2020年深圳市高三年级线下一模文科数学试题

合集下载

2019-2020学年广东省深圳市高考数学模拟考试(文科)试题Word版含解析

2019-2020学年广东省深圳市高考数学模拟考试(文科)试题Word版含解析

2019-2020学年广东省深圳市高考模拟考试数学(文科)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1,2,3},B={y|y=|x|﹣3,x∈A},则A∩B=()A.{﹣2,1,0} B.{﹣1,0,1,2} C.{﹣2,﹣1,0} D.{﹣1,0,1}2.若复数z1,z2在复平面内对应的点关于y轴对称,且z1=2﹣i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数f(x)=,则f(﹣2016)=()A.e2B.e C.1 D.4.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A.10 B.11 C.12 D.135.已知a,b,c为△ABC的三个角A,B,C所对的边,若3bcosC=c(1﹣3cosB),sinC:sinA=()A.2:3 B.4:3 C.3:1 D.3:26.已知=(﹣2,1),=(k,﹣3),=(1,2),若(﹣2)⊥,则||=()A.B.C.D.7.某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是()A.2 B.4 C.D.8.自圆C:(x﹣3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则点P轨迹方程为()A.8x﹣6y﹣21=0 B.8x+6y﹣21=0 C.6x+8y﹣21=0 D.6x﹣8y﹣21=09.若如图的框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是()A.k=9 B.k≤8 C.k<8 D.k>810.如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是()A.1 B.C.D.211.设F为双曲线(a>0,b>0)的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为()A.B.C.D.312.若直线l:y=kx﹣1与曲线C:f(x)=x﹣1+没有公共点,则实数k的最大值为()A.﹣1 B.C.1 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若函数(x∈R)为奇函数,则ab= .14.已知实数x,y满足,目标函数z=3x+y+a的最大值为4,则a= .15.已知函数f(x)=asinxcosx﹣sin2x+的一条对称轴方程为x=,则函数f(x)的最大值为.16.当x∈(0,1)时,函数f(x)=e x﹣1的图象不在函数g(x)=x2﹣ax的下方,则实数a 的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,a,b,c分别为内角A,B,C的对边,且asinB=﹣bsin(A+).(1)求A;(2)若△ABC的面积S=c2,求sinC的值.18.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi (单位:千元)与月储蓄yi(单位:千元)的数据资料,算得, =20, =184, =720.1)求家庭的月储蓄y关于月收入x的线性回归方程;2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:回归直线的斜率和截距的最小二乘法估计公式分别为: =, =.19.如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,,点D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)求三棱锥C1﹣BDC的体积.20.已知F1,F2分别是椭圆C:的两个焦点,且|F1F2|=2,点在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与以原点为圆心,b为半径的圆相切于第一象限,切点为M,且直线l与椭圆交于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值;如不是,说明理由.21.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx(a∈R).(1)若曲线g(x)=f(x)+x上点(1,g(1))处的切线过点(0,2),求函数g(x)的单调减区间;(2)若函数y=f(x)在上无零点,求a的最小值.[选修4-4:坐标系与参数方程]22.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ﹣ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p >0).(1)设t为参数,若x=﹣2+t,求直线l的参数方程;(2)已知直线l与曲线C交于P、Q,设M(﹣2,﹣4),且|PQ|2=|MP|•|MQ|,求实数p的值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|.