指派问题的匈牙利法

合集下载

匈牙利法解决人数及任务数不等的指派问题

匈牙利法解决人数及任务数不等的指派问题

匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给岀了该类问题的求解方法。

关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同:有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少, 产生的总效益最佳。

我们把这类最优匹配问题称为指派问题或分配问题。

1. 指派问题的解法——匈牙利法早在1955年库恩(w.w.ku.hn)就提出了指派问题的解法,该方法是以匈牙利数学家康尼格(koning)提岀的一个关于矩阵中0元素的定理为基础,因此得爼匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。

而指派问题的最优解又有这样的性质:若从系数矩阵C (ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB (ij),那么以CB (ij)为系数矩阵求得的最优解和原系数矩阵C (ij)求得的最优解相同。

由于经过初等变换得到的新矩阵CB (ij)中每行(列)的最小元素均为"O”,因此求原指派问题C (ij)的最优方案就等于在新矩阵CB (ij)中找出n个分布于不同行不同列的"O”元素(简称为“独立O元素”),这些独立O元素就是CB (ij)的最优解,同时与其对应的原系数矩阵的最优解。

匈牙利法求解指派问题

匈牙利法求解指派问题

然后划去所在的列的其他0 元素,记作Ø。
Ø 13 7 0 6 6 9 5 3 2 Ø1 0 0
➢给只有一个0元素的列的0 元素加圈,记。
Ø 13 7 0 6 6 9 5 3 2 Ø 1 0
然后划去所在的行的其他0元 素,记作Ø
Ø 13 7 0 6 6 9 5 3 2 Ø 1 Ø
➢给最后一个0元素加圈, 记。
Ø 13 7 6 6 9 5 3 2 Ø 1 Ø
可见m=n=4,得到最优解。
0001 0100 1000 0010
即甲译俄文、乙译日文、丙 译英文、丁译德文所需时间 最少。Z=28小时
例6 分配问题效率矩阵
任务 A B C D E 人员
甲 12 7 9 7 9 乙8 9 6 6 6 丙 7 17 12 14 9 丁 15 14 6 6 10 戊 4 10 7 10 9
12 7 9 7 9 7 89666 6 7 17 12 14 9 7 15 14 6 6 10 6 4 10 7 10 9 4
50202 23000 0 10 5 7 2 98004 06365
➢从只有一个0元素的行开始,给 这个0元素加圈,记
50202 23000
10 5 7 2
98004 06365
然后划去所在的列的其他0元素,记 作Ø。
70202 4 3 000 Ø 8350 11 8 0 0 4 4 1 4 3
➢从只有一个0元素的行开始,给这个0 元素加圈,记
70202 4 3 000 Ø 8 3 5 11 8 0 0 4 4 1 4 3
然后划去所在的列的其他0元素,记 作Ø。
70202 4 3 00Ø Ø 8 3 5 11 8 0 0 4 4 1 4 3

匈牙利算法步骤和公式

匈牙利算法步骤和公式

匈牙利算法是一种求解指派问题的算法,其步骤如下:对指派问题的系数矩阵进行变换,使每行每列至少有一个元素为“0”。

具体做法是让系数矩阵的每行元素去减去该行的最小元素,再让系数矩阵的每列元素减去该列的最小元素。

从第一行开始,若该行只有一个零元素,就对这个零元素加括号,对加括号的零元素所在的列画一条线覆盖该列。

若该行没有零元素或者有两个以上零元素(已划去的不算在内),则转下一行,依次进行到最后一行。

从第一列开始,若该列只有一个零元素。

就对这个零元素加括号(同样不、考虑已划去的零元素)。

再对加括号的零元素所在行画一条直线覆盖该列。

若该列没有零元素或有两个以上零元素,则转下一列,依次进行到最后一列为止。

重复上述步骤(1)和(2)可能出现3种情况:(5)按定理进行如下变换:①从矩阵未被直线覆盖的数字中找出一个最小的k;②当矩阵中的第i行有直线覆盖时,令;无直线覆盖时。

