(完整版)液压与气压传动概念知识点总结考试重要考点
液压与气压传动复习要点

上式亦可写成 : A1v1=A2v2=Const 式中A 式中 1、v1、A2、v2,分别为管道任意两处的过流 断面面积相适应的液体平均流速。该式表明: 断面面积相适应的液体平均流速。该式表明:液体 的流速与其过流断面面积成反比。当流量一定时, 的流速与其过流断面面积成反比。当流量一定时, 管子细的地方流速大;管子粗的地方流速小。 管子细的地方流速大 管子粗的地方流速小。 管子粗的地方流速小 能量守恒定律----伯努利方程式 ② 能量守恒定律 伯努利方程式 表达式为: 表达式为
其特点是液体质点除了做平行于管道轴线运动外, 其特点是液体质点除了做平行于管道轴线运动外 , 还或多或少具有横向运动, 流速较高, 还或多或少具有横向运动 , 流速较高 , 粘性的制约 作用减弱,惯性力其主导作用。 作用减弱,惯性力其主导作用。 液体流态的判断:采用临界雷诺数 液体流态的判断:采用临界雷诺数Recr,Recr=2320( ( , 对于光滑的金属圆管)。 )。当所计算的雷诺数 对于光滑的金属圆管)。当所计算的雷诺数 vd <Recr=2320 时,液体为层流; 液体为层流; Re = ν 液体为紊流。 当 Re>2320 时,液体为紊流。
2、液压传动的两个工作特性 液压系统的工作压力(简称系统压力, ①液压系统的工作压力(简称系统压力,下 在有效承压面积一定的前提下) 同 。 在有效承压面积一定的前提下 ) 取决于 外界负载。 外界负载。 执行元件的速度( ②执行元件的速度(在有效承压面积一定的 前提下)决定于系统的流量。 前提下)决定于系统的流量。 这两个特性有时也简称为: 这两个特性有时也简称为: 压力取决于负载;速度取决于流量。 压力取决于负载;速度取决于流量。
3.液压系统的组成 3.液压系统的组成 动力元件(能源装置) ①动力元件(能源装置) ②执行元件 ③控制元件 ④辅助元件 ⑤工作介质
(完整版)液压与气压传动试题及答案【可修改文字】

可编辑修改精选全文完整版《液压与气压传动》复习资料及答案液压传动试题一、填空题1.液压系统由 元件、 元件、 元件、 元件和 元件五部分组成。
2.节流阀通常采用 小孔;其原因是通过它的流量与 无关,使流量受油温的变化较小。
3.液体在管道中流动时有两种流动状态,一种是 ,另一种是 。
区分这两种流动状态的参数是 。
4.在液压系统中,当压力油流过节流口、喷嘴或管道中狭窄缝隙时,由于 会急剧增加,该处 将急剧降低,这时有可能产生气穴。
5.液压马达把 能转换成 能,输出的主要参数是 和 。
6.液压泵的容积效率是该泵 流量与 流量的比值。
7.液压缸的泄漏主要是由 和 造成的。
8.外啮合齿轮泵中,最为严重的泄漏途径是 。
9.和齿轮泵相比,柱塞泵的容积效率较 ,输出功率 ,抗污染能力 。
10.在旁油路节流调速回路中,确定溢流阀的 时应考虑克服最大负载所需要的压力,正常工作时溢流阀口处于 状态。
11.常用方向阀的操作方式有 、 、 等三种。
二、选择题1.液压缸差动连接工作时,缸的( )。
A .运动速度增加了B .压力增加了C .运动速度减小了D .压力减小了 2.液压缸差动连接工作时活塞杆的速度是( )。
A .24dQ v π=B .)(222d D Q v -=π C .24DQ v π= D .)(422d D Q -π 3.液压缸差动连接工作时作用力是( )。
A .)(222d D pF -=πB .22d pF π=C .)(422d D p F -=π D .42d p F π=4.在液压系统中,液压马达的机械效率是( )。
A .TM M∆=η B .M M M T T ∆+=ηC .T M M ∆-=1ηD .MM MT ∆+∆=η5.在液压系统中,液压马达的容积效率是( )。
A .TQ Q∆-=1η B .T T Q Q Q ∆-=ηC .TQ Q∆=η D .Q Q Q T T ∆+=η6.液压系统的真空度应等于( )。
(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压传动知识点复习总结

液压传动知识点复习总结液压与气压传动知识点复习总结(很全)一,基本慨念1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质(液压油)组成2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是液压系统的两个重要参数其功率N=PQ3, 液体静压力的两个基本特性是:静压力沿作用面内法线方向且垂直于受压面;液体中任一点压力大小与方位无关.4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数(Re=2000~2200)判别,雷诺数(Re )其公式为Re=VD/υ,(其中D 为水力直径),圆管的水力直径为圆管的内经。
