中考必刷题:2020年中考数学试题分类汇编之6:概率与统计

合集下载

2020年中考数学试题分类汇编之六 概率与统计

2020年中考数学试题分类汇编之六 概率与统计

2020年中考数学试题分类汇编之六概率与统计一、选择题7.(2020北京)不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A.14 B.13 C.12 D.23【解析】由题意,共4种情况:1+1;1+2;2+1;2+2,其中满足题意的有两种,故选C 6.((2020安徽)4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意; 22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意; 故选:D .6.(2020成都)(3分)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( ) A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .2.(2020广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行 问卷调査后(每人选一种),绘制了如图1的条形统计图,根据图中的信息,学生最喜欢的套餐种类是(* ).(A)套餐一(B)套餐二(C)套餐三(D)套餐四【答案】A4.(2020陕西)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.9.(2020哈尔滨)(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.23B.12C.13D.19解:袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是62 93 =,故选:A.7.(2020杭州)(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x选:A.5.(2020河北)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a ()A. 9B. 8C. 7D. 6【答案】B【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∵a=8.故答案为B.3.(2020河南)要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.6.(2020苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.1【答案】D【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故选D.2.(2020乐山)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A. 1100B. 1000C. 900D. 110【答案】A4.(2020南京)(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务选:A.8.(2020四川绵阳)将一个篮球和一个足球随机的放入3个不同的篮子中,则恰有一个篮子为空的概率是()A.23B.12C.13D.16【解析】本题考查概率知识。

2020年中考数学试题《概率》试题精编含答案

2020年中考数学试题《概率》试题精编含答案

2020年中考数学试题《概率》试题精编含答案1.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.2.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.3.(2020•西藏)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.4.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.5.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.6.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.7.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.8.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.9.(2020•德阳)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.10.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.11.(2020•呼伦贝尔)一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字,,5.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x 与y的乘积是有理数的概率.12.(2020•眉山)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.13.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).14.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.15.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.16.(2020•长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(2020•鄂尔多斯)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4九年级(一)班女生一周复习时间频数分布表复习时间频数(学生人数)1小时32小时a3小时44小时6(1)统计表中a=,该班女生一周复习时间的中位数为小时;(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为°;(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.18.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).19.(2020•永州)今年6月份,永州市某中学开展“六城同创”知识竞赛活动.赛后,随机抽取了部分参赛学生的成绩,按得分划为A,B,C,D四个等级,A:90<S≤100,B:80<S≤90,C:70<S≤80,D:S≤70.并绘制了如图两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)请把条形统计图补充完整.(2)扇形统计图中m=,n=,B等级所占扇形的圆心角度数为.(3)该校准备从上述获得A等级的四名学生中选取两人参加永州市举行的“六城同创”知识竞赛,已知这四人中有两名男生(用A1,A2表示),两名女生(用B1,B2表示),请利用树状图法或列表法,求恰好抽到1名男生和1名女生的概率.20.(2020•雅安)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.21.(2020•吉林)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.22.(2020•河北)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.23.(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(2020•东营)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.25.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.26.(2020•毕节市)我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体有运动的情况进行抽样调查,在校园内随机抽取男女生各25人,调查情况如下表:是否参加体育运动男生女生总数是2119m否46n对男女生是否参加体育运动的人数绘制了条形统计图如图(1),在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).根据以上信息解答下列问题:(1)m=,n=,a=;(2)将图(1)所示的条形统计图补全;(3)这次调查中,参加体育运动,且主要运动项目是球类的共有人;(4)在这次调查中,共有4名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)27.(2020•昆明)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?28.(2020•海南)新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长t(单位:小时)的情况,在全市范围内随机抽取了n名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是(填写“全面调查”或“抽样调查”),n=;(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是;(3)若该市有15000名初中生,请你估计该市每日线上学习时长在“4≤t<5”范围的初中生有名.29.(2020•山西)2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.30.(2020•广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.31.(2020•黄石)我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.32.(2020•云南)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.33.(2020•十堰)某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.34.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.35.(2020•盐城)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.36.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.37.(2020•郴州)疫情期间,我市积极开展“停课不停学”线上教学活动,并通过电视、手机APP等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为:A.效果很好;B.效果较好;C.效果一般;D.效果不理想),并根据调查结果绘制了如图两幅不完整的统计图:(1)此次调查中,共抽查了名学生;(2)补全条形统计图,并求出扇形统计图中∠α的度数;(3)某班4人学习小组,甲、乙2人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取2人,则“1人认为效果很好,1人认为效果较好”的概率是多少?(要求画树状图或列表求概率)38.(2020•宜昌)宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说。

2020中考数学《统计与概率》大题专练(30道)(含参考答案)

2020中考数学《统计与概率》大题专练(30道)(含参考答案)

辆.
(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)
(3)在扇形统计图中,D 类二手轿车交易辆数所对应扇形的圆心角为
度.
17.(2019·山东省中考模拟)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴
趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,
13.(2018·四川省中考模拟)某班为了解学生一学期做义工的时间情况,对全班 50 名学生进行调查,按做
义工的时间 t(单位:小时),将学生分成五类:A 类( 0 t 2 ),B 类( 2 t 4 ),C 类( 4 t 6 ), D 类( 6 t 8 ), E 类( t 8 ),绘制成尚不完整的条形统计图如图 11.
(1)接受问卷调查的学生共有
人,扇形统计图中“基本了解”部分所对应扇形的圆心角为
度;
(2)请补全条形统计图;
(3)若该中学共有学生 900 人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基
本了解”程度的总人数.
8.(2018·云南省中考模拟)某养鸡场有 2500 只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质
a.甲学校学生成绩的频数分布直方图如下(数据分成 6 组:40 x 50 ,50 x 60 ,60 x 70 ,70 x 80 , 80 x 90 , 90 x 100 );
b.甲学校学生成绩在 80 x 90 这一组的是:
80
80
81
81.5
82
83
83
84
85
86
86.5
87
88
88.5
89
89
c.乙学校学生成绩的平均数、中位数、众数、优秀率(85 分及以上为优秀)如下:

2020年中考数学《统计与概率》复习题及答案解析 (6)

2020年中考数学《统计与概率》复习题及答案解析 (6)