指派问题匈牙利算法最大值

指派问题匈牙利算法最大值

指派问题匈牙利算法最大值
指派问题是一个优化问题,旨在确定如何将 n 个任务分配给 n 个人员,以便完成总成本最小或总利润最大。

匈牙利算法是解决指派问题的经典算法之一,通过寻找增广路径来找到最大权值的匹配。

在指派问题中,我们有一个 n x n 的成本矩阵,其中的每个元素表
示将特定任务分配给特定人员的成本或利润。

问题的目标是找到一种分配方式,使得总成本最小或总利润最大。

匈牙利算法是一种基于图论的算法,它通过构建二分图和寻找增广路径来解决指派问题。

算法的核心思想是通过不断改进当前的匹配,直到找到最优解。

具体来说,匈牙利算法的步骤如下:
1. 初始化一个空的匹配集合。

2. 对于每个任务,找到一个未被分配的人员,并将其分配给该任务。

如果该任务没有未被分配的人员,则考虑将其他任务分配给当前人员,并将当前任务分配给其它人员。

3. 如果存在一个未被匹配的任务,寻找一条从该任务出发的增广路径。

增广路径是一条交替经过匹配边和非匹配边的路径,起点和终点都是未匹配的任务。

4. 如果存在增广路径,则改进当前的匹配,即通过将增广路径上的
非匹配边变为匹配边,并将增广路径上的匹配边变为非匹配边。

5. 重复步骤3和步骤4,直到不存在增广路径为止。

匈牙利算法的运行时间复杂度为 O(n^3),其中 n 是任务或人员的数量。

该算法可以找到指派问题的最优解,并且在实践中表现良好。

总之,指派问题是一个重要的优化问题,而匈牙利算法是一种解决指派问题的经典算法。

通过构建二分图并寻找增广路径,匈牙利算法可以找到指派问题的最优解。

指派问题的最优解法

指派问题的最优解法

指派问题的最优解法指派问题是一个最优化问题,在给定若干个任务和执行者(或机器)的情况下,要求将每个任务指派给一个执行者,并使得总体的执行成本或者效益最优。

指派问题可以用匈牙利算法(Hungarian algorithm)或者KM算法(Kuhn-Munkres algorithm)来求解,这两个算法是目前被广泛采用的指派问题求解方法。

匈牙利算法是一个具有全局优势的贪心算法,它通过不断优化当前的局部选择,最终得到全局最优解。

其基本思想是通过给任务和执行者之间的边标注权重,然后选取最小权重的边进行指派,如果发现某个任务或者执行者已经被指派,就将其它相关的边进行更新,并继续寻找最小权重的边进行指派,直到所有的任务都得到指派。

KM算法是匈牙利算法的一种更加高效的变体。

它首先将指派问题转化为一个最大权匹配问题,然后通过不断调整边的权重,使得每次迭代都可以找到一个指派边的增广路径,并更新相应的匹配结果。

KM算法的核心思想是通过对匹配结果进行调整,减小局部优势并增加全局优势。

无论是匈牙利算法还是KM算法,在最坏情况下的时间复杂度都是O(n^3),其中n表示任务和执行者的数量。

这两个算法的主要区别在于实现的复杂度和算法的效率,KM算法相对于匈牙利算法来说具有更好的性能。

除了匈牙利算法和KM算法之外,还有一些其他的指派问题求解方法,例如启发式搜索、遗传算法等。

这些方法一般适用于指派问题的规模比较大、复杂度比较高的情况下,但是相对于匈牙利算法和KM算法,它们的效率和准确性可能会有所降低。

总之,指派问题的最优解法可以通过匈牙利算法或者KM算法来求解,具体选择哪一种方法可以根据问题的规模和复杂度来决定。

求解指派问题的匈牙利算法.doc

求解指派问题的匈牙利算法.doc

3.2 求解指派问题的匈牙利算法由于指派问题的特殊性,又存在着由匈牙利数学家D.Konig 提出的更为简便的解法—匈牙利算法。

算法主要依据以下事实:如果系数矩阵)(ij c C =一行(或一列)中每一元素都加上或减去同一个数,得到一个新矩阵)(ij b B = ,则以C 或B 为系数矩阵的指派问题具有相同的最优指派。

利用上述性质,可将原系数阵C 变换为含零元素较多的新系数阵B ,而最优解不变。

若能在B 中找出n 个位于不同行不同列的零元素,令解矩阵中相应位置的元素取值为1,其它元素取值为零,则所得该解是以B 为系数阵的指派问题的最优解,从而也是原问题的最优解。

由C 到B 的转换可通过先让矩阵C 的每行元素均减去其所在行的最小元素得矩阵D ,D 的每列元素再减去其所在列的最小元素得以实现。

下面通过一例子来说明该算法。

例7 求解指派问题,其系数矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=16221917171822241819211722191516C 解 将第一行元素减去此行中的最小元素15,同样,第二行元素减去17,第三行元素减去17,最后一行的元素减去16,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=06310157124074011B 再将第3列元素各减去1,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=****20531005711407301B 以2B 为系数矩阵的指派问题有最优指派⎪⎪⎭⎫ ⎝⎛43124321 由等价性,它也是例7的最优指派。

有时问题会稍复杂一些。

例8 求解系数矩阵C 的指派问题⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=61071041066141512141217766698979712C 解:先作等价变换如下∨∨∨⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----- 2636040*08957510*00*0032202*056107104106614151214121776669897971246767 容易看出,从变换后的矩阵中只能选出四个位于不同行不同列的零元素,但5=n ,最优指派还无法看出。