5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变大, 而受压力影响小;运动粘度与动力粘度的关系式为ρμν=, 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度的平方成正比.22ρλv l d p =?, 22v p ρξ=?. 层流时的损失可通过理论求得λ=64eR ;湍流时沿程损失其λ与Re 及管壁的粗糙度有关;局部阻力系数ξ由试验确定。
7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为γρυ++22P h=C(常数),即液流任意截面的压力水头,速度水头和位置水头的总和为定值,但可以相互转化。
它是能量守恒定律在流体中的应用;小孔流量公式q=C d A t ρp ?2,其与粘度基本无关;细长孔流量q=?ld μπ1284P 。
平板缝隙流量q=p lbh ?μ123,其与间隙的三次方成正比,与压力的一次与方成正比. 8,流体在管道流动时符合连续性原理,即2111V A V A =,其速度与管道过流面积成反比.流体连续性原理是质量守衡定律在流体中的应用.9,在重力场中,静压力基本方程为P=P gh O ρ+; 压力表示:.绝对压力=大气压力+表压力; 真空度=大气压力-绝对压力. 1Mp=10pa 6,1bar=105pa.10,流体动量定理是研究流体控制体积在外力作用下的动量改变,通常用来求流体对管道和阀件的作用力;其矢量表达式为:F=)(12V V q dtdmv -=ρ;=F 222z y x f f f ++. f z y x f f ,,分别是F 在三个坐标上的图影。
(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压与气压传动总结(全)

一、名词解释1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。
)2.系统压力:(系统中液压泵的排油压力。
)3.运动粘度:(动力粘度μ和该液体密度ρ之比值。
)4.液动力:(流动液体作用在使其流速发生变化的固体壁面上的力。
)5.层流:(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。
)6.紊流:(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。
)7.沿程压力损失:(液体在管中流动时因粘性摩擦而产生的损失。
)8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象:(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
)10.液压冲击:(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
)11.气穴现象;气蚀:(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。
当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。
如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。
这种因空穴产生的腐蚀称为气蚀。
)12.排量:(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。
)13.自吸泵:(液压泵的吸油腔容积能自动增大的泵。
)14.变量泵:(排量可以改变的液压泵。
)15.恒功率变量泵:(液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。
(完整版)液压与气压传动知识点小结

【1】液压传动是以液体作为工作介质,利用液体的压力能来进行能量传递的传动方式。
【2】液压传动系统的组成:1,动力元件,将输入的机械能转换为油液的压力能。
2,执行元件,将油液的压力能转换为机械能。
3,控制元件,在液压系统中各种阀用来控制和调节个部分液体的压力,流量和方向,以满足及其的工作要求,完成一定的工作循环。
4,辅助元件,它们有储油用的油箱,过滤油液中杂质的滤油器,油管及管接头,密封件,冷却器和蓄能器等。
5,工作介质,即传动油液,通常采用液压油。
【3】液压传动的2个重要准则:1,液压传动中工作压力取决于外负载。
2,活塞的运动速度只取决于输入流量的大小,而与外负载无关。
【4】液压传动的优点:1,在相同输出功率的情况下,液压传动装置的重量轻,结构紧凑,惯性小。
2,能方便地再很大范围内实现无级调速。
3,操纵方便,易于控制。
4,液压传动工作安全性好,易于实现过载保护,系统发生的热量容易散发。
5,富裕的刚性。
6,负载保压容易。
7,很容易实现直线运动。
8,液压元件易于实现系列化,标准化和通用化,便于设计,制造,维修和推广使用。
液压传动的缺点:1,动力损失较大。
2,介质动力油对污染很敏感。
3,介质动力油性质敏感。
4,污染环境。
5,有系统破裂的危险性。
6,液压传动不能保证严格的传动比。
7,造价高。