(1)若不等式f(x+)≥2m+1(m>0)的解集为(﹣∞,﹣2]∪[2,+∞),求实数m的值;(2)若不等式f(x)≤2y++|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.2019-2020学年广东省深圳市高考模拟考试数学(文科)试题参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1,2,3},B={y|y=|x|﹣3,x∈A},则A∩B=()A.{﹣2,1,0} B.{﹣1,0,1,2} C.{﹣2,﹣1,0} D.{﹣1,0,1}【考点】交集及其运算.【分析】把A中元素代入y=|x|﹣3中计算求出y的值,确定出B,找出A与B的交集即可.【解答】解:把x=﹣2,﹣1,0,1,2,3,分别代入y=|x|﹣3得:y=﹣3,﹣2,﹣1,0,即B={﹣3,﹣2,﹣1,0},∵A={﹣2,﹣1,0,1,2,3},∴A∩B={﹣2,﹣1,0},故选:C.2.若复数z1,z2在复平面内对应的点关于y轴对称,且z1=2﹣i,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】由z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,求出z2,然后代入,利用复数代数形式的乘除运算化简,求出复数在复平面内对应的点的坐标,则答案可求.【解答】解:∵z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,∴z2=﹣2﹣i.∴==,则复数在复平面内对应的点的坐标为:(,),位于第二象限.故选:B.3.已知函数f(x)=,则f(﹣2016)=()A.e2B.e C.1 D.【考点】分段函数的应用.【分析】由已知条件利用分段函数的性质先由函数的周期性求出f,再由指数的性质能求出结果.【解答】解:∵f(x)=,∴当x>2时,函数是周期函数,周期为5,f(﹣2016)=f=f(1)=e,故选:B.4.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A.10 B.11 C.12 D.13【考点】茎叶图.【分析】利用平均数求出m的值,中位数求出n的值,解答即可.【解答】解:∵甲组学生成绩的平均数是88,∴由茎叶图可知78+86+84+88+95+90+m+92=88×7,∴m=3又乙组学生成绩的中位数是89,∴n=9,∴m+n=12.故选:C.5.已知a,b,c为△ABC的三个角A,B,C所对的边,若3bcosC=c(1﹣3cosB),sinC:sinA=()A.2:3 B.4:3 C.3:1 D.3:2【考点】正弦定理;余弦定理.【分析】由3bcosC=c(1﹣3cosB).利用正弦定理可得3sinBcosC=sinC(1﹣3cosB),化简整理即可得出.【解答】解:由正弦定理,设,∵3bcosC=c(1﹣3cosB).∴3sinBcosC=sinC(1﹣3cosB),化简可得 sinC=3sin(B+C)又A+B+C=π,∴sinC=3sinA,∴因此sinC:sinA=3:1.故选:C.6.已知=(﹣2,1),=(k,﹣3),=(1,2),若(﹣2)⊥,则||=()A.B.C.D.【考点】平面向量数量积的运算;平面向量的坐标运算.【分析】求出向量﹣2,利用向量的垂直,数量积为0,列出方程求解向量,然后求解向量的模即可.【解答】解: =(﹣2,1),=(k,﹣3),=(1,2),﹣2=(﹣2﹣2k,7),(﹣2)⊥,可得:﹣2﹣2k+14=0.解得k=6,=(6,﹣3),所以||==3.故选:A.7.某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是()A.2 B.4 C.D.【考点】由三视图求面积、体积.【分析】根据三视图还原得到原几何体,分析原几何体可知四个面中直角三角形的个数,求出直角三角形的面积求和即可.【解答】解:由三视图可得原几何体如图,∵PO⊥底面ABC,∴平面PAC⊥底面ABC,而BC⊥AC,∴BC⊥平面PAC,∴BC⊥AC.该几何体的高PO=2,底面ABC为边长为2的等腰直角三角形,∠ACB为直角.所以该几何体中,直角三角形是底面ABC和侧面PBC.PC=,∴,,∴该四面体的四个面中,直角三角形的面积和.故选:C.8.自圆C:(x﹣3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则点P轨迹方程为()A.8x﹣6y﹣21=0 B.8x+6y﹣21=0 C.6x+8y﹣21=0 D.6x﹣8y﹣21=0【考点】轨迹方程.【分析】由题意画出图象,根据条件和圆的切线性质列出方程化简,求出点P的轨迹方程【解答】解:由题意得,圆心C(3,﹣4),半径r=2,如图:因为|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x﹣3)2+(y+4)2,即6x﹣8y﹣21=0,所以点P在直线6x﹣8y﹣21=0上,故选D.9.若如图的框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是()A.k=9 B.k≤8 C.k<8 D.k>8【考点】程序框图.【分析】运行程序框图,确定条件.【解答】解:如图:K1098s11120可知,10,9时条件成立,8时不成立.故选D.10.