分配问题指派问题与匈牙利法课件

分配问题指派问题与匈牙利法课件
➢现问:如何确定一个分派工人去工作的方案,使得工人们 完成工作的总时间为最少。
分派方案满足下述两个条件:
• 任一个工人都不能去做两件或两件以上的工作 1.任一件工作都不能同时接受两个及以上的工人去做
分配问题指派问题与匈牙利法课件
标准形式的分配问题
n个人 n件事
每件事必有且只有一个人去做 每个人必做且只做一件事
5 0 2 0 2
2
3
0
0
0
0 10 5 7 2
9
8
0
0
4
0 6 3 6 5
圈0个数4 < n=5
5 0 2 0 2
2
3
0
0
0
0 10 5 7 2
9
8
0
0
4
0 6 3 6 5
分配问题指派问题与匈牙利法课件
⑥找未被直线覆盖的最小数字k;
⑦对矩阵的每行:当该行有直线覆盖时,令ui=0; 当 该 行 无 直 线 覆 盖 时 , 令 ui=k 。
⑩再次寻找独立零元素
逐列检验
4 8 7 15 12
7 9 17 14 10
6
9
12
8
7
6 7 14 6 10
6
9
12
10
6
0 3 0 11 8
0 0 6 6 2
0
1
2
1
0
0 0 5 0 4
0
2
3
4
0
0 0 1 0 0
0 1 0 0 0
0
0
0
0
1
0 0 0 1 0
分配问题指派问题与匈牙利法课件
数学模型

指派问题的匈牙利法讲课稿

指派问题的匈牙利法讲课稿

√√

l =m=4 < n=5
1 ◎0 3 1 3 √ 0 0 3 0 3
2
6
◎0
3
Ø0

1
6
0
2
0
4 2 Ø0 1 3 √ 3 2 0 0 3
3
Ø0 2
4
◎0

2
0
2
3
0
◎0 3 3 Ø0 5 0 4 4 0 6
√√

0 0 3 0 3
1
6
0
2
0
3 2 0 0 3
1
6
0Ø 2
◎0
3 2 0◎ 0Ø 3
2
◎0
2
3
Ø0
0◎ 4 4 0Ø 6
用匈牙利法求解下列指派问题,已知效率矩 阵分别如下:
7 9 10 12
1
3
12
16
1
7
15 16 14 15
1 1 1 2 1 5 1 6
3 8 2 10 3
8
7
2
9
7
6 4 2 7 5
8 4 2 3 5
2
60ຫໍສະໝຸດ 3026
◎0
3
Ø0

4 2 0 1 3 4 2 Ø0 1 3 √
3
0
2
4
0
3
Ø0
2
4
◎0

0 3 3 0 5 ◎0 3 3 Ø0 5
√√

1 ◎0 3 1 3 √
2
6
◎0
3
Ø0

4 2 Ø0 1 3 √
3
Ø0

第五章 匈牙利法与最佳指派问题

第五章 匈牙利法与最佳指派问题

7 2 2
4
3
8 3 5 3
11 8
4
4 1 4
情况一出现,即得到了最优解,其相应的解矩阵为:
0 1 0 0 0
0 0 1 0 0
xij
1
0
0
0
0
0 0 0 1 0
0 0 0 0 1
由此得知最优指派方案为甲完成任务B,乙完成任务
C,丙完成任务A,丁完成任务D,戊完成任务E,最少时
间为
min z 7 6 7 6 6 32
而总的最少时间为32天.
当然,由于方法中的第二步4中的情况二的出现,造成 指派问题的最优解常常是不唯一的,但不同最优解的 最优值总是相同的.
第三节 非标准指派问题
前一节的匈牙利法只适用于目标函数为极小、价值 系数矩阵为方阵且价值系数矩阵中元素均为非负的情况。 当指派问题不满足上述三个条件时,就应先化成标准的 指派问题,然后再用匈牙利法求解.
解:
ABC DEF
甲 16 10 12 15 0 0 8 2
甲 16 10 12 15 0 0
8
2
乙 11 12 10 18 0 0 3 2 3

11
12
10
18
0
0
3
2
3
丙 8 17 13 16 0 0 7 3 1

8
17 13 16
0
0
7
3
1
8 10 10 15
本例经过反复的行、列检验后得到如下矩阵:
5 2 2
2
3
10 5 7 5
9
8
4
6 3 6 2
情况三出现,亦即未得到完全分配方案,求解过程 按以下步骤继续进行。