2020年中考数学《统计与概率》总复习题
1.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到偶数的概率;
(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“4的倍数”的概率为多少?
【分析】(1)先求出这组数中偶数的个数,再利用概率公式解答即可;
(2)根据题意列举出能组成的数的个数及组成的两位数是4的倍数的个数,再利用概率公式解答.
【解答】解:(1)∵随机地抽取一张,所有可能的情况是:1,2,3三种,且它们出现的可能性相等,而结果出现偶数的有2一种,
∴P (奇数)=;
(2)根据题意画树状图如下:
则组成的两位数有:12、13、21、23、31、32,其中是4的倍数的有12、32,
∴所求概率P ==.
【点评】本题主要考查了树状图法与列表法求概率,熟练掌握概率公式是解题的关键.
第1 页共1 页。

2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。

2020年中考数学试题分类汇编之六 概率与统计

2020年中考数学试题分类汇编之六 概率与统计

2020年中考数学试题分类汇编之六概率与统计一、选择题7.(2020北京)不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A.14 B.13 C.12 D.23【解析】由题意,共4种情况:1+1;1+2;2+1;2+2,其中满足题意的有两种,故选C 6.((2020安徽)4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意; 22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意; 故选:D .6.(2020成都)(3分)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( ) A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .2.(2020广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行 问卷调査后(每人选一种),绘制了如图1的条形统计图,根据图中的信息,学生最喜欢的套餐种类是(* ).(A)套餐一(B)套餐二(C)套餐三(D)套餐四【答案】A4.(2020陕西)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.9.(2020哈尔滨)(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.23B.12C.13D.19解:袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是62 93 =,故选:A.7.(2020杭州)(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x选:A.5.(2020河北)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a ()A. 9B. 8C. 7D. 6【答案】B【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∵a=8.故答案为B.3.(2020河南)要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.6.(2020苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.1【答案】D【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故选D.2.(2020乐山)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A. 1100B. 1000C. 900D. 110【答案】A4.(2020南京)(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务选:A.8.(2020四川绵阳)将一个篮球和一个足球随机的放入3个不同的篮子中,则恰有一个篮子为空的概率是()A.23B.12C.13D.16【解析】本题考查概率知识。

2020年九年级数学典型中考压轴题训练:统计与概率 (含答案)

2020年九年级数学典型中考压轴题训练:统计与概率 (含答案)