如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是()A.1 B.C.D.2【考点】球内接多面体.【分析】设AB=a,BB1=h,求出a2=6﹣2h2,故正四棱柱的体积是V=a2h=6h﹣2h3,利用导数,得到该正四棱柱体积的最大值,即可得出结论.【解答】解:设AB=a,BB1=h,则OB=a,连接OB1,OB,则OB2+BB12=OB12=3,∴=3,∴a2=6﹣2h2,故正四棱柱的体积是V=a2h=6h﹣2h3,∴V′=6﹣6h2,当0<h<1时,V′>0,1<h<时,V′<0,∴h=1时,该四棱柱的体积最大,此时AB=2.故选:D.11.设F为双曲线(a>0,b>0)的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为()A.B.C.D.3【考点】双曲线的简单性质.【分析】求得交点坐标,利用点到直线的距离公式可知: =,即可求得4a2=3c2,利用双曲线的离心率即可求得双曲线的离心率.【解答】解:双曲线(a>0,b>0)渐近线方程y=±x,由OF的垂直平分线为x=,将x=,代入y=x,则y=,则交点坐标为(,),由(,),到y=﹣x,即bx+ay=0的距离d===,解得:c=2b=2,即4a2=3c2,则双曲线的离心率e==,故选:B.12.若直线l:y=kx﹣1与曲线C:f(x)=x﹣1+没有公共点,则实数k的最大值为()A.﹣1 B.C.1 D.【考点】函数的图象.【分析】直线l:y=kx﹣1与曲线f(x)=x﹣1+没有公共点,则x﹣1+=kx﹣1无解,可化为k=1+,设g(x)=1+,求导,研究此函数的单调性即可解决【解答】解:若直线l:y=kx﹣1与曲线f(x)=x﹣1+没有公共点,则x﹣1+=kx﹣1无解,∵x=0时,上述方程不成立,∴x≠0则x﹣1+=kx﹣1可化为k=1+,设g(x)=1+,∴g′(x)=∴g′(x)满足:在(﹣∞,﹣1)上g′(x)>0,在(﹣1,0)上g′(x)<0,在(0,+∞)上g′(x)<0,∴g(x)满足:在(﹣∞,﹣1)上递增,在(﹣1,0)上递减,在(0,+∞)上递减,g(﹣1)=1﹣e,而当x→+∞时,g(x)→1,∴g(x)的图象:∴g(x)∈(﹣∞,1﹣e]∪(1,+∞)无解时,k∈(1﹣e,1],=1,∴kmax故选:C二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若函数(x∈R)为奇函数,则ab= 2016 .【考点】函数奇偶性的性质.【分析】利用f(0)=0,即可得出结论.【解答】解:∵函数(x∈R)为奇函数,∴f(0)==0,∴ab=2016,故答案为2016.14.已知实数x,y满足,目标函数z=3x+y+a的最大值为4,则a= ﹣3 .【考点】简单线性规划.【分析】由题意,不等式组,表示一个三角形区域(包含边界),求出三角形的三个顶点的坐标,目标函数z=3x+y+a的几何意义是直线的纵截距,由此可求得结论.【解答】解:由题意,不等式组,表示一个三角形区域(包含边界),三角形的三个顶点的坐标分别为(0,2),(1,0),(,2)目标函数z=3x+y的几何意义是直线的纵截距由线性规划知识可得,在点A(,2)处取得最大值4.3×+2+a=4,解得a=﹣3故答案为:﹣3.15.已知函数f(x)=asinxcosx﹣sin2x+的一条对称轴方程为x=,则函数f(x)的最大值为 1 .【考点】三角函数中的恒等变换应用;正弦函数的对称性.【分析】本题运用离对称轴远近相同的点函数值相等求出a值,再求三角函数的最值.【解答】解:f(x)=,∵是对称轴,f(0)=f(),∴,∴,最大值为1.故答案为1.16.当x∈(0,1)时,函数f(x)=e x﹣1的图象不在函数g(x)=x2﹣ax的下方,则实数a 的取值范围是[2﹣e,+∞).【考点】利用导数求闭区间上函数的最值.【分析】由已知得f(x)﹣g(x)=e x﹣x2+ax﹣1≥0对x∈(0,1)恒成立,从而, =()=h(x)对于x∈(0,1)恒成立,进而a≥h(x)max(e x﹣x﹣1),由导数性质得h(x)是增函数,由此能求出实数a的取值范围.【解答】解:∵当x∈(0,1)时,函数f(x)=e x﹣1的图象不在函数g(x)=x2﹣ax的下方,∴f(x)﹣g(x)=e x﹣x2+ax﹣1≥0对x∈(0,1)恒成立,∴e x﹣x2+ax﹣1≥0,∴=h(x)对于x∈(0,1)恒成立,∴a≥h(x),max=()(e x﹣x﹣1),令t(x)=e x﹣x﹣1,x∈(0,1),t′(x)=e x﹣1>0对x∈(0,1)恒成立,∴t(x)≥t(0)=0,∴h′(x)>0恒成立,h(x)是增函数,=h(1)=,∴h(x)max∴实数a的取值范围是[2﹣e,+∞).故答案为:[2﹣e,+∞).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,a,b,c分别为内角A,B,C的对边,且asinB=﹣bsin(A+).(1)求A;(2)若△ABC的面积S=c2,求sinC的值.【考点】余弦定理;正弦定理.【分析】(1)由正弦定理化简已知可得tanA=﹣,结合范围A∈(0,π),即可计算求解A 的值.(2)由(1)可求sinA=,利用三角形面积公式可求b=,利用余弦定理可求a=,由正弦定理即可计算求解.【解答】(本题满分为12分)解:(1)∵asinB=﹣bsin(A+).∴由正弦定理可得:sinAsinB=﹣sinBsin(A+).