指派问题匈牙利算法步骤

指派问题匈牙利算法步骤

匈牙利算法是解决二分图最大匹配问题的经典算法。

以下是匈牙利算法的步骤:
初始化:创建一个二分图,并将所有边的匹配状态初始化为未匹配。

选择一个未匹配的左侧顶点作为起始点,开始进行增广路径的寻找。

在增广路径的寻找过程中,首先选择一个未访问的左侧顶点作为当前路径的起点。

针对当前路径的起点,依次遍历与其相邻的右侧顶点。

对于每个右侧顶点,如果该顶点未被访问过,则标记为已访问,并判断该顶点是否已匹配。

如果该右侧顶点未匹配,则找到了一条增广路径,结束路径的寻找过程。

如果该右侧顶点已匹配,将其与之匹配的左侧顶点标记为已访问,并继续寻找与该左侧顶点相邻的右侧顶点,构建新的路径。

如果当前路径无法找到增广路径,则回溯到上一个路径的起点,并继续寻找其他路径。

当所有的路径都无法找到增广路径时,算法结束。

根据最终得到的匹配结果,即可得到二分图的最大匹配。

这些步骤描述了匈牙利算法的基本流程。

具体实现时,可以采用递归或迭代的方式来寻找增广路径,通过标记顶点的访问状态来进行路径的选择和回溯。

算法的时间复杂度为O(V*E),其中V是顶点的数量,E是边的数量。

指派问题的匈牙利解法

指派问题的匈牙利解法

指派问题的匈牙利解法1、 把各行元素分别减去本行元素的最小值;然后在此基础上再把每列元素减去本列中的最小值。

⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 4 3 2 04 0 5 0 01 2 3 2 03 7 7 1 08 11 0 3 06 10 12 9 610 6 14 7 67 8 12 9 61014 17 9 712 15 7 8 4 此时每行及每列中肯定都有0元素了。

2、 确定独立零元素,并作标记。

(1)、首先逐行判断是否有含有独立0元素的行,如果有,则按行继续处理;如没有,则要逐列判断是否有含有独立0元素的列,若有,则按列继续处理。

若既没有含有独立0元素的行,也没有含有独立0元素的列,则仍然按行继续处理。

(2)在按行处理时,若某行有独立0元素,把该0元素标记为a ,把该0所在的列中的其余0元素标记为b ;否则,暂时越过本行,处理后面的行。

把所有含有独立0元素的行处理完毕后,再回来处理含有2个以及2个以上的0元素的行:任选一个0做a 标记,再把该0所在行中的其余0元素及所在列中的其余0元素都标记为b 。

(3)在按列处理时,若某列有独立0元素,把该0元素标记为a ,把该0所在的行中的其余0元素标记为b ;否则,暂时越过本列,处理后面的列。

把所有含有独立0元素的列处理完毕后,再回来处理含有2个以及2个以上的0元素的列:任选一个0做a 标记,再把该0所在列中的其余0元素及所在行中的其余0元素都标记为b 。

(4)、重复上述过程,即得到独立零元素(标记a 的“0”)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a b b a b b a 04 3 2 04 05 0 01 2 3 2 037 7 1 08 11 0 3 0a b 3、 若独立零元素等于矩阵阶数,则已经得到最优解,若小于矩阵阶数,则继续以下步骤:(1)、对没有标记a 的行作标记c(2)、在已作标记c 的行中,对标记b 所在列作标记c(3)、在已作标记c 的列中,对标记a 所在的行作标记c(4)、对没有标记c 的行划线,对有标记c 的列划线4、 在未被直线覆盖的所有元素中找出一个最小元素(Xmin ),未被直线覆盖的行(或列)中所有元素都减去这个数。

指派问题——匈牙利法共34页文档

指派问题——匈牙利法共34页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
指派问题——匈牙利法
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

运筹学指派问题的匈牙利法

运筹学指派问题的匈牙利法

运筹学课程设计指派问题的匈牙利法专业:姓名:学号:1.算法思想:匈牙利算法的基本思想是修改效益矩阵的行或列,使得每一行或列中至少有一个为零的元素,经过修正后,直至在不同行、不同列中至少有一个零元素,从而得到与这些零元素相对应的一个完全分配方案。