2020年九年级数学典型中考压轴题训练:统计与概率1.某学校为了增强学生体质,决定开设以下体育活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查.并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)通过计算将条形统计图补充完整;(3)若该校共有学生1200人,请你估计喜欢羽毛球的学生有多少人?2.在这场疫情中,“新型冠状性病毒”拆散了许多家庭,也有不少人的生命戛然而止,令人心痛.小明为了纪念这场疫情,自己动手做了四张扑克牌,四张扑克牌的文字分别为“武”、“汉”、“加”、“油”.小明将4张扑克牌翻成反面,然后搅匀扑克牌,搅匀后从中随机抽取一张牌,记录字后然后放回去,接着抽取一张牌,记录第二张牌上的字.请用画树状图或列表的方法,求出摸到两次“武”字的概率.3.一二六中学计划举行“最爱辽宁红色景点”调查活动,现随机抽取了部分学生进行主题为“你去过的景点是?”的问卷调查,要求学生必须从“A(辽沈战役纪念馆),B(鸭绿江断桥景区),C(战犯管理所旧址),D(大连市关向应故居纪念馆)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为人;(2)在扇形统计图中,D部分所占圆心角的度数为°;(3)请直接将两个统计图补充完整;(4)若该校共有2400名学生,估计该校最想去A和B的学生共有多少人?4.为了解本校九年级同学双休日参加体育锻炼的时间,课题小组进行了问卷调查,并用调查结果绘制了如下两幅统计图(均不完整),其中A、B、C、D、E选项对应的时间(小时)分别为:0.5,1,1.5,2,2小时以上,请根据统计图解答以下问题:(1)求本次接受问卷调查的人数;(2)通过计算补全条形统计图;(3)本校有九年级同学共800人,请估计双休日参加体育锻炼时间在2小时以内(含2小时)的人数.5.在课堂上,老师将除颜色外都相同的1个黑球和若干个白球放入一个不透明的口袋并搅匀,让全班同学依次进行摸球试验,每次随机摸出一个球,记下颜色再放回搅匀,下表是试验得到的一组数据.摸球的次数n100150200500800摸到黑球的次数m263749124200摸到黑球的频率0.260.2470.2450.2480.25(1)估算口袋中白球的个数;(2)用画树状图或列表的方法计算连续两名同学都摸出白球的概率.6.“同享一片蓝天,共建美好家园”,北京某中学初三年级同学积极参与义务植树活动.小明同学为了了解本年级600个同学在2019年义务植树的数量,进行了抽样调查,随即抽取了其中30个同学,收集的数据如下(单位:棵):112423233433433534344545343456(1)对以上数据进行整理、描述和分析:①绘制如下的统计图则该统计图中种植3棵树的有个同学,种植4棵树的有个同学;②这30个同学2019年义务植树数量的中位数是,众数是;(2)中国植树节定于每年的3月12日,是中国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境.经过进一步调查,小明同学发现这30个同学中有23个是在3月份去义务植树的,由此可以估计该年级所有同学中在3月份去义务植树的有个.7.为宣传6月6日世界海洋日,某校八年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:表1知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8020C80≤x<9028D90≤x<10036(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到90分以上(含90分)的学生约有人.8.4月23日是世界读书日,全称为世界图书与版权日,又称“世界图书日“,设立的目的是推动更多的人去阅读和写作,希望所有人都能尊重和感谢为人类文明做出过巨大贡献的文学、文化、科学、思想大师们,保护知识产权.习近平说:“我爱好挺多,最大的爱好是读书,读书已成为我的一种生活方式,读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校某兴趣小组为了了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:【收集数据】从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如表(单位:min):30608150401101301469010060811201407081102010081【整理数据】按如表分段整理样本数据:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x≤160人数3584【分析数据】对样本数据进行分析得到如表分析表:平均数中位数众数80m n【得出结论】(1)补全分析表中的数据:m=,n=;(2)如果该校现有学生1600人,请估计每周阅读时间超过90min的学生有多少名?(3)假设平均阅读一本课外书的时间为260分钟,请你选择一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?9.为了推动阳光体育运动的广泛开展,引导学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买150双运动鞋,建议购买35号运动鞋多少双?10.镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1.3,1.7,1.4,1.6,1.5,2.7,2.1,1.5,0.9,2.6,2.0,2.1,1.0,1.8,2.2,2.4,3.2,1.3,2.8为了便于计算,小李在原数据的每个数上都减去1.5,得到下面第二组数:0.4,﹣0.2,0.2,﹣0.1,0.1,0,1.2,0.6,0,﹣0.6,1.1,0.5,0.6,﹣0.5,0.3,0.7,0.9,1.7,﹣0.2,1.3(1)请你用小李得到的第二组数计算这20户家庭的平均年收入,并估计全村年收入及全村家庭年收入超过1.5万元的百分比;已知某家庭过去一年的收入是1.89万元,请你用调查得到的数据的中位数推测该家庭的收入情况在全村处于什么水平?(2)已知小李算得第二组数的方差是S,小王依据第二组数的方差得出原数据的方差为(1.5+S)2,你认为小王的结果正确吗?如果不正确,直接写出你认为正确的结果.11.为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校也都开展了远程网络教学,某校集合为学生提供四类在线学校方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学校方式最感兴趣”的调查,并根据地产结果绘制成如下两幅不完整的统计图.(1)本次调查的人数有多少人?(2)请补全条形图;(3)请求出“在线答疑”在扇形图中的圆心角度数;(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的12.某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题(1)本次调查学生共人,a=,并将条形图补充完整;(2)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.13.为积极响应“弘扬传统文化”的号召,某学校倡导全校学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如图所示:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:一周诗词诵背数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析:(1)以抽查的这部分学生为样本,求“在大赛启动之初,一周诗词诵背数量不超过5首”(2)以这部分学生经典诗词大赛启动之初和结束一个月后,一周诗词诵背数量的平均数作为决策依据,说明平均每名学生一周诗词诵背数量的增长率接近16%还是22%?14.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.15.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018参考答案1.【解答】解:(1)这次被调查的学生人数为20÷=200(人);(2)选择C项目的人数为200﹣(20+80+40)=60(人),补全图形如下:(3)喜欢羽毛球的学生有1200×=360(人).2.【解答】解:将武汉加油分别记为1、2、3、4,列表如下:1234 111121314221222324331323334441424344由表可知共有16种等可能结果,其中摸到两次“武”字的只有1种结果,∴摸到两次“武”字的概率为.3.【解答】解:(1)本次调查的学生人数为66÷55%=120.故答案为120;(2)在扇形统计图中,“黄果树瀑布”部分所占圆心角的度数为360°×5%=18°.故答案为18;(3)选择C的人数为:120×25%=30(人),A所占的百分比为:1﹣55%﹣25%﹣5%=15%.补全统计图如图:(4)70%×2400=1680(人).答:该校共有2400名学生,估计该校最想去A和B的学生共有1680人.4.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;(2)D组人数为:160×18.75%=30(人)统计图补全如图:(3)800×=750(人),答:双休日参加体育锻炼时间在2小时以内(含2小时)的人数为750人.5.【解答】解:(1)又表格中数据可得出,摸到黑球的频率稳定在0.25,故1÷0.25﹣1=3(个),答:口袋中白球的个数为3个;(2)画树状图得:∵共有16种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到白球的概率为:.6.【解答】解:(1)①由题目中的数据可知,种植3棵树的有11个同学,种植4棵的有9个同学,补全的统计图如右图所示,故答案为:11,9;②这30个同学2019年义务植树数量的中位数是3,众数是3,故答案为:3,3;(2)600×=460(个),即该年级所有同学中在3月份去义务植树的有460个,故答案为:460.7.【解答】解:(1)36÷36%=100(个).(2)a=100×16%=16(个).(3)将竞赛成绩从小到大排列后处在第50、51位的数都落在C组,因此中位数落在C 组;(4)500×36%=180(人).答:该校九年级竞赛成绩达到90分以上(含90分)的学生约有180人.故答案为:100;16;C组;180.8.【解答】解:(1)将数据重新排列为10、20、30、40、50、60、60、70、81、81、81、81、90、100、100、110、120、130、140、146,数据81出现次数最多,所以众数为81,第10、11个数据均为81,所以中位数为=81,故答案为:81、81;(2)估计每周阅读时间超过90min的学生有1600×=560(人);(3)因为该校学生平均每周阅读时间为80min,所以=16,即估计该校学生每人一年(按52周计算)平均阅读16本课外书.9.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为:6+12+10+8+4=40(人),图①中m的值为:100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35号;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)根据题意得:150×30%=45(双),答:建议购买35号运动鞋45双.10.【解答】解:(1)第二组数据的平均数为(0.4﹣0.2+0.2﹣0.1+0.1+0+1.2+0.6+0﹣0.6+1.1+0.5+0.6﹣0.5+0.3+0.7+0.9+1.7﹣0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万元),130×1.9=247,估计全村年收入为247万元;全村家庭年收入超过1.5万元的百分比为×100%=65%;第二组数据排序为:﹣0.6,﹣0.5,﹣0.2,﹣0.2,﹣0.1,0,0,0.1,0.2,0.3,0.4,0.5,0.6,0.6,0.7,0.9,1.1,1.2,1.3,1.7,∴这组数据的中位数为=0.35,∴原数据的中位数为:1.5+0.35=1.85,某家庭过去一年的收入是1.89万元,则该家庭的收入情况在全村处于中上游;(2)小王的结果不正确.第一组数据的方差和第二组数据的方差一样.它们的方差=[(0.4﹣0.4)2+(﹣0.2﹣0.4)2+(0.2﹣0.4)2+…+(1.3﹣0.4)2]=0.34.11.【解答】解:(1)本次调查的人数有25÷25%=100(人);(2)在线答题的人数有:100﹣25﹣40﹣15=20(人),补图如下:(3)“在线答疑”在扇形图中的圆心角度数是360°×=72°;(4)记四种学习方式:在线阅读、在线听课、在线答疑、在线讨论,分别为A、B、C、D,则可画树状图如下:共有16种等情况数,其中小宁和小娟选择同一种学习方式的有4种,则小宁和小娟选择同一种学习方式的概率是=.12.【解答】解:(1)本次调查学生共120÷40%=300(人),a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,补全图形如下:故答案为:300,10;(2)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率==.13.【解答】解:(1)由题意得抽查的这部分学生的数量为:20÷=120(名),大赛启动之初,一周诗词诵背数量为4首的人数为120×=45(名),则P(大赛启动之初,一周诗词诵背数量不超过5首)═=;(2)大赛启动之初,一周诗词诵背数量的平均数为(15×3+45×4+20×5+16×6+13×7+11×8)=5(首),大赛启结束一个月后,一周诗词诵背数量的平均数为(10×3+10×4+15×5+40×6+25×7+20×8)=6(首),平均每名学生一周诗词诵背数量的增长率是×100%=20%,所以平均每名学生一周诗词诵背数量的增长率更接近22%.14.【解答】解:(1)根据题意画图如下:共有4种等情况,其中所选的2名医护人员性别相同的有2种,则所选的2名医护人员性别相同的概率是=;故答案为:;(2)将甲、乙两所医院的医护人员分别记为甲1、甲2、乙1、乙2(注:1表示男医护人员,2表示女医护人员),树状图如图所示:共有12种等可能的结果,满足要求的有4种.则P(2名医生来自同一所医院的概率)==.15.【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.。