8,使用和维修技术要求较高,出现故障时不易找出原因。
【1】液压冲击:液压系统中的流动油液突然变速活换向时,造成压力在某一瞬间急剧升高,产生一个油压峰值,并形成压力传播于充满油液管路的现象。
【2】气穴现象:在流动液体中,因某点处得压力降低而产生气泡,使系统系统中原来连续的油液变成不连续的状态,从而使液压装置产生噪声和振动使金属表面受到腐蚀的现象称气穴现象。
【1】液压泵的基本工作条件:1,它必须构成密封容积,并且这个密封容积只在不断地变化中能完成吸油和压油过程2,在密封容积增大的吸油过程中油箱必须与大气相通,这样液压泵在大气压力的作用下降油液吸入泵内,这是液压泵的吸油条件。
(完整版)液压与气压传动知识总结

(完整版)液压与气压传动知识总结液压与气压传动知识总结1、液压传动的工作原理是(帕斯卡)定律。
即密封容积中的液体既可以传递(力),又可以传递(运动)。
(帕斯卡、力、运动)2、、液压管路中的压力损失可分为两种,一种是(沿程压力损失),一种是(局部压力损失)。
(沿程压力损失、局部压力损失)3、液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。
(层流、紊流、雷诺数)4、我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。
(恩氏粘度、恩氏粘度计)5、在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现象称为(液压冲击)。
(液压冲击)6、齿轮泵存在径向力不平衡,减小它的措施为(缩小压力油出口)。
(缩小压力油出口)7、单作用叶片泵的特点是改变(偏心距e )就可以改变输油量,改变(偏心方向)就可以改变输油方向。
(偏心距e、偏心方向)8、径向柱塞泵的配流方式为(径向配流),其装置名称为(配流轴);叶片泵的配流方式为(端面配流),其装置名称为(配流盘)。
(径向配流、配流轴、端面配流、配流盘)9、v型密封圈由形状不同的(支撑环)环(密封环)环和(压环)环组成。
(支承环、密封环、压环)10、滑阀式换向阀的外圆柱面常开若干个环形槽,其作用是(均压)和(密封)。
(均压、密封)11、当油液压力达到预定值时便发出电信号的液-电信号转换元件是(压力继电器)。
(压力继电器)12、根据液压泵与执行元件的组合方式不同,容积调速回路有四种形式,即(变量泵-液压缸)容积调速回路(变量泵-定量马达)容积调速回路、(定量泵-变量马达)容积调速回路、(变量泵-变量马达)容积调速回路。
(变量泵-液压缸、变量泵-定量马达、定量泵-变量马达、变量泵-变量马达)13、液体的粘性是由分子间的相互运动而产生的一种(内摩擦力)引起的,其大小可用粘度来度量。
温度越高,液体的粘度越(小);液体所受的压力越大,其粘度越(大)。
液压与气压传动期末复习重点

一、填空题1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量)。
2.液压传动装置由动力元件、执行元件、控制元件和辅助元件四部分组成,其中(动力元件)和(执行元件)为能量转换装置。
3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体的流动状态可用(雷诺数)来判断。
4.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。
5.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分组成。
6.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2次方成正比。
通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作可调节流阀。
7.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。
8.变量泵是指(排量)可以改变的液压泵,常见的变量泵有(单作用叶片泵)、(径向柱塞泵)、(轴向柱塞泵)其中(单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。
9.液压泵的实际流量比理论流量(大);而液压马达实际流量比理论流量(小)。
10.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞与缸体、缸体与配油盘、滑履与斜盘)。
11.外啮合齿轮泵的排量与(模数)的平方成正比,与的(齿数)一次方成正比。
因此,在齿轮节圆直径一定时,增大(模数),减少(齿数)可以增大泵的排量。
12.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。
13.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。
14.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合)间隙,其中(端面)泄漏占总泄漏量的80%〜85%。