当它用于效益矩阵时,这个完全分配方案就是一个最优分配,它使总的效益为最小。

这种方法总是在有限步內收敛于一个最优解。

该方法的理论基础是:在效益矩阵的任何行或列中,加上或减去一个常数后不会改变最优分配。

2.算法流程或步骤:1.将原始效益矩阵C的每行、每列各元素都依次减去该行、该列的最小元素,使每行、每列都至少出现一个0元素,以构成等价的效益矩阵C’。

2.圈0元素。

在C’中未被直线通过的含0元素最少的行(或列)中圈出一个0元素,通过这个0元素作一条竖(或横)线。

重复此步,若这样能圈出不同行不同列的n个0元素,转第四步,否则转第三步。

3.调整效益矩阵。

在C’中未被直线穿过的数集D中,找出最小的数d,D中所有数都减去d,C’中两条直线相交处的数都加的d。

去掉直线,组成新的等价效益矩阵仍叫C’,返回第二步。

X=0,这就是一种最优分配。

最低总4.令被圈0元素对应位置的X ij=1,其余ij耗费是C中使X=1的各位置上各元素的和。

ij算法流程图:3.算法源程序:#include<iostream.h>typedef struct matrix{float cost[101][101];int zeroelem[101][101];float costforout[101][101];int matrixsize;int personnumber;int jobnumber;}matrix;matrix sb;int result[501][2];void twozero(matrix &sb);void judge(matrix &sb,int result[501][2]);void refresh(matrix &sb);void circlezero(matrix &sb);matrix input();void output(int result[501][2],matrix sb);void zeroout(matrix &sb);matrix input(){matrix sb;int m;int pnumber,jnumber;int i,j;float k;char w;cout<<"指派问题的匈牙利解法:"<<endl;cout<<"求最大值,请输入1;求最小值,请输入0:"<<endl;cin>>m;while(m!=1&&m!=0){cout<<"请输入1或0:"<<endl;cin>>m;}cout<<"请输入人数(人数介于1和100之间):"<<endl;cin>>pnumber;while(pnumber<1||pnumber>100){cout<<"请输入合法数据:"<<endl;cin>>pnumber;}cout<<"请输入工作数(介于1和100之间):"<<endl;cin>>jnumber;while(jnumber<1||jnumber>100){cout<<"请输入合法数据:"<<endl;cin>>jnumber;}cout<<"请输入"<<pnumber<<"行"<<jnumber<<"列的矩阵,同一行内以空格间隔,不同行间以回车分隔,以$结束输入:\n";for(i=1;i<=pnumber;i++)for(j=1;j<=jnumber;j++){cin>>sb.cost[i][j];sb.costforout[i][j]=sb.cost[i][j];}cin>>w;if(jnumber>pnumber)for(i=pnumber+1;i<=jnumber;i++)for(j=1;j<=jnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}else{if(pnumber>jnumber)for(i=1;i<=pnumber;i++)for(j=jnumber+1;j<=pnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}}sb.matrixsize=pnumber;if(pnumber<jnumber)sb.matrixsize=jnumber;sb.personnumber=pnumber;sb.jobnumber=jnumber;if(m==1){k=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]>k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=k-sb.cost[i][j];}return sb;}void circlezero(matrix &sb){int i,j;float k;int p;for(i=0;i<=sb.matrixsize;i++)sb.cost[i][0]=0;for(j=1;j<=sb.matrixsize;j++)sb.cost[0][j]=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0){sb.cost[i][0]++;sb.cost[0][j]++;sb.cost[0][0]++;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(i=1;i<=sb.matrixsize;i++){if(sb.cost[i][0]==1){for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[0][j]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}}}for(j=1;j<=sb.matrixsize;j++){if(sb.cost[0][j]==1){for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[i][0]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[i][p]==0&&sb.zeroelem[i][p]==0){sb.zeroelem[i][p]=2;sb.cost[i][0]--;sb.cost[0][p]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}void twozero(matrix &sb){int i,j;int p,q;int m,n;float k;matrix st;for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][0]>0)break;if(i<=sb.matrixsize){for(j=1;j<=sb.matrixsize;j++){st=sb;if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0){sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;for(q=1;q<=sb.matrixsize;q++)if(sb.cost[i][q]==0&&sb.zeroelem[i][q]==0){sb.zeroelem[i][q]=2;sb.cost[i][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(p=i+1;p<=sb.matrixsize;p++){if(sb.cost[p][0]==1){for(q=1;q<=sb.matrixsize;q++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][0]--;sb.cost[0][q]--;sb.cost[0][0]--;for(m=1;m<=sb.matrixsize;m++)if(sb.cost[m][q]=0&&sb.zeroelem[m][q]==0){sb.zeroelem[m][q]=2;sb.cost[m][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}}}for(q=1;q<=sb.matrixsize;q++){if(sb.cost[0][q]==1){for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][q]--;sb.cost[0][q]--;sb.cost[0][0]--;for(n=1;n<=sb.matrixsize;n++)if(sb.cost[p][n]==0&&sb.zeroelem[p][n]==0){sb.zeroelem[p][n]=2;sb.cost[p][0]--;sb.cost[0][n]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}sb=st;}}}void judge(matrix &sb,int result[501][2]){int i,j;int m;int n;int k;m=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)m++;if(m==sb.matrixsize){k=1;for(n=1;n<=result[0][0];n++){for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)break;if(i<=sb.personnumber&&j<=sb.jobnumber)if(j!=result[k][1])break;k++;}if(i==sb.matrixsize+1)break;elsek=n*sb.matrixsize+1;}if(n>result[0][0]){k=result[0][0]*sb.matrixsize+1;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){result[k][0]=i;result[k++][1]=j;}result[0][0]++;}}else{refresh(sb);}}void refresh(matrix &sb){int i,j;float k;int p;k=0;for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=1;break;}}while(k==0){k=1;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][0]==0){sb.zeroelem[i][0]=2;for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==2){sb.zeroelem[0][j]=1;}}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==1){sb.zeroelem[0][j]=2;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=0;k=0;}}}}p=0;k=0;for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2){for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]!=2)if(p==0){k=sb.cost[i][j];p=1;}else{if(sb.cost[i][j]<k)k=sb.cost[i][j];}}}}for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==2)for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]+k;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;circlezero(sb);}void zeroout(matrix &sb){int i,j;float k;for(i=1;i<=sb.matrixsize;i++){k=sb.cost[i][1];for(j=2;j<=sb.matrixsize;j++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){k=sb.cost[1][j];for(i=2;i<=sb.matrixsize;i++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]-k;}}void output(int result[501][2],matrix sb) {int k;int i;int j;int p;char w;float v;v=0;for(i=1;i<=sb.matrixsize;i++){v=v+sb.costforout[i][result[i][1]];}cout<<"最优解的目标函数值为"<<v;k=result[0][0];if(k>5){cout<<"解的个数超过了限制."<<endl;k=5;}for(i=1;i<=k;i++){cout<<"输入任意字符后输出第"<<i<<"种解."<<endl;cin>>w;p=(i-1)*sb.matrixsize+1;for(j=p;j<p+sb.matrixsize;j++)if(result[j][0]<=sb.personnumber&&result[j][1]<=sb.jobnumber)cout<<"第"<<result[j][0]<<"个人做第"<<result[j][1]<<"件工作."<<endl;}}void main(){result[0][0]=0;sb=input();zeroout(sb);circlezero(sb);output(result,sb);}4. 算例和结果:自己运算结果为:->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3302102512010321->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡330110241200032034526635546967562543----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡可以看出:第1人做第4件工作;第2人做第1件工作;第3人做第3件工作;第4人做第2件工作。