2020年全国数学中考试题精选50题(13)——概率与统计

2020年全国数学中考试题精选50题(13)——概率与统计

2020年全国数学中考试题精选50题(13)——概率与统计一、单选题1.(2020·徐州)在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是()A. 5B. 10C. 12D. 152.(2020·徐州)小红连续天的体温数据如下(单位相):,,,,.关于这组数据下列说法正确的是()A. 中位数是B. 众数是C. 平均数是D. 极差是3.(2020·玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是()A. 样本的容量是4B. 样本的中位数是3C. 样本的众数是3D. 样本的平均数是3.54.(2020·河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分)85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A. 85,85B. 85,88C. 88,85D. 88,885.(2020·铁岭)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. B. C. D.6.(2020·铁岭)一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.57.(2020·盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是()A. 0.32B. 0.55C. 0.68D. 0.878.(2020·盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A. 甲B. 乙C. 丙D. 丁9.(2020·锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16人数 3 5 6 2)A. 14,15B. 15,15C. 14.5,14D. 14.5,1510.(2020·阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A. 众数是9B. 中位数是8.5C. 平均数是9D. 方差是711.(2020·阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A. 1B.C.D.12.(2020·丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是()A. B. C. D. 113.(2020·朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A. 300,150,300B. 300,200,200C. 600,300,200D. 300,300,30014.(2020·泰州)如图,电路图上有个开关、、、和个小灯泡,同时闭合开关、或同时闭合开关、都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关15.(2020·雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A. B. C. D.16.(2020·绵阳)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.17.(2020·眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项项目学习卫生纪律活动参与所占比例,84,71,则该班四项综合得分(满分100)为()A. 81.5B. 82.5C. 84D. 8618.(2020·凉山州)已知一组数据1,0,3,-1,x,2,3的平均数是1,则这组数据的众数是()A. -1B. 3C. -1和3D. 1和319.(2020·淄博)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A. 4,5B. 5,4C. 5,5D. 5,620.(2020·烟台)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A. 众数改变,方差改变B. 众数不变,平均数改变C. 中位数改变,方差不变D. 中位数不变,平均数不变21.(2020·威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A. 本次调查的样本容量是B. 选“责任”的有人C. 扇形统计图中“生命”所对应的扇形圆心角度数为D. 选“感恩”的人数最多22.(2020·东营)如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.23.(2020·滨州)已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A. 1B. 2C. 3D. 424.(2020·呼伦贝尔)下列事件是必然事件的是()A. 任意一个五边形的外角和为540°B. 抛掷一枚均匀的硬币100次,正面朝上的次数为50次C. 13个人参加一个集会,他们中至少有两个人的出生月份是相同的D. 太阳从西方升起25.(2020·鄂尔多斯)下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.甲A. ①②③④B. ①②④C. ①④D. ②③26.(2020·赤峰)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成续时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 平均数B. 中位数C. 众数D. 方差27.(2020·永州)已知一组数据1,2,8,6,8对这组数据描述正确的是()A. 众数是8B. 平均数是6C. 中位数是8D. 方差是928.(2020·南县)一组数据由4个数组成,其中3个数分别为2,3,4,且这组数据的平均数为4,则这组数据的中位数为()A. 7B. 4C. 3.5D. 329.(2020·昆明)下列判断正确的是()A. 北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B. 一组数据6,5,8,7,9的中位数是8C. 甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D. 命题“既是矩形又是菱形的四边形是正方形”是真命题30.(2020·云南)下列说法正确的是()A. 为了解三名学生的视力情况,采用抽样调查B. 任意画一个三角形,其内角和是是必然事件C. 甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为S甲2、S乙2 .若, S甲2 =0.4 ,S乙2=2,则甲的成绩比乙的稳定D. 一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖二、填空题31.(2020·玉林)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.32.(2020·河池)不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是________.33.(2020·铁岭)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为,则这6次比赛成绩比较稳定的是________.(填“甲”或“乙”)34.(2020·锦州)在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为,则________.35.(2020·丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是________(填“甲”或“乙”).36.(2020·朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是,方差分别是:,这两名同学成绩比较稳定的是________(填“甲”或“乙”).37.(2020·镇江)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于________.38.(2020·镇江)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为________.39.(2020·泰州)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是________.40.(2020·滨州)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、综合题41.(2020·徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到组(体温检测)、组(便民代购)、组(环境消杀).(1)小红的爸爸被分到组的概率是________;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)42.(2020·徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如下尚不完整的统计图表:类别阅读时间频数450 400 50根据以上信息解答下列问题:(1)该调查的样本容量为________,________;(2)在扇形统计图中,“ ”对应扇形的圆心角等于________ ;(3)将每天阅读时间不低于的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.43.(2020·玉林)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有________棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?44.(2020·河池)某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分)75,63,76,87,69,78,82,75,63,71.组别分数段划记频数A 60<x≤70正B 70<x≤80正正C 80<x≤90正正正正D 90<x≤100正(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?45.(2020·铁岭)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如下两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有________人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020·盘锦)某校为了解学生课外阅读时间情况,随机抽取了名学生,根据平均每天课外阅读时间的长短,将他们分为四个组别,并绘制了如下不完整的频数分布表和扇形统计图.组别时间/(小时)频数/人数A 2nB 20CD 5请根据图表中的信息解答下列问题:(1)求与的值,并补全扇形统计图;(2)直接写出所抽取的名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.47.(2020·盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为________.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.48.(2020·锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀. (1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是________;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.49.(2020·锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.图棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了________名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.50.(2020·阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A 4B 15C 18D 12E mF 5(1)本次测试随机抽取的人数是________人,________;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.答案解析部分一、单选题1.【答案】A【解析】【解答】解:设袋子中红球有x个,根据题意,得:解得答:袋子中红球有5个.故答案为:A.【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值即可得答案.2.【答案】B【解析】【解答】解:A.将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3°C ,故此选项错误B.36.2出现了两次,故众数是36.2 ,故此选项正确;C.平均数为( °C ),故此选项错误;D.极差为36.6-36.2=0.4( °C ),故此选项错误,故答案为:B.【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.3.【答案】D【解析】【解答】解:由题意知,这组数据为2、3、3、4,所以这组数据的样本容量为4,中位数为=3,众数为3,平均数为=3,故答案为:D.【分析】先根据方差的公式得出这组数据为2、3、3、4,再根据样本容量、中位数、众数和平均数的概念逐一求解可得答案.4.【答案】B【解析】【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88,故答案为:B.【分析】求中位数的方法是:把数据先按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据。