即:sinA=﹣sin(A+).可得:sinA=﹣sinA﹣cosA,化简可得:tanA=﹣,∵A∈(0,π),∴A=…6分(2)∵A=,∴sinA=,∵由S=c2=bcsinA=bc,可得:b=,∴a2=b2+c2﹣2bccosA=7c2,可得:a=,由正弦定理可得:sinC=…12分18.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi (单位:千元)与月储蓄yi(单位:千元)的数据资料,算得, =20, =184, =720.1)求家庭的月储蓄y关于月收入x的线性回归方程;2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:回归直线的斜率和截距的最小二乘法估计公式分别为: =, =.【考点】线性回归方程.【分析】1)利用已知条件求出,样本中心坐标,利用参考公式求出b,a,然后求出线性回归方程: =bx+a;2)通过x=7,利用回归直线方程,推测该家庭的月储蓄.【解答】(本小题满分12分)解:1)由题意知n=10,,又,,由此得, =2﹣0.3×8=﹣0.4,故所求线性回归方程为=0.3x﹣0.4.2)将x=7代入回归方程,可以预测该家庭的月储蓄约为=0.3×7﹣0.4=1.7(千元).19.如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,,点D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)求三棱锥C1﹣BDC的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)由题设证明BC⊥平面ACC1A1,可得DC1⊥BC,再由已知可得∠ADC=∠A1DC1=45°,得∠CDC1=90°,即C1D⊥DC,结合线面垂直的判定得DC1⊥平面BDC,从而得到平面BDC1⊥平面BDC;(Ⅱ)由等积法可得三棱锥C1﹣BDC的体积.【解答】(Ⅰ)证明:由题意知BC⊥CC1,BC⊥AC,AC∩CC1=C,∴BC⊥平面ACC1A1,又∵DC1⊂平面ACC1A1,∴DC1⊥BC.∵∠ADC=∠A1DC1=45°,∴∠CDC1=90°,即C1D⊥DC.∵DC∩BC=C,∴DC1⊥平面BDC,又∵DC1⊂平面BDC1,∴平面BDC1⊥平面BDC.(Ⅱ)解:由,得AA1=4,所以AD=2,所以.所以Rt△CDC1的面积,所以.20.已知F1,F2分别是椭圆C:的两个焦点,且|F1F2|=2,点在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与以原点为圆心,b为半径的圆相切于第一象限,切点为M,且直线l与椭圆交于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值;如不是,说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由|F1F2|=2,点在该椭圆上,求出a=2,,由此能出椭圆C的方程.(Ⅱ)设P(x1,y1),Q(x2,y2),推导出.连接OM,OP,由相切条件推导出,由此能求出|F2P|+|F2Q|+|PQ|为定值.【解答】解:(Ⅰ)∵F1,F2分别是椭圆C:的两个焦点,且|F1F2|=2,点在该椭圆上.由题意,得c=1,即a2﹣b2=1,①又点在该椭圆上,∴,②由①②联立解得a=2,,∴椭圆C的方程为.(Ⅱ)设P(x1,y1),Q(x2,y2),,,∴.连接OM,OP,由相切条件知:,∴,∴.同理可求得,∴|F2P|+|F2Q|+|PQ|=2+2=4为定值.21.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx(a∈R).(1)若曲线g(x)=f(x)+x上点(1,g(1))处的切线过点(0,2),求函数g(x)的单调减区间;(2)若函数y=f(x)在上无零点,求a的最小值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算g′(1),求出a的值,从而求出g(x)的递减区间即可;(2)问题转化为对x∈(0,),a>2﹣恒成立,令l(x)=2﹣,x∈(0,),根据函数的单调性求出a的最小值即可.【解答】解:(1)∵g(x)=(3﹣a)x﹣(2﹣a)﹣2lnx,∴g′(x)=3﹣a﹣,∴g′(1)=1﹣a,又g(1)=1,∴1﹣a==﹣1,解得:a=2,由g′(x)=3﹣2﹣=<0,解得:0<x<2,∴函数g(x)在(0,2)递减;(2)∵f(x)<0在(0,)恒成立不可能,故要使f(x)在(0,)无零点,只需任意x∈(0,),f(x)>0恒成立,即对x∈(0,),a>2﹣恒成立,令l(x)=2﹣,x∈(0,),则l′(x)=,再令m(x)=2lnx+﹣2,x∈(0,),则m′(x)=<0,故m(x)在(0,)递减,于是m(x)>m()=2﹣2ln2>0,从而f′(x)>0,于是l(x)在(0,)递增,∴l(x)<l()=2﹣4ln2,故要使a>2﹣恒成立,只要a∈[2﹣4ln2,+∞),综上,若函数y=f(x)在上无零点,则a的最小值是2﹣4ln2.[选修4-4:坐标系与参数方程]22.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ﹣ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p >0).