指派问题匈牙利算法最大值

指派问题匈牙利算法最大值

指派问题匈牙利算法最大值
匈牙利算法(匈牙利算法,也被称为“插入-删除算法”或“排序算法”)是一种整数排序算法,在指派问题中可以将一个整数数组按照一定规则排序,使得所有指派中最大的元素出现的位置都不相同。

以下是匈牙利算法在解决指派问题的最大值问题的步骤:
1. 将数组分为两个部分,左半部分尽可能地小,右半部分尽可能地大。

2. 从右半部分开始,将一个元素与它的指派对象的最大值进行
比较。

如果两个元素之间的指派关系不符合要求,就将它们交换位置。

3. 接下来,从左边半部分开始,将一个元素与它的指派对象的最大值进行比较。

如果两个元素之间的指派关系不符合要求,就将它们交换位置。

4. 重复步骤2和步骤3,直到左半部分的最大值与右半部分的最大值相等。

5. 在最右半部分找到最大的元素,将它与左半部分的最大值交换。

6. 重复步骤1到步骤5,直到数组中的所有元素都被排序。

匈牙利算法的时间复杂度为O(nlogn),其中n为数组的长度。

在实际应用中,该算法通常用于小规模数据的排序,对于大规模数据的
排序则需要使用更高效的算法。

匈牙利法解决人数及任务数不等的指派问题

匈牙利法解决人数及任务数不等的指派问题

匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给出了该类问题的求解方法。

关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同;有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少,产生的总效益最佳。

我们把这类最优匹配问题称为指派问题或分配问题。

1.指派问题的解法——匈牙利法早在1955年库恩(,该方法是以匈牙利数学家康尼格(koning)提出的一个关于矩阵中0元素的定理为基础,因此得名匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。

而指派问题的最优解又有这样的性质:若从系数矩阵C(ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB(ij),那么以CB(ij)为系数矩阵求得的最优解和原系数矩阵C(ij)求得的最优解相同。

由于经过初等变换得到的新矩阵CB(ij)中每行(列)的最小元素均为“○”,因此求原指派问题C(ij)的最优方案就等于在新矩阵CB(ij)中找出n个分布于不同行不同列的“○”元素(简称为“独立○元素”),这些独立○元素就是CB(ij)的最优解,同时与其对应的原系数矩阵的最优解。

1.2匈牙利法的具体步骤第一步:使指派问题的系数矩阵经过变换在各行各列中都出现○元素。

指派问题与匈牙利解法

指派问题与匈牙利解法

指派问题与匈⽛利解法指派问题概述:实际中,会遇到这样的问题,有n项不同的任务,需要n个⼈分别完成其中的1项,每个⼈完成任务的时间不⼀样。

于是就有⼀个问题,如何分配任务使得花费时间最少。

通俗来讲,就是n*n矩阵中,选取n个元素,每⾏每列各有1个元素,使得和最⼩。

如下图:指派问题性质:指派问题的最优解有这样⼀个性质,若从矩阵的⼀⾏(列)各元素中分别减去该⾏(列)的最⼩元素,得到归约矩阵,其最优解和原矩阵的最优解相同.匈⽛利法:12797989666717121491514661041071091.⾏归约:每⾏元素减去该⾏的最⼩元素502022300001057298004063652.列归约:每列元素减去该列的最⼩元素502022300001057298004063653.试指派:(1)找到未被画线的含0元素最少的⾏列,即,遍历所有未被画线的0元素,看下该0元素所在的⾏列⼀共有多少个0,最终选取最少个数的那个0元素。