2020年中考数学专题复习测试题:统计与概率(含答案)

2020年中考数学专题复习测试题:统计与概率(含答案)

复习测试范围:统计与概率 限时:45分钟 满分:100分一、选择题(每小题5分,共40分)1.下列说法正确的是 ( )A .了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查B .甲、乙两人跳远成绩的方差分别为s 甲2=3,s 乙2=4,说明乙的跳远成绩比甲稳定C .一组数据2,2,3,4的众数是2,中位数是2.5D .可能性是1%的事件在一次试验中一定不会发生2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为 ( ) A .12 B .310 C .15D .7103.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 ( ) A .2 B .3 C .4D .54.某班40名同学一周参加体育锻炼时间统计如下表所示:人数(人) 3 17 13 7 时间(时)78910 那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是 ( )A .17,8.5B .17,9C .8,9D .8,8.55.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是 ( ) A .23 B .29 C .13D .196.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图,依据统计图得出以下四个结论,其中正确的是()图D8-1A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万元D.前年年收入不止①②③三种农作物的收入7.甲、乙两人连续5次射击成绩如图D8-2所示,下列说法中正确的是()图D8-2A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定8.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12B.512C.712D.13二、填空题(每小题6分,共36分)9.数据-5,3,2,-3,3的平均数是,众数是,中位数是.10.如图D8-3,转盘中6个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为 .图D8-311.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是 小时.12.如图D8-4,这是一幅长为3 m,宽为2 m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地面上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 m 2.图D8-413.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:同学第一次 第二次 第三次 第四次 第五次 甲 90 88 92 94 91 乙9091939492根据上表数据,成绩较好且比较稳定的同学是 .14.甲、乙是两个不透明的纸箱,甲中有三张分别标有数字14,12,1的卡片,乙中有三张分别标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b.若a ,b 能使关于x 的一元二次方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为 .三、解答题(共24分)15.(12分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.1活动后被测查学生视力数据:4.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是.(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.图D8-5活动后被测查学生视力频数分布表分组频数4.0≤x<4.2 14.2≤x<4.4 24.4≤x<4.6 b4.6≤x<4.8 74.8≤x<5.0 125.0≤x<5.2 416.(12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图D8-6所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n图D8-6请结合统计图表,回答下列问题:(1)本次参与调查的学生共有人,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【参考答案】1.C2.A3.A4.D5.B [解析]画“树状图”如图所示.∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种, ∴一辆向右转,一辆向左转的概率为29,故选B .6.C7.B [解析]本题考查了方差的意义,x 甲=5+10+9+6+105=8,x 乙=8+9+7+9+75=8,s 甲2=(5-8)2+(10-8)2+(9-8)2+(6-8)2+(10-8)25=4.4,s 乙2=(8-8)2+(9-8)2+(7-8)2+(9-8)2+(7-8)25=0.8,∵s 甲2>s 乙2,∴乙的成绩更稳定.也可以直接根据折线统计图的波动情况,乙的波动较小,故乙的成绩更稳定,因此本题选B . 8.D [解析]本题考查了随即事件发生的概率,列表如下:aa 2+b 2 b1 2 3 41 5 10 172 5 13 20 3 10 13 25 4172025从表格可以看出,12种等可能的结果中,有4种结果符合要求,所以概率为412=13. 故选D . 9.0 3 2 10.1211.8.4 12.2.413.乙 [解析]x 甲=15×(90+88+92+94+91)=91,x 乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 14.49 [解析]画树状图如下:由图可知,共有9种等可能的结果,若使乙获胜,则b 2-4a ≤0,即b 2≤4a ,∴能使乙获胜的有4种结果, ∴乙获胜的概率为49.15.解:(1)5 4 4.65 4.8[解析]a=30-(3+4+7+8+3)=5,b=30-(1+2+7+12+4)=4. 活动前的中位数是4.6+4.72=4.65.活动后出现次数最多的数为4.8, 所以其众数为4.8. 故答案为:5,4,4.65,4.8.(2)活动后样本中视力达标的人数有16人,所以估计七年级600名学生活动后视力达标的人数有600×1630=320(人).(3)活动前中位数为4.65,活动后中位数为4.8,说明学生在做完视力保健活动后整体视力情况变好. 16.解:(1)400 35% [解析] 180÷45%=400(人),n=1-5%-15%-45%=35%. 故答案为400;35%.(2)126 [解析] 扇形统计图中D 部分扇形所对应的圆心角=360°×35%=126°, 故答案为126.(3)D 等级的人数为400×35%=140(人), 补全条形统计图如图:(4)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种, ∴P (小明去)=812=23, P (小刚去)=1-23=13. ∵23≠13,∴这个游戏规则不公平.。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

2020年中考数学专题训练 统计和概率(含答案)

2020年中考数学专题训练  统计和概率(含答案)

2020年中考数学专题训练统计与概率(含答案)一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图D8-1所示,以下说法与图中反映的信息相符的是()图D8-1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图D8-2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图D8-3所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()图D8-3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图D8-4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图D8-412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图D8-517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图D8-6【参考答案】1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。

2020年中考数学统计和概率专题卷(附答案)

2020年中考数学统计和概率专题卷(附答案)

