,过B 点作⊙O 的切线BC ,OC 交⊙O 于点E ,AE 的延长线交BC 于点D ,(1)求证:;(2)若AB =BC =2厘米,求CE 、CD 的长。