(1)设t为参数,若x=﹣2+t,求直线l的参数方程;(2)已知直线l与曲线C交于P、Q,设M(﹣2,﹣4),且|PQ|2=|MP|•|MQ|,求实数p的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的极坐标方程为ρcosθ﹣ρsinθ=2,利用极坐标与直角坐标的互化公式即可化为直角坐标方程.由x=﹣2+t,可得y=x﹣2=﹣4+t,即可得出直线l的参数方程.(2)曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0),即为ρ2sin2θ=2pρcosθ(p>0),即可化为直角坐标方程.把直线l的参数方程代入可得:t2﹣(8+2p)t+8p+32=0.不妨设|MP|=t1,|MQ|=t2.|PQ|=|t1﹣t2|=.利用|PQ|2=|MP|•|MQ|,即可得出.【解答】解:(1)直线l的极坐标方程为ρcosθ﹣ρsinθ=2,化为直角坐标方程:x﹣y﹣2=0.∵x=﹣2+t,∴y=x﹣2=﹣4+t,∴直线l的参数方程为:(t为参数).(2)曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0),即为ρ2sin2θ=2pρcosθ(p>0),可得直角坐标方程:y2=2px.把直线l的参数方程代入可得:t2﹣(8+2p)t+8p+32=0.∴t1+t2=(8+2p),t1t2=8p+32.不妨设|MP|=t1,|MQ|=t2.|PQ|=|t1﹣t2|===.∵|PQ|2=|MP|•|MQ|,∴8p2+32p=8p+32,化为:p2+3p﹣4=0,解得p=1.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|.(1)若不等式f(x+)≥2m+1(m>0)的解集为(﹣∞,﹣2]∪[2,+∞),求实数m的值;(2)若不等式f(x)≤2y++|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)求得不等式f(x+)≥2m+1(m>0)的解集,再结合不等式f(x+)≥2m+1(m>0)的解集为(﹣∞,﹣2]∪[2,+∞),求得m的值.(2)由题意可得g(x)=|2x﹣1|﹣|2x+3|的最小值小于或等于2y+,再利用绝对值三角不等式求得g(x)的最小值为4,可得4≤2y+恒成立,再利用基本不等式求得2y+的最小值为2,可得2≥4,从而求得a的范围.【解答】解:(1)∵不等式f(x+)≥2m+1(m>0)的解集为(﹣∞,﹣2]∪[2,+∞),即|2(x+)﹣1|≤2m+1 的解集为(﹣∞,﹣2]∪[2,+∞).由|2x|≥2m+1,可得2x≥2m+1,或2x≤﹣2m﹣1,求得 x≥m+,或x≤﹣m﹣,故|2(x+)﹣1|≤2m+1 的解集为(﹣∞,﹣m﹣]∪[m+,+∞),故有m+=2,且﹣m﹣=﹣2,∴m=.(2)∵不等式f(x)≤2y++|2x+3|,对任意的实数x,y∈R恒成立,∴|2x﹣1|≤2y++|2x+3|恒成立,即|2x﹣1|﹣|2x+3|≤2y+恒成立,故g(x)=|2x﹣1|﹣|2x+3|的最小值小于或等于2y+.∵|2x﹣1|﹣|2x+3|≤|2x﹣1﹣(2x+3)|=4,∴4≤2y+恒成立,∵2y+≥2,∴2≥4,∴a≥4,故实数a的最小值为4.。

2020年深圳市普通高中高三测试文科数学试题

2020年深圳市普通高中高三测试文科数学试题

2020年深圳市普通高中高三测试文科数学本试卷共6页,23小题,满分150分.考试用时120分钟.一、选择题:本题共 12 小题,每小题5分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}12A x x =-<<,(){}lg 1B x y x ==-,则()A B =R I ðA .[)1 2-,B .[)2 +∞,C .(1,1]-D .[)1 -+∞, 2.棣莫弗公式(cos isin )cos isin nx x nx nx +=+(i 为虚数单位)是由法国数学家棣莫弗(1667-1754)发现的,根据棣莫弗公式可知,复数6(cos isin )55ππ+在复平面内所对应的点位于A . 第一象限B .第二象限C .第三象限D .第四象限 3.已知点(3,1)和(4,6)-在直线023=+-a y x 的两侧,则实数a 的取值范围是A .7a <或24>aB .7=a 或24=aC . 724<<-aD . 247<<-a4. 已知1()3,1,()2,1,x a x a x f x a x ⎧-+<⎪=⎨⎪≥⎩是(,)-∞+∞上的减函数,那么实数a 的取值范围是 A. (0,1) B .1(0,)2C.11[,)62D .1[,1)65.一个容量为100的样本,其数据分组与各组的频数如下表:则样本数据落在1040,上的频率为 A. 0.13B. 0.52C. 0.39D. 0.646. 在ABC ∆中,D 是BC 边上一点,AD AB ⊥,BC =u u u r BD u u u r ,1AD =u u ur ,则AC AD ⋅u u u r u u u rA .B .2 C .3D 7.=︒︒+︒︒313sin 253sin 223sin 163sinA . 12-B .12C.2- D.28.已知抛物线x y 82=,过点(2,0)A )作倾斜角为π3的直线l ,若l 与抛物线交于B 、C 两点,弦BC 的中垂线交x 轴于点P ,则线段AP 的长为 A .163B .83D. 9.