2020年中考数学统计和概率专题卷(附答案)一、单选题(共12题;共24分)1.数据1、10、6、4、7、4的中位数是().A. 9B. 6C. 5D. 42.某次射击训练中,一个小组的成绩如下表所示:已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A. 4B. 5C. 6D. 73.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论正确的是()A. 2~6月份股票的月增长率逐渐减少B. 2~6月份股票持续下跌C. 这七个月中,6月的股票跌到最低D. 这七个月中,股票有涨有跌4.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A. B. C. D.5.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A. 28个B. 32个C. 36个D. 40个6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入山进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. B. C. D.7.下列命题中假命题是()A. 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B. 正五边形的每一个内角等于108°C. 一组数据的平均数、中位数和众数都只有一个D. 方程x2-6x+9=0有两个实数根8.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A. 平均数B. 中位数C. 众数D. 方差9.下表是某公司员工月收入的资料:能够反映该公司全体员工月收入水平的统计量是( )A. 平均数和众数B. 平均数和中位数C. 中位数和众数D. 平均数和方差10.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A. B. C. D.二、填空题(共7题;共14分)11.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是________.12.一个口袋中有5颗球,除颜色以外完全相同,其中有3颗红球2颗白球,从口袋中随机抽取2颗球,那么所抽取的2颗球颜色相同的概率是________.13.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么________(填“小李”或“小陈”)获胜的可能性较大.14.掷一枚硬币三次,正面都朝上的概率是________.15.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是________.16.一个不透明的盒子里有若干个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数为________ 。

中考数学专题统计与概率(解析版)

中考数学专题统计与概率(解析版)
请根据图中信息回答下面的问题:
(1)本次抽样调查了多少户贫困户?
(2)抽查了多少户C类贫困户?并补全统计图;
(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?
(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.
1.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
学校这次调查共抽取了名学生;
求 的值并补全条形统计图;
在扇形统计图中,“围棋”所在扇形的圆心角度数为;
②列表如图所示:
共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,
∴乙组两次都拿到8元球的概率为 .
【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.
4.(2019年江西中考)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,
则a=(87+88)÷2=87.5,
b=91,
c= =5.8,
故答案为:87.5,91,5.8;

2020四川中考数学试题分类—统计、概率

2020四川中考数学试题分类—统计、概率

2020四川中考数学试题分类—统计、概率1. (2020.成都.17)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有_________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为_________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.2. (2020.甘孜州.19)为了解同学们最喜欢一年四季中的哪个季节,数学社在全校随机抽取部分同学进行问卷调查,根据调查结果,得到如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了________名同学;扇形统计图中,“春季”所对应的扇形的圆心角的度数为________;(2)若该学校有1500名同学,请估计该校最喜欢冬季的同学的人数;(3)现从最喜欢夏季的3名同学A,B,C中,随机选两名同学去参加学校组织的“我爱夏天”演讲比赛,请用列表或画树状图的方法求恰好选到A,B去参加比赛的概率.3. (2020.乐山.19)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40-59岁感染人数对应圆心角的度数为º ;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.4.(2020.绵阳.21)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?5.(2020.眉山.22)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.6 (2020.南充.19)今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助,某批次派出20人组成的专家组,分别赴A、B、C、D四个国家开展援助工作,七人员分布情况如统计图(不完整)所示:(1)计算赴B国女专家和D国男专家的人数,并将条形统计图补充完整;(2)根据需要,从赴A国的专家,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.7. (2020.遂宁.22)端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.8.(2020.雅安.19)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.9. (2020.自贡.22)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.10. (2020.达州.20)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:94 83 90 86 94 88 96 100 89 8294 82 84 89 88 93 98 94 93 92整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95⩽x⩽100aB90⩽x<958C85⩽x<905D80⩽x<854根据以上信息,解答下列问题.(1)填空:a=_______,b=______;(2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.11. (2020.广元.19)广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.12. (2020.凉山.21)某校团委在“五·四”青年节举办了一次“我的中国梦”作文大赛,广三批对全校20个班的作品进行评比在第一批评比中,随机抽取A、B、C、D四个班的征集作品,对其数量进行统计后,绘制如下两幅不完整的统计图,(1)第一批所抽取的4个班共征集到作品件;在扇形统计图中表示C班的扇形的圆心角的度数为;(2)补全条形统计图;(3)第一批评比中,A班D班各有一件、B班C班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品两个不同班级的概率.13. (2020.泸州.20)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图. 根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车,试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数; (3)从被抽取的耗油1L 所行使路程在1212.5x ≤<,1414.5x ≤<这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.14. (2020.内江19)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A 、B 、C 、D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B 等级”的学生人数有 名;(2)在扇形统计图中,表示“D 等级”的扇形的圆心角度数为 ,图中m 的值为 ;(3)学校决定从本次比赛获得“A 等级”的学生中选出2名去参加市中学生知识竞赛.已知“A 等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.15. (2020.攀枝花21)刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的卡片)25 .(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.16. (2020.宜宾21)在疫情期间,为落实停课不停学,某校对本校学生某一学科在家学习的情况进行抽样调查,了解到学生的学习方式有:电视直播、任教老师在线辅导、教育机构远程教学、自主学习,参入调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图,解答下列问题.(1)本次受调查的学生有________人;(2)补全条形统计图;(3)根据调查结果,若本校有1800名学生,估计有多少名学生与任课教师线辅导?。