液压和气压传动考试重点

1.液压和气压传动系统的组成(1)动力装置(2)控制调节装置(3)执行元件(4)辅助装置(5)工作介质2.液压传动的特点优点:(1)与电动机相比,在同等体积下,液压装置能产生更大的动力,也就是说,在同等功率下,液压装置的体积小、重量轻、结构紧凑,即它具有大的功率密度或力密度,力密度在这里指工作压力。
(2)液压装置容易做到对速度的无级调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行。
(3)液压装置工作平稳,换向冲击小,便于实现频繁换向。
(4)液压装置易于实现过载保护,能实现自润滑,使用寿命长。
(5)液压装置易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调节和控制,并能很容易地和电气、电子控制或气压传动控制结合起来,实现复杂的运动和操作。
(6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用。
缺点:(1)由于液压传动中的泄漏和液体的可压缩性使这种传动无法保证严格的传动比。
(2)液压传动有较多的能量损失(泄漏损失、摩擦损失等),因此,传动效率相对低。
(3)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作。
(4)液压传动在出现故障时不易诊断。
3.气压传动的特点优点:(1)气压传动的工作介质是空气,它取之不尽用之不竭,用后的空气可以排到大气中去,不会污染环境。
(2)气压传动的工作介质粘度很低,所以流动阻力很小,压力损失小,便于集中供气和远距离输送。
(3)气压传动对工作环境适应性好,在易燃、易爆、多尘埃、强辐射、振动等恶劣工作环境下,仍能可靠地工作。
(4)气压传动动作速度及反应快,液压油在管道中流动速度一般为1 ~ 5 m/s,而气体流速可以大于10 m/s,甚至接近声速。
因此在0.02 ~ 0.03 s内即可以达到所要求的工作压力及速度。
(5)气压传动有较好的自保持能力。
即使压缩机停止工作,气阀关闭,气压传动系统仍可维持一个稳定压力。
而液压传动要维持一定的压力,需要能源工作或在系统中加蓄能器。
液压与气压传动总结(全)

一、名词解释1.帕斯卡原理(静压传递原理):(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。
)2.系统压力:(系统中液压泵的排油压力。
)3.运动粘度:(动力粘度μ和该液体密度ρ之比值。
)4.液动力:(流动液体作用在使其流速发生变化的固体壁面上的力。
)5.层流:(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。
)6.紊流:(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。
)7.沿程压力损失:(液体在管中流动时因粘性摩擦而产生的损失。
)8.局部压力损失:(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象:(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
)10.液压冲击:(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
)11.气穴现象;气蚀:(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。
当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。
如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。
这种因空穴产生的腐蚀称为气蚀。
)12.排量:(液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。
)13.自吸泵:(液压泵的吸油腔容积能自动增大的泵。
)14.变量泵:(排量可以改变的液压泵。
)15.恒功率变量泵:(液压泵的出口压力p与输出流量q的乘积近似为常数的变量泵。
液压传动知识点复习总结很全

液压与气压传动知识点复习总结(很全),基本慨念1, 液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质(液压油)组成2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是液压系统的两个重要参数 其功率N=PQ 3,液体静压力的两个基本特性是:静压力沿作用面内法线方向且垂直于受压面;液体中任一点压力大小与方位无关.4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数(Re=2000〜2200)判别,雷诺数(Re )其公式为 Re=VD/g ,(其中D 为 水力直径),圆管的水力直径为圆管的内经。