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论: ①AC BD ⊥ ②AC ∥截面PQMN ③AC BD = ④异面直线PM 与BD 所成的角为45o 其中所有正确结论的编号是A .①③B .①②④C .③④D .②③④10.已知函数π()sin()(0,||)2f x x ωϕωϕ=+><的最小正周期是π,若其图象向右平移π3个单位后得到的函数为奇函数,则下列结论正确的是 A .函数()f x 的图象关于直线2π3x =对称 B .函数()f x 的图象关于点11π(,0)12对称 C .函数()f x 在区间ππ,212⎡⎤--⎢⎥⎣⎦上单调递减 D .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上有3个零点 11.已知函数)(x f y =是R 上的奇函数,函数)(x g y =是R 上的偶函数,且)2()(+=x g x f ,当20≤≤x 时,2)(-=x x g ,则)5.10(g 的值为A .1.5B .8.5C .-0.5D .0.512.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点,点P是双曲线在第一象限内的点,直线PO 、2PF 分别交双曲线C 的左右支于另一点M 、N ,若122PF PF =,且2120MF N ∠=o ,则双曲线的离心率为ABCD二、填空题:本大题共4小题,每小题5分,共 20 分.13.已知x 轴为曲线3()44(1)1f x x a x =+-+的切线,则a 的值为 .DAQ B C PN M14.已知n S 为数列{}n a 的前n 项和,22n n S a =-,则54S S -=_____________. 15.在ABC ∆中,若1cos 3A =,则2sin cos22B C A ++的值为 ____________ . 16.已知球O 的半径为r ,则它的外切圆锥体积的最小值为__________.三 、 解答题: 共70分.解答应写出文字说明、 证明过程或演算步骤.第17 ~2 1 题为必考题, 每个试题考生都必须作答. 第22 、 23 题为选考题,考生根据要求作答. (一 ) 必考题:共 60 分. 17.(本小题满分12分)已知数列{}n a 的首项123a =,112n n n n a a a a +++=*(0,)n a n ≠∈N . (1)证明:数列1{1}na -是等比数列; (2)数列{}nna 的前n 项和n S .18.(本小题满分12分)随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品.现以x (单位:吨,100150x ≤≤)表示下一个销售季度的市场需求量,T (单位:万元)表示该电商下一个销售季度内经销该商品获得的利润. (1)将T 表示为x 的函数,求出该函数表达式;(2)根据直方图估计利润T 不少于57万元的概率;(3)根据频率分布直方图,估计一个销售季度内市场需求量x 的平均数与中位数的大小(保留到小数点后一位).19.(本小题满分12分)如图所示,四棱锥S ABCD -中,SA ⊥平面ABCD ,90ABC BAD ∠=∠=︒,1AB AD SA ===,2BC =,M 为SB 的中点.(1)求证://AM 平面SCD ; (2)求点B 到平面SCD 的距离.20.(本小题满分12分)已知椭圆22:14x C y +=,1F 、2F 分别是椭圆C 的左、右焦点,M 为椭圆上的动点. (1)求12F MF ∠的最大值,并证明你的结论;(2)若A 、B 分别是椭圆C 长轴的左、右端点,设直线AM 的斜率为k ,且11(,)23k ∈--,求直线BM 的斜率的取值范围.21.(本小题满分12分)150140 130 120 110 100 ADBCMS已知函数()(1)e x a f x x=+(e 为自然对数的底数),其中0a >.(1)在区间(,]2a -∞-上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.(2)若函数()f x 的两个极值点为1212,)x x x x <(,证明:2121ln ()ln ()212f x f x x x a ->+-+.(二)选考题:共 10 分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4 ― 4:坐标系与参数方程在平面直角坐标系xOy 中,直线1l :cos sin x t y t αα=⎧⎨=⎩,(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标;(2)已知直线2l :π=6θρ∈R ()与圆2C:2cos 20ρθ-+=交于B ,C 两点,记△AOB 的面积为1S ,△2COC 的面积为2S ,求1221S S S S +的值.23.(本小题满分10分)选修4-5:不等式选讲已知()2f x x a =-.(1)当1a =时,解不等式()21f x x >+;(2)若存在实数(1,)a ∈+∞,使得关于x 的不等式2()++1f x x m a <-有实数解,求实数m 的取值范围.。

【附加15套高考模拟试卷】广东省深圳市2020年高三年级第一次调研考试数学(文科)试题含答案