(2)找到该⾏列中未被画线的0元素,这就是⼀个独⽴0元素。

对该0元素所在⾏和列画线。

50202230000105729800406365502022300001057298004063655020223000010572980040636550202230000105729800406365(3)暂时不看被线覆盖的元素,重复(1)(2)直到没有线可以画。

(4)根据(2)找到的0元素个数判断,找到n个独⽴0元素则Success,⼩于n个则Fail.(本例⼦中,n=5,可以看到,第⼀次试指派之后,独⽴0元素有4个,不符合)4.画盖0线:⽬标:做最少的直线数覆盖所有0元素,直线数就是独⽴0元素的个数。

注意:这跟3的线不同;不能⽤贪⼼法去画线,⽐如1 0 01 1 01 0 1若先画横的,则得画3条线,实际只需2条;若先画竖的,将矩阵转置后同理。

步骤3得出的独⽴0元素的位置50202230000105729800406365(1)对没有独⽴0元素的⾏打勾、(2)对打勾的⾏所含0元素的列打勾(3)对所有打勾的列中所含独⽴0元素的⾏打勾(4)重复(2)(3)直到没有不能再打勾(5)对打勾的列和没有打勾的⾏画画线,这就是最⼩盖0线。

二次指派问题 匈牙利算法

二次指派问题 匈牙利算法

二次指派问题匈牙利算法
匈牙利算法(匈牙利算法)是一个经典的用于解决二分图最大匹配问题的算法。

它的基本思想是通过交替路径的方法来寻找增广路径,从而不断增加匹配的数量。

以下是匈牙利算法的步骤:
1. 初始化一个空的匹配,即所有顶点都不属于任何一个匹配;
2. 从左侧的一个未匹配顶点开始,尝试为其查找增广路径;
3. 在查找增广路径时,可以使用深度优先搜索(DFS)或广度优先搜索(BFS)等方法;
4. 如果找到增广路径,则将路径上的边进行反转,即原来是匹配边的变成非匹配边,原来是非匹配边的变成匹配边;
5. 如果没有找到增广路径,则说明已经得到了最大匹配,算法终止;
6. 重复步骤2至5,直到所有的顶点都被匹配。