5液体粘度随工作压力增加而增大,随温度增加减少 变大,而受压力影响小;运动粘度与动力粘度的关系式为 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速A . d V 2 P A ' d V 2 P A K P v 2 A K P v 2A p =托 ---- A p = /» ----- A p = • ----- = u ----度的平方成正比. 12 l 2 , 2 2 .层流时R e R e的损失可通过理论求得几几=64 64 ;湍流时沿程损失其 "与Re 及管壁的 粗糙度有关;局部阻力系数E©由试验确定。
7,忽略粘性和压缩性的流体称理想流体,在重力场中理想流体定常流动的伯努利方程为 2 2 h=C (常数),即液流任意截面的压力水头, 速度水头和位置水头的总和为定值,但可以相互转化。
它是能量守恒定律在流 体中的应用;小孔流量公式q=C dd A ttY P 、P ;气体的粘度随温度上升而V = — V =—,其与粘度基本无关;细4 — 4一卜 ^■d —△长孔流量q=128H 128^1 P 。
平板缝隙流量q/曲「出三次方成正比,与压力的一次与方成正比. 8, 流体在管道流动时符合连续性原理,即AV i =心2 A i V i = A 1V 2,其速度与管道bh 3,其与间隙的过流面积成反比.流体连续性原理是质量守衡定律在流体中的应用9, 在重力场中,静压力基本方程为p=po+pgho+pgh ;压力表示:.绝对压力二大气压力+表压力; 真空度=大气压力-绝对压力.1Mp=5 5 1bar= 10 pa.10, 流体动量定理是研究流体控制体积在外力作用下的动量改变体对管道和阀件的作用力;其矢f x, f y,fzx, f y,fz 分别是F 在三个坐标上的图影。
液压与气压传动知识点总结

液压与气压传动知识点总结液压与气压传动知识点总结液压与气压传动有很多相关知识点,下面小编给大家整理了液压与气压传动知识点,欢迎阅读!1、液压传动的工作原理是(帕斯卡)定律。
即密封容积中的液体既可以传递(力),又可以传递(运动)。
(帕斯卡、力、运动)2、液压管路中的压力损失可分为两种,一种是(沿程压力损失),一种是(局部压力损失)。
(沿程压力损失、局部压力损失)3、液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。
(层流、紊流、雷诺数)4、我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。
(恩氏粘度、恩氏粘度计)5、在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现象称为(液压冲击)。
(液压冲击)6、齿轮泵存在径向力不平衡,减小它的措施为(缩小压力油出口)。
(缩小压力油出口)7、单作用叶片泵的特点是改变(偏心距e)就可以改变输油量,改变(偏心方向)就可以改变输油方向。
(偏心距e、偏心方向)8、径向柱塞泵的配流方式为(径向配流),其装置名称为(配流轴);叶片泵的配流方式为(端面配流),其装置名称为(配流盘)。
(径向配流、配流轴、端面配流、配流盘)9、V型密封圈由形状不同的(支撑环)环(密封环)环和(压环)环组成。
(支承环、密封环、压环)10、滑阀式换向阀的外圆柱面常开若干个环形槽,其作用是(均压)和(密封)。
(均压、密封)11、当油液压力达到预定值时便发出电信号的液-电信号转换元件是(压力继电器)。
(压力继电器)12、根据液压泵与执行元件的组合方式不同,容积调速回路有四种形式,即(变量泵-液压缸)容积调速回路(变量泵-定量马达)容积调速回路、(定量泵-变量马达)容积调速回路、(变量泵-变量马达)容积调速回路。
(变量泵-液压缸、变量泵-定量马达、定量泵-变量马达、变量泵-变量马达)13、液体的粘性是由分子间的相互运动而产生的一种(内摩擦力)引起的,其大小可用粘度来度量。
(完整版)液压与气压传动知识总结

液压与气压传动知识总结 1、液压传动的工作原理是(帕斯卡)定律。
即密封容积中的液体既可以传递(力),又可以传递(运动)。
(帕斯卡、力、运动) 2、、液压管路中的压力损失可分为两种,一种是(沿程压力损失),一种是(局部压力损失)。
(沿程压力损失、局部压力损失) 3、液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。
(层流、紊流、雷诺数) 4、我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。
(恩氏粘度、恩氏粘度计) 5、在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现象称为(液压冲击)。
(液压冲击) 6、齿轮泵存在径向力不平衡,减小它的措施为(缩小压力油出口)。
(缩小压力油出口) 7、单作用叶片泵的特点是改变(偏心距e )就可以改变输油量,改变(偏心方向)就可以改变输油方向。