2020年广东中考数学专题复习:第六章统计与概率2

2020年广东中考数学专题复习:第六章统计与概率2
(1)补全小明同学所画的树状图; (2)求小明同学两次抽到卡片上的数字之积是奇数的概率.
图 6-2-6
解:(1)补全小明同学所画的树状图(如图 D115):
图 D115 (2)∵共有 9 种等可能的结果,小明同学两次抽到卡片上的 数字之积是奇数的有 4 种情况,∴小明同学两次抽到卡片上的 数字之积是奇数的概率为—49 .
解:(1)随机抽男生人数:10÷25%=40(名),即 y=40. C 等级人数:40-24-10-2=4(名),即 x=4. 扇形图中表示C的圆心角的度数360°× 440=36°. 故答案为 4,40,36.
(2)画树状图如图 D114:
图 D114 P(同时抽到甲,乙两名学生)=—2=—1 .
5.(2019 年吉林长春)一个不透明的口袋中有三个小球,每 个小球上只标有一个汉字,分别是“家”“家”“乐”,除汉 字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉 字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用 画树状图(或列表)的方法,求小新同学两次摸出小球上的汉字 相同的概率.
63
2.(2015 年广东)老师和小明同学玩数学游戏.老师取出一个 不透明的口袋,口袋中装有三张分别标有数字 1,2,3 的卡片,卡 片除数字外其余都相同,老师要求小明同学两次随机抽取一张 卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小 明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果. 如图 6-2-6 所示是小明同学所画的正确树状图的一部分.
p=所总求情情况况数数 .
【试题精选】 3.(2018 年辽宁阜新)如图 6-2-3,阴影是两个相同菱形的重 合部分,假设可以随机在图中取点,那么这个点取在阴影部分 的概率是( )
A.15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学试题分类汇编概率与统计一、选择题7.(2020北京)不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A.14 B.13 C.12 D.23【解析】由题意,共4种情况:1+1;1+2;2+1;2+2,其中满足题意的有两种,故选C 6.((2020安徽)4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意; 22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意; 故选:D .6.(2020成都)(3分)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( ) A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .2.(2020广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行 问卷调査后(每人选一种),绘制了如图1的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( * ).(A)套餐一(B)套餐二(C)套餐三(D)套餐四【答案】A4.(2020陕西)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.9.(2020哈尔滨)(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.23B.12C.13D.19解:袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是62 93 =,故选:A.7.(2020杭州)(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x选:A.5.(2020河北)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a ()A. 9B. 8C. 7D. 6【答案】B【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.3.(2020河南)要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.6.(2020苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.1【答案】D【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故选D.2.(2020乐山)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A. 1100B. 1000C. 900D. 110【答案】A4.(2020南京)(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务选:A.8.(2020四川绵阳)将一个篮球和一个足球随机的放入3个不同的篮子中,则恰有一个篮子为空的概率是()A.23B.12C.13D.16【解析】本题考查概率知识。