【附加15套高考模拟试卷】广东省深圳市2020年高三年级第一次调研考试数学(文科)试题含答案

广东省深圳市2020年高三年级第一次调研考试数学(文科)试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设x ,y 满足约束条件200,40x y x y z x y y 则+≥⎧⎪-≤=+⎨⎪-≤⎩的最大值是( )A .4-B .0C .8D .122.已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12·PF PF = A .2B . 4C .6D .83.如图,点F 是抛物线28y x =的焦点,点A ,B 分别在抛物线28y x =及圆22(2)16x y -+=的实线部分上运动,且AB 始终平行于x 轴,则ABF ∆的周长的取值范围是( )A .(2,6)B .(6,8)C .(8,12)D .(10,14)4.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位5.中,内角、、的对边、、依次成等差数列,且,则的形状为( )A .等边三角形B .直角边不相等的直角三角形C .等腰直角三角形D .钝角三角形 6.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43 C .34- D .43-7.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A .710 B .58C .38D .3108.已知四棱锥M ABCD -,MA ⊥平面ABCD ,AB BC ⊥,180BCD BAD ∠+∠=︒,2MA =,26BC =,30ABM ∠=︒.若四面体MACD 的四个顶点都在同一个球面上,则该球的表面积为( )A .20πB .22πC .40πD .44π9.函数()sin(2)f x x ϕ=+的图象向右平移6π个单位后所得的图象关于原点对称,则ϕ可以是( ) A .6πB .3πC .4πD .23π10.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且4AB BC CD ===,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( ) A .23 B .34 C .3 D .2411.已知平面α及直线a ,b ,则下列说法正确的是( ) A .若直线a ,b 与平面α所成角都是30°,则这两条直线平行 B .若直线a ,b 与平面α所成角都是30°,则这两条直线不可能垂直 C .若直线a ,b 平行,则这两条直线中至少有一条与平面α平行 D .若直线a ,b 垂直,则这两条直线与平面α不可能都垂直 12.函数的零点所在的区间是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

2020年广东深圳高三一模数学试卷(文科)

2020年广东深圳高三一模数学试卷(文科)

2020年广东深圳高三一模数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)A.B.C.D.1.设,则的共轭复数( ).A.B.C.D.2.设集合,,,则( ).A.B.C.D.3.下列函数中为奇函数的是( ).A. B. C. D.4.珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》.年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图.我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,算盘每档各珠均如最左档一样位置;记数时,要拨珠靠梁,一个上珠表示“”,一个下珠表示“”.例如,当百位档一个上珠,十位档一个下珠和个位档一个上珠分别靠梁时,所表示的数是.现选定“个位档”、“十位档”和“百位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其所有可能表示的三位数中随机取一个数,这个数能被整除的概率为( ).梁顶珠上珠下珠底珠挡框千位百位十位个位5.已知是圆周率,为自然对数的底数,则下列结论正确的是( ).A.B.6.已知直线经过和两点,若将直线绕点按逆时针方向旋转后到达直线的位置,则的方程为( ).A.B.C.D.7.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的体积为( ).A.B.C.D.8.已知数列满足,,则( ).A.B.C.D.9.已知圆锥的底面半径为,高为,则该圆锥的内切球表面积为( ).A.D.10.函数的部分图象如图所示,将函数的图象向右平移个单位后,所得到的图象对应的函数为( ).A.B.C.D.11.已知正方体,棱长为,的中点为,过、、三点的平面截正方体为两部分,则截面图形的面积为( ).A.B.C.D.12.已知函数,若存在互不相等的正实数、、,满足,其中,则的最大值为( ).A.B.C.D.,,二、填空题(本大题共4小题,每小题5分,共20分)13.已知平面向量、,若,,,则.14.的内角、、的对边分别为、、,若,,.则的面积为 .15.某地为了解居民的每日总用电量(万度)与气温()之间的关系,收集了四天的每日总用电量和气温的数据如下:气温()每日总用电量(万度)经分析,可用线性回归方程拟合与的关系.