(偏心距e、偏心方向) 8、径向柱塞泵的配流方式为(径向配流),其装置名称为(配流轴);叶片泵的配流方式为(端面配流),其装置名称为(配流盘)。
(径向配流、配流轴、端面配流、配流盘) 9、v型密封圈由形状不同的(支撑环)环(密封环)环和(压环)环组成。
(支承环、密封环、压环) 10、滑阀式换向阀的外圆柱面常开若干个环形槽,其作用是(均压)和(密封)。
(均压、密封) 11、当油液压力达到预定值时便发出电信号的液-电信号转换元件是(压力继电器)。
(压力继电器) 12、根据液压泵与执行元件的组合方式不同,容积调速回路有四种形式,即(变量泵-液压缸)容积调速回路(变量泵-定量马达)容积调速回路、(定量泵-变量马达)容积调速回路、(变量泵-变量马达)容积调速回路。
(变量泵-液压缸、变量泵-定量马达、定量泵-变量马达、变量泵-变量马达) 13、液体的粘性是由分子间的相互运动而产生的一种(内摩擦力)引起的,其大小可用粘度来度量。
温度越高,液体的粘度越(小);液体所受的压力越大,其粘度越(大)。
液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有 3 种:动力黏度,运动黏度,相对黏度。
4、液压油分为3 大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
《液压与气压传动》复习要点

《液压与气压传动》复习提纲第一篇液压传动(80%)绪论重点:掌握液压传动的工作原理1.掌握液压传动的工作原理;液压系统的组成。
(一)液压传动的基本知识重点:掌握液压油的主要物理性质;有关伯努利方程和压力损失计算:1.液压油的种类、选择方法、污染的原因;2.液压油的可压缩性和粘性的概念,粘度表示方法及单位,动力粘度的物理意义,运动粘度与牌号的关系。
3.液体静力学方程、压力的表示方法,液体静压传递原理。
4.流量、过流断面和流速的概念及关系式,液体的流动状态判断、雷诺数公式及物理意义;5.连续性方程、伯努利方程、动量方程;压力损失的种类及公式。
伯努利方程要求看懂例题会计算。
6.孔口的分类及孔口流量通式和缝隙中流动状态。
7.液压冲击、空穴现象的原因及减少措施。
(二)液压动力元件重点:各类泵的工作原理、结构特点及符号。
1.液压泵概述:液压泵的工作原理、构成液压泵的主要条件、液压泵的职能符号。
排量,理论流量,泵出口功率,总效率=机械效率×容积效率2.齿轮泵:齿轮泵的工作原理与结构特点。
(困油现象,径向力不平衡措施,泄漏,定量泵)。
3.叶片泵:单、双作用叶片泵的工作原理;结构特点。
(单作用叶片泵偏心距变量泵、双作用叶片泵同心安装定量泵)。
4.柱塞泵:径向柱塞泵、轴向柱塞泵,高压、变量泵。
5.液压泵的选用原则:最大流量(和)、最大压力。
(三)液压执行元件重点:单双出杆活塞式液压缸推力和速度的计算。
1.液压缸的分类(活塞式液压缸、柱塞式液压缸、其它缸);液压缸推力和速度的计算、液压缸的密封(方法)、缓冲(原理)及排气(原因)。
(四)液压控制元件重点:理解各类阀的工作原理,掌握各类阀的作用、特点及应用、各类阀的的符号画法。
1.单向控制阀:普通单向阀与液控单向阀特点、符号;换向阀的种类及符号画法、三位阀的中位机能(O、H、P、M)。
2.压力控制阀:溢流阀、减压阀和顺序阀的作用,特点及应用;压力继电器作用;符号画法。
(完整版)液压与气压传动知识点

(完整版)液压与气压传动知识点1、动力粘度的物理意义是单位速度梯度下的切应力。
2、静压力的基本方程为p=p o+p gh。
3、般齿轮啮合系数&必须大于1。
4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。
5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压6液压传动是利用液体的压力能来做功的。
7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。
8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。
9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。
其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。
10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。
11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。
12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。
13、油箱分总体式油箱和分离式油箱。
油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。
14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。