共有3个篮子,所以共有3种情况,其中有1个篮球和一个足球2个球放入不同的篮子,所以余下1个篮子为空,所以恰有一个篮子为空的概率是13。

故选C.2.(2020贵阳)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A. B. C. D.【详解】解:第一个袋子摸到红球的可能性=1 10;第二个袋子摸到红球的可能性=21 105=;第三个袋子摸到红球的可能性=51 102=;第四个袋子摸到红球的可能性=63 105=.故选:D.3.(2020贵阳)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A. 直接观察B. 实验C. 调查D. 测量【答案】C5.(2020贵州黔西南)(4分)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.4.(2020湖北黄冈)甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A. 甲B. 乙C. 丙D. 丁解:通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学.故选:B.3.(2020无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A. 24,25B. 24,24C. 25,24D. 25,25 解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25;故应选:A.8.(2020长沙)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是19【答案】A4.(2020齐齐哈尔)((3分)一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是()A .12B .13C .14D .23选:A .6.(2020齐齐哈尔)((3分)数学老师在课堂上给同学们布置了10个填空题作为课堂练习,并将全班同学的答题情况绘制成条形统计图.由图可知,全班同学答对题数的众数为( )A .7B .8C .9D .10选:C .6.(2020湖北武汉)某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ) A.13B.14C.16D.18【答案】C 解:画树状图为:∴P (选中甲、乙两位)=21126故选C .3.(2020湖北武汉)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ) A. 两个小球的标号之和等于1 B. 两个小球的标号之和等于6 C. 两个小球的标号之和大于1D. 两个小球的标号之和大于6解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2, 选项A :“两个小球的标号之和等于1”为不可能事件,故选项A 错误; 选项B :“两个小球的标号之和等于6”为随机事件,故选项B 正确;选项C:“两个小球的标号之和大于1”为必然事件,故选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故选项D错误.故选:B.3.(2020上海)(4分)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图【解答】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.5.(2020四川南充)(4分)八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是()A.该组成绩的众数是6环 B.该组成绩的中位数是6环C.该组成绩的平均数是6环 D.该组成绩数据的方差是10选:D.5.(2020辽宁抚顺)(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s 2=7.3,则这4名同学3次数学成绩最稳定的是()丁A.甲B.乙C.丙D.丁解:∵s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,且平均数相等,∴s甲2<s乙2<s丙2<s丁2,∴这4名同学3次数学成绩最稳定的是甲,选:A.7.(2020辽宁抚顺)(3分)一组数据1,8,8,4,6,4的中位数是()A.4 B.5 C.6 D.8选:B.4.(2020内蒙古呼和浩特)(3分)已知电流在一定时间段内正常通过电子元件“”的概率是0.5;则在一定时间段内,由该元件组成的图示电路A、B之间,电流能够正常通过的概率是()A.0.75 B.0.525 C.05 D.025解:根据题意,电流在一定时间段内正常通过电子元件的概率是0.5,即某一个电子元件不正常工作的概率为0.5,则两个元件同时不正常工作的概率为0.25;故在一定时间段内AB之间电流能够正常通过的概率为=0.75,选:A.2.(2020宁夏)(3分)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.5选:C.3.(2020宁夏)(3分)现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.选:B.4.(2020黑龙江龙东)(3分)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8或3.2 C.3.6或3.4 D.3.6或3.2解:从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,2x∴=或1x=,当2x=时,这组数据的平均数为234453.65++++=;当1x=时,这组数据的平均数为134453.45++++=;即这组数据的平均数为3.4或3.6,故选:C.13.(2020黑龙江牡丹江)(3分)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A.14B.23C.13D.316解:用列表法表示所有可能出现的结果情况如下:共有12种可能出现的结果,其中“和为5”的有4种,()541 123P∴==和为.故选:C.4.(2020江苏连云港)(3分)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是() A.中位数B.众数C.平均数D.方差解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数.故选:A.4.(2020江苏泰州)(3分)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关解:A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B.5.(2020山东枣庄)(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.49B.29C.23D.13解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,()4 9P∴=两次都是白球,故选:A.6.(2020湖南岳阳)(3分)(2020•岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A.36.3,36.5 B.36.5,36.5 C.36.5,36.3 D.36.3,36.7 解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,故选:B.5.(2020广西南宁)(3分)以下调查中,最适合采用全面调查的是( ) A .检测长征运载火箭的零部件质量情况 B .了解全国中小学生课外阅读情况 C .调查某批次汽车的抗撞击能力 D .检测某城市的空气质量解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查, 故选:A .8.(2020广西南宁)(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .B .C .D .解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径; 两次共6种等可能结果,其中获得食物的有2种结果, ∴获得食物的概率是=, 故选:C .7.(2020广西玉林)(3分)(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s 2=(2−x)2+(3−x)2+(3−x)2+(4−x)2n,由公式提供的信息,则下列说法错误的是( ) A .样本的容量是4 B .样本的中位数是3C .样本的众数是3D .样本的平均数是3.5解:由题意知,这组数据为2、3、3、4, 所以这组数据的样本容量为4,中位数为3+32=3,众数为3,平均数为2+3+3+44=3,故选:D.5.(3分)(2020•常德)下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是12,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.4.(3分)(2020•徐州)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5 B.10 C.12 D.15解:设袋子中红球有x个,根据题意,得:x20=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.5.(3分)(2020•徐州)小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃解:把小红连续5天的体温从小到大排列得,36.2,36.2,36.3.36.5,36.6,处在中间位置的一个数是36.3℃,因此中位数是36.3℃;出现次数最多的是36.2℃,因此众数是36.2℃;平均数为:x=(36.2+36.2+36.3+36.5+36.6)÷5=36.36℃,极差为:36.6﹣36.2=0.4℃,故选:B.5.(2020贵州遵义)(4分)某校7名学生在某次测量体温(单位:℃)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A.众数是36.5 B.中位数是36.7C.平均数是36.6 D.方差是0.4解:7个数中36.5出现了三次,次数最多,即众数为36.5,故A选项正确,符合题意;将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故B选项错误,不符合题意;x=17×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)=36.5,故C选项错误,不符合题意;S2=17[(36.3﹣36.5)2+(36.4﹣36.5)2+3×(36.5﹣36.5)2+(36.6﹣36.5)2+(36.7﹣36.5)2]=170,故D选项错误,不符合题意;故选:A.8.(3分)(2020•荆门)为了了解学生线上学习情况,老师抽查某组10名学生的单元测试成绩如下:78,86,60,108,112,116,90,120,54,116.这组数据的平均数和中位数分别为()A.95,99 B.94,99 C.94,90 D.95,108解:这组数据的平均数=110(78+86+60+108+112+116+90+120+54+116)=94,把这组数据按照从小到大的顺序排列为:54,60,78,86,90,108,112,116,116,120,∴这组数据的中位数=90+1082=99,5.(3分)(2020•烟台)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变选:C.10.(2020山西)(3分)如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A .B .C .D .选:B .7.(2020东莞)一组数据2,3,4,2,5的众数和中位数分别是( ) A.2,2 B.2,3C.2,4D.5,4答案:B7.(2020四川自贡)(4分)对于一组数据3,7,5,3,2,下列说法正确的是( ) A .中位数是5 B .众数是7C .平均数是4D .方差是3选:C .8.(2020山东滨州)(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述: ①平均数是5,②中位数是4,③众数是4,④方差是4.4, 其中正确的个数为( ) A .1B .2C .3D .4解:数据由小到大排列为3,4,4,5,9, 它的平均数为3445955++++=,数据的中位数为4,众数为4,数据的方差222221[(35)(45)(45)(55)(95)] 4.45=-+-+-+-+-=.所以A 、B 、C 、D 都正确. 故选:D .7.(2020四川眉山)(4分)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目 学习 卫生 纪律 活动参与 所占比例40%25%25%10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为( ) A .81.5 B .82.5C .84D .86选:B .10.(2020云南)(4分)下列说法正确的是( ) A .为了解三名学生的视力情况,采用抽样调查 B .任意画一个三角形,其内角和是360°是必然事件C .甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s 乙2,若=,s 甲2=0.4,s 乙2=2,则甲的成绩比乙的稳定D .一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖选:C .6.(3分)(2020•怀化)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( ) A .众数 B .中位数C .方差D .平均数选:B .5.(2020山东泰安)(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册 1 2 3 4 5 人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( ) A .3,3 B .3,7 C .2,7 D .7,3选:A .5.(2020浙江宁波)(4分)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( ) A .14B .13C .12D .23选:D .4.(2020浙江温州)(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( ) A .47B .37C .27D .17选:C .6.(2020浙江温州)(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表: 株数(株) 7 9 12 2 花径(cm )6.56.66.76.8这批“金心大红”花径的众数为( ) A .6.5cm B .6.6cm C .6.7cm D .6.8cm选:C .3.(4分)(2020•株洲)一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字﹣1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( ) A .14B .13C .12D .34选:C .5.(4分)(2020•株洲)数据12、15、18、17、10、19的中位数为( ) A .14 B .15C .16D .17选:C .二、填空题16.(2020北京)下图是某剧场第一排座位分布图甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 .【解析】答案不唯一;丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选6,8.乙选10,12,14.∴顺序为丙,丁,甲,乙.16.(2020广州)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近似值,当a = * mm 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n个结果(单位:mm )1x ,2x ,⋅⋅⋅,n x ,若用x 作为这条线段长度的近似值,当x = *mm 时,22212()()()n x x x x x x -+-+⋅⋅⋅+-最小.【答案】10.012nx x x n++12.(2020福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________. 【答案】1315.(2020杭州)(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 58.解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种, 则两次摸出的球的编号之和为偶数的概率是1016=58.故答案为:58.14.(2020天津)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是_______. 答案:3813.(2020河南)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.【答案】1 410.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:位数字的众数为.【解析】由于9出现的次数为14次,频数最多,∴众数为9,故答案为913.(2020苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是___________.【答案】3 812.(2020乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是______.【答案】3913(2020贵阳).在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是_____.【答案】1 613.(2020长沙)长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:这次调查的众数和中位数分别是___________________________.解:从表格中可得人数最多的次数是5,故众数为5.100÷2=50,即中位数为从小到大排列的第50位,故中位数为5.故答案为5、5.10.(2020山东青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么__________将被录用(填甲或乙)解:甲得分:20 9753623⨯+⨯+⨯=乙得分:11143 8673626⨯+⨯+⨯=∵436>203故答案为:乙.12(2020湖北武汉).热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.解:将这组数据按从小到大进行排序为3,3,4,5,5,6则这组数据的中位数是454.5 2+=故答案为:4.5.15.(2020重庆A卷)现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.【答案】3 1613.(2020上海)(4分)为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为3150名.。

相关文档
最新文档