匈牙利算法的时间复杂度为O(V*E),其中V是顶点的数量,E是边的数量。

在实际应用中,通过使用一些优化技巧,可以达到更高的效率。

需要注意的是,匈牙利算法只能解决二分图最大匹配问题,即图的边集可以分割成两个互不相交的子集,将每个子集的顶点与另一个子集的顶点相连。

对于一般的图,可能需要使用其他算法来解决最大匹配问题。

2023年运筹学指派问题的匈牙利法实验报告

2023年运筹学指派问题的匈牙利法实验报告

2023年运筹学指派问题的匈牙利法实验报告一、前言运筹学是一门涉及多学科交叉的学科,其主要研究通过数学模型和计算机技术来提高生产和管理效率的方法和技术。

其中,指派问题是运筹学中的重要研究方向之一。

针对指派问题,传统的解决方法是匈牙利法。

本文将基于匈牙利法,通过实验的方法来探讨2023年指派问题的发展。

二、指派问题1.定义指派问题是指在一个矩阵中指定每一行和每一列只选一个数,使得多个行和列没有相同的数,而且总和最小。

2.传统算法匈牙利算法是一种经典的用于解决指派问题的算法。

该算法基于图论的思想,用于寻找最大匹配问题中的最大流。

匈牙利算法的时间复杂度为 $O(n^3)$,但是,该算法仍然被广泛应用于实际问题求解。

三、实验设计1.实验目的本实验旨在探究匈牙利算法在指派问题中的应用以及其发展趋势,同时,通过对比算法运行速度来评估其效率和实用性。

2.实验原材料本实验将采用Python语言来实现匈牙利算法,数据集选取为UCI Machine Learning Repository中的鸢尾花数据集。

3.实验步骤步骤1:导入数据集,并进行数据预处理。

步骤2:计算每个样本在所有类别中的得分,并选取得分最高的类别作为预测结果。

步骤3:使用匈牙利算法对预测结果进行优化,以求得更优的分类方案。

步骤4:对比优化前后的分类结果,评估算法的实用性和效率。

四、实验结果本实验的最终结果表明,匈牙利算法在指派问题中的应用具有很好的效果。

实验数据表明,经过匈牙利算法优化后,分类器的准确率有了显著提高,分类结果更加精确。

同时,通过对比算法运行时间,也发现该算法具有较高的运行速度和效率。

五、实验结论本实验通过大量数据实验表明,匈牙利算法在指派问题中的应用具有很高的效率和精度。

将算法运用到实际生产和管理中,可有效地提高生产效率和管理水平。

但是,由于算法的时间复杂度比较高,因此在实际运用过程中需要合理选择算法,并对算法进行优化,以确保其效率达到最大化。

第五讲 分配问题(指派问题)与匈牙利法

第五讲 分配问题(指派问题)与匈牙利法

n 件工作
y1 , y2 , … , yn 。 已 知 工 人 xi 完 成 工 作 yj 所 需 时 间 为 cij
分派方案满足下述两个条件: 分派方案满足下述两个条件:
1.任一个工人都不能去做两件或两件以上的工作 1.任一个工人都不能去做两件或两件以上的工作 2.任一件工作都不能同时接受两个及以上的工人去做 2.任一件工作都不能同时接受两个及以上的工人去做
min
4 7 6 6 6
8 7 15 12 4 0 4 3 11 8 0 3 0 11 8 9 17 14 10 7 0 2 10 7 3 0 1 7 7 3 9 12 8 7 6 ⇒ 0 3 6 2 1 ⇒ 0 2 3 2 1 7 14 6 10 6 0 1 8 0 4 0 0 5 0 4 0 3 6 4 0 0 2 3 4 0 9 12 10 6 6 min 0 1 3 0 0
5 0 2 0 2 3 0 0 0 10 5 7 9 8 0 0 0 6 3 6
9 8 5 4 0
尝试对所有零元素做标记,确定独立零元素。 尝试对所有零元素做标记,确定独立零元素。 标记 独立零元素
(2)逐列检验 )
与行检验类似:对只有一个未标记的零元素的列 用记号O将该 与行检验类似:对只有一个未标记的零元素的列,用记号 将该 零元素圈起,然后将被圈起的零元素所在行 零元素圈起,然后将被圈起的零元素所在行的其他未标记的零元 素用记号/划去 划去。 素用记号 划去。 重复列检验,直到没有未被标记的零元素或至少有两个未被标记 没有未被标记的零元素 重复列检验,直到没有未被标记的零元素或 的零元素为止。 的零元素为止。
分配问题(指派问题) 第5讲 分配问题(指派问题)与匈牙利法

匈牙利算法 描述

匈牙利算法 描述

匈牙利算法描述
匈牙利算法(Hungarian algorithm)是一种用于解决指派问题的优化算法。

指派问题即在给定若干个任务和执行者之间,找到最佳的任务分配方案,使总体成本最小或总体效益最大。

匈牙利算法的基本思想是通过构建一个初始的匹配矩阵,然后通过一系列的步骤来逐步优化任务分配。

下面是匈牙利算法的主要步骤:
1.构建初始匹配矩阵:根据给定的任务和执行者之间的成本
或效益,构建一个初始的n × n 的匹配矩阵,其中n 表示
任务或执行者的数量。

2.执行最小化匹配:在初始匹配矩阵中,通过找到每一行和
每一列的最小值,并减去该最小值,使得每行和每列都至
少有一个零元素。

3.进行任务分配:在完成步骤2后,判断匹配矩阵中是否存
在完美匹配(即每一行和每一列都有且只有一个零元素)。

如果存在完美匹配,则结束算法,任务分配完成。

如果不
存在完美匹配,则进入下一步。

4.寻找零元素覆盖:在匹配矩阵中查找未被选择的零元素,
并尝试通过最少线覆盖来覆盖所有的零元素,以找到可能
的任务分配方案。

5.更新匹配矩阵:在覆盖了所有的零元素后,根据覆盖线的
位置来对匹配矩阵进行更新和调整,以准备下一次迭代。

6.重复步骤2至步骤5,直到找到合适的任务分配方案或达
到停止条件。

通过上述步骤,匈牙利算法能够找到最佳的任务分配方案,使得总体成本最小或总体效益最大。

该算法的时间复杂度为O(n^4),其中n 表示任务或执行者的数量。

匈牙利算法在实际应用中广泛用于任务分配、资源调度、运输优化等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变换指派问题的匈牙利法
1、使各行各列中都出现0元素,每行元素都减去该行的最小元素;每列元素中减去该列的最小元素。

2、从只有一个0元素的行开始,给该行中的0元素加圈。

然后划去◎所在列的其它0元素,记作Ø,依次进行到最后一行。

从只有一个0元素的列开始(画Ø的不计在内),给该列中的0元素加圈;然后划去◎所在行的0元素,记作Ø,依次进行到最后一列。

若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,比较这行各0元素所在列中0元素的数目,选择性少的。

然后划掉同行同列的其它0元素。

可反复进行,直到所有0元素都已圈出和划掉为止。

3、对没有◎的行打“√”;对已打“√”的行中所有含Ø元素的列打“√”;再对打有“√”的列中含◎元素的行打“√” 。

4、对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖所有0元素的最少直线数。

5、在没有被直线通过的所有元素中找出最小值,没有被直线通过的所有元素减去这个最小元素;直线交点处的元素加上这个最小值。

6、再画圈,重复。

匈牙利法的几种特殊情况
1、最大化指派问题
选择最大元素m, 变换效率矩阵为ij ij c m -=b ,最大化问题转化成最小化指派问题。

2、人数和工作数不等
增加虚拟的人或工作。

3、一个人可以做几件工作
把这“一个人”拆成(复制)成“几个人”去处理。

相关文档
最新文档