15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。
16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。
17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。
它能否实现双向变量?能。
18、油液的粘度随温度的升高而降低,随压力的升高而增加。
19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为方向控制阀、压力控制阀和流量控制阀。
20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。
2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。
3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。
2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。
4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。
5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。
6.粘温特性:温度升高,粘度显著下降的特性。
7.静止液体的压力性质:1)液体的压力沿着内法线方向上相等;2)静止液体内任一点处的压力在各个方向上都相等。
8.帕斯卡原理:在密闭容器内,施加于静止液体上的压力可以等值传递到液体内各点,也称静压传递原理。
9.理想液体:既无粘性又不可压缩的假想液体。
10.定常流动:液体流动时,如果液体中任一空间点处的压力、速度和密度等都不随时间变化,也称稳定流动或恒定流动;反之,则称为非定常流动。
11.理想液体的伯努利方程的物理意义:理想液体作恒定流动时具有压力能、位能和动能三种能量形式,在任一截面上这三种能量形式之间可以相互转换,但三者之和为一定值,即能量守恒。
12.压力损失可分为两类:沿程压力损失和局部压力损失。
13.沿程压力损失:液体在等径直管流动时,因摩擦和质点的相互扰动而产生的压力损失。
14.局部压力损失:液体流经管道的弯头、接头、突变截面以及阀口、滤网等局部装置时,液体方向和流速发生变化,在这些地方形成漩涡、气穴,并发生强烈的撞击现象,由此造成的压力损失。
15.液体在管道中流动时有两种流动状态:层流和紊流(湍流)。
16.紊流:液体的流速较高,粘性的制约作用减弱,惯性力起主导作用,完全紊乱的流动状态,液体的能量主要消耗在动能损失上。
17.空穴现象:在流动的液体中,如果某处的压力低于空气分离压时,原先溶解在液体中的空气就会分离出来,从而导致液体中出现大量的气泡,这种现象称为空穴现象。
18.气蚀:由于析出空气中有游离氧,对零件具有很强的氧化作用,引起元件的腐蚀,这些称为气蚀作用19.空穴现象的危害:1)引起噪声、振动等有害现象;2)液压系统受到空穴引起的液压冲击而造成零件的损坏。
另外,由于析出空气中有游离氧,对零件具有很强的氧化作用,引起元件的腐蚀,这些称为气蚀作用;3)引起流量的不连续及压力的波动,严重时甚至断流,使液压系统不能正常工作。
20.减少空穴现象和气蚀的措施:1)减小孔口或缝隙前后的压力降;2)降低泵的吸油高度,适当加大吸油管直径,限制吸油管的流速,尽量减小吸油管路中的压力损失。
对于自吸能力差的泵要安装辅助泵供油;3)管路要有良好的密封,防止空气进入;4)提高液压零件的抗气蚀能力,采用抗腐蚀能力强的金属材料,减小零件表面粗糙度值等。
21.液压冲击:在液压传动系统中,常常由于一些原因而使液体压力突然急剧上升,形成很高的压力峰值,这种现象称为液压冲击。
22.液压冲击的危害:1)使液压系统中的元件、管道、仪表等遭到破坏;2)液压冲击使压力继电器误发信号,干扰液压系统的正常工作,影响液压系统的工作稳定性和可靠性;3)液压冲击引起震动和噪声、连接件松动,造成漏油、压力阀调节压力改变。
23.液压冲击产生的原因:在阀门突然关闭或运动部件快速制动等情况下,液体在系统中的流动会突然受阻。
这时,由于液流的惯性作用,液体就从受阻端开始,迅速将动能逐层转换为液压能,因而产生了压力冲击波,产生液压冲击的本质是动量变化。
24.减小压力冲击的措施:1)尽可能延长阀门关闭和运动部件制动换向的时间;2)正确设计阀口,限制管道流速及运动部件速度,使运动部件制动时速度变化比较均匀;3)在某些精度要求不高的机械上,使液压缸两腔油路在换向阀回到中位时瞬时互通;4)适当加大管道直径,尽量缩短管道长度;5)采用软管,增加系统的弹性,以减少压力冲击。
25.液压泵是液压传动系统的动力装置,能量转换元件。
它们由原动机(电动机或内燃机等)驱动,把输入的机械能转换成油液的压力能再输出到系统中去,为执行元件提供动力。
它是液压传动传动系统的核心元件,其性能好坏将直接影响到系统是否正常工作。
26.液压泵的基本工作条件:1)它必须构成密封容积,并且这个密封容积在不断地变化中能完成吸油和压油过程;2)在密封容积增大的吸油过程中,油箱必须与大气相通(或保持一定的压力),这样,液压泵在大气压力的作用下将油液吸入泵内,这是液压泵的吸油条件;3)吸、压油腔要互相分开并且有良好的密封性。
27.液压泵的压力参数主要是工作压力和额定压力。
28.工作压力:是指液压泵在实际工作时输出油液的压力值,即泵出油口处压力值,也称系统压力。
29.额定压力:是指在保证液压泵的容积效率、使用寿命和额定转速的前提下,泵连续长期运转时允许使用的压力最大限定值。
30.流量是指单位时间内泵输出油液的体积,单位为m3/s和L/min。
31.排量是由泵密封容腔几何尺寸变化计算而得到的泵每转排出油液的体积,单位mL/r。
32.效率:因泄漏而产生的损失是容积损失,因摩擦而产生的损失是机械损失。
33.容积效率伊塔pv:是液压泵实际流量与理论流量之比。
34.机械效率伊塔pm:是泵所需要的理论转矩T t与实际转矩T之比。
35.总效率伊塔p:是泵输出功率P o与输入功率P i之比。
36.齿轮泵:主要特点是结果简单,制造方便,成本低,价格低廉,体积小,重量轻,自吸性能好,对油液污染不敏感和工作可靠;主要缺点是流量和压力脉动大,噪声大,排量不可调节(是定量泵)。
37.齿轮在啮合过程中由于啮合点位置不断变化,吸、压油枪在每一瞬时的容积变化率是不均匀的,所以齿轮泵的瞬时流量是脉动的。
38.齿轮泵(低压泵)的结构特点:1)泄漏泵体内表面和齿顶径向间隙的泄漏、齿面啮合处间隙的泄漏、齿轮端面间隙的泄漏(解决措施:选择适当的间隙进行控制,通常轴向间隙控制在0.03-0.04mm,径向间隙控制在0.13-0.16mm,高压齿轮泵往往通过在泵的前、后端盖间增设浮动轴套或浮动侧板的结构措施,以实现轴向间隙的自动补偿);2)液压径向不平衡力(解决措施:a缩小压油口的直径;b增大泵体内表面与齿轮齿顶圆的间隙,使齿轮在径向不平衡力的作用下,齿顶也不能和泵体相接触;c开压力平衡槽)3)困油现象(消除困油方法:在两端盖板上开一对矩形卸荷槽39.困油现象:齿轮泵两齿轮同时啮合时,有一部分油液困在两对齿轮所形成的封闭容腔内,封闭容腔随着齿轮的转动,先减小后增大,容腔减小时,油液压力增大,有一部分油液从缝隙流出,油温升高,轴承等元件受到不平衡负载作用,封闭容腔的增大会造成局部真空,是溶于油液中的气体分离出来,产生空穴,这就是困油现象。
40.叶片泵(中压泵):具有结构紧凑、流量均匀、噪声小、运转平稳等优点,结构复杂、吸油能力差、对油液污染比较敏感等缺点。
41.叶片泵按其结构来分有单作用式和双作用式两大类。
42.单作用式主要作变量泵(有偏心距,叶片取奇数);双作用式作定量泵(叶片数一般取偶数12或16),其径向力平衡,流量均匀、寿命长,有其独特的优点。
43.限压式变量叶片泵:1)外反馈限压式变量叶片泵:是由出油口引出的压力油作用在柱塞上来控制变量的;2)内反馈限压式变量叶片泵:是依靠压油腔压力直接作用在定子上来控制变量的。
44.柱塞泵特点(变量泵、高压泵):1)工作压力高2)易于变量3)流量范围大;其缺点是对油污染敏感、滤油精度要求高、结构复杂、加工精度高、价格较高等缺点。
45.柱塞泵按其柱塞排列方式不同,可分为径向柱塞泵和轴向柱塞泵两大类。
46.泵是动力元件,马达是执行元件。
47.活塞式缸可分为双杆活塞缸和单杆活塞缸两种结构形式。
其固定方式有缸筒固定和活塞杆固定两种。
48.差动连接:当向单杆活塞缸两腔内通入相同压力的流体时,无杆腔受力面积大于有杆腔时,使得活塞向右作用力大于向左作用力,因此活塞做伸出运动,并将有杆腔流体挤出流入无杆腔,加快活塞的伸出速度,这种连接方式成为……49.摆动缸结构紧凑,输出转矩大,但密封困难,一般只用在低中压系统中作往复摆动、转位或间歇运动的工作场合。
50.设置缓冲装置的原因:当缸拖动负载的质量较大、速度较高时,必要时还需要在液压传动系统中设置缓冲回路,以免在行程终端发生过大的机械碰撞,致使缸损坏。
51.无论是哪类阀对它们的基本要求都是动作灵敏,使用可靠,密封性能好,结构紧凑,安装调整、使用维护方便,通用性强等。
52.控制阀按用途分类:方向控制阀、压力控制阀和流量控制阀。
53.控制阀的性能参数:额定压力和额定流量。
54.方向控制阀的主要作用是控制系统中流体的流动方向,其工作原理是利用阀心和阀体之间相对位置的改变来实现通道的接通或断开,以满足系统对通道的不同要求。
55.滑阀的中位机能:三位滑阀在中间位置时各通道的连接状态称为滑阀的中位机能。
56.压力控制阀:用于实现系统压力控制的阀统称为压力控制阀。
常用的压力控制阀有溢流阀、减压阀、顺序阀和压力继电器等。
(它们都是利用流体的压力与阀内的弹簧力相平衡的原理来工作的)57.溢流阀用途:1)用于调压,当系统压力超过或等于溢流阀的调定压力时,系统的液体或气体通过阀口溢出一部分,保证系统压力恒定;2)在系统中作安全阀用,在系统正常工作时,溢流阀处于关闭状态,只有在系统压力大于或等于其58.先导式溢流阀是由先导调压阀(调压作用)和溢流阀(溢流作用)两部分组成。
59.定值减压阀作用:使进入阀体的压力减低后输出,并保持输出的压力值恒定。