据此预测气温为时,该地当日总用电量(万度)为 .16.设为双曲线的左焦点,过作圆的切线,切点为,切线与渐近线相交于点,若,则的离心率为 .三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.记等差数列的前项和为,已知公差不为零,,且、、成等比数列.求的通项公式.设,试问数列是否存在最大项?若存在,求出最大项序号的值;反之,请说明理由.18.为了推动青少年科技活动的蓬勃开展,培养青少年的创新精神和实践能力,提高青少年的科技素质,某市开展“青少年科技创新大赛”活动.已知参加该活动的学生有人,其中男生人,女生人,为了解学生在该活动中的获奖情况是否与性别有关,现采用分层抽样的方法,从中随机抽取了名学生的参赛成绩,其频率分布直方图如下:(1)(2)男生参赛成绩百分制频率组距女生参赛成绩百分制频率组距该活动规定:成绩不低于分的参赛学生可获奖,低于分的参赛学生不能获奖.请将参赛学生获奖和不获奖的人数填入下面的列联表,并判断能否有以上的把握认为“参赛学生是否获奖与性别有关”?获奖不获奖合计男生 女生合计估计这名学生的参赛成绩的平均数(同一组中的数据用该组区间的中点值作代表).附:.(1)(2)19.已知三棱柱,侧面为正方形,底面为正三角形,,.求证:平面.若,求点到平面的距离.(1)(2)20.已知椭圆的离心率为,且椭圆过点.求椭圆的方程.【答案】解析:∵,已知直线与椭圆交于、两点,点为坐标原点,在椭圆上是否存在一点,满足,若存在,求的面积;若不存在,请说明理由.(1)(2)21.已知函数.当时,求曲线在点处的切线方程.当时,求证:对任意的,.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.如图,有一种赛车跑道类似“梨形”曲线,由圆弧,和线段,四部分组成,在极坐标系中,,,,,弧,所在圆的圆心分别是,,曲线是弧,曲线是弧.分别写出,的极坐标方程.点,位于曲线上,且,求面积的取值范围.(1)(2)23.已知,.若,求实数的取值范围.求的最小值.D1.,∴复数的共轭得复数,故正确.故选.解析:∵集合,集合,,,或,集合,∴,.故选:.解析:个位档可为:或;十位档可为:或;百位档可为:或;以下情况从个位到百位即种、、、、、、、.B 2.C 3.B 4.被三整除为:、,.故选项.解析:函数在是增函数,且,所以,又,即,则.故选.解析:∵直线经过点,两点,∴直线的方程为,将直线绕点逆时针方向旋转,则此时直线的斜率,此时直线过点,所以得到直线方程为,即.故选:.解析:如图三视图可知该几何体由一个半球和一个半圆柱构成,∵网络纸上小正方形的边长为,则半球的半径为,体积为,半圆柱的底面为半径为的圆,高为,则半圆柱体积为,∴该几何体体积为.故正确.A 5.B 6.D 7.解析:∵ ,,∴ ,,∴ 数列是首项为,公差为的等差数列,∴,,.故选项正确.解析:圆锥和球体的截面图如图所示,且,,,∵(圆锥母线长),∴的延长线过点,即为圆锥的高,∵,,,∴,设球半径为,又∵在中,,∴,∴在中,,解得,∴内切球表面积为,B 8.D 9.故选项.解析:由图象可得,,,即,,∴,且,∵,∴,∴把的图象向右平移个单位后得到的图象.故选.解析:如图,作中点,连接过作于,∵、分别为、中点,∴,∴为等腰梯形,则,,∴.故选.解析:C 10.A 11.B 12.法一:作出函数图象如下图所示:x123456789y12O 可得,所以,且,令,则,,故,故当时,.法二:利用均值不等式:.解析:∵平面向量,,,设,由,则,即,由,则,∴,解得,所以,.解析:∵中,,,13.14.,由正弦定理,∴,解得,由余弦定理,,所以的面积为.15.解析:由表中数据可知,,,将代入回归方程得,解得,则,当时,,即预测气温为时,该地当日总用电量(万度)为.16.解析:方法一:设,因为,,所以,,所以,,,,又点在直线上,所以整理得到,又,所以.方法二:(1)(2)(1)设,则,在中,有,所以,由此可求得,从而可求得.解析:由可得①,又∵,∴,整理得,所以②,联立①②可得,,所以.,,若,则,若,则,因此,所以最大,即最大项序号.解析:由题意可得,(1).(2)存在,.17.(1)及格不及格合计男生女生合计没有以上的把握认为“学生的数学成绩与性别有关”.(2).18.(2)(1) 及格不及格合计男生女生合计∴,∵,∴没有以上的把握认为“学生的数学成绩与性别有关”.由题意可知,男生数学的平均成绩为,女生数学成绩的平均成绩为,∵样本中男女生人数之比为,这名学生的平均成绩为.解析:连接,∵侧面为正方形,∴,∵,,∴,又∵为的中点,∴,(1)证明见解析.(2).19.(2)(1)(2)∵,∴平面.∵,∴,∵侧面为正方形,∴,∴,∴,∵,∴,∵,,∴平面,设为点到平面的距离,由,可得,∵,,,∴.解析:由题设可知,,,又,解得,所以椭圆的方程为.设存在椭圆上的一点,满足,设,,则,联立与,消去并整理,得,令,则,则,,(1).(2)存在..20.(1)(2)则,所以将点代入,解之,,所以,而原点到距离,所以,所以.求距离也可用求点到直线的距离.点到直线的距离:,所以.解析:当时,则,故,∴,又,因此切线方程为,整理得,即.方法一:因为,,所以,令,当时,,所以为增函数,,所以,为增函数,所以,所以,(1).(2)证明见解析.21.当时,,又因为,所以,∵,所以存在,使得,即,所以在上为减函数,在上为增函数,所以,,,由单调性及零点存在性定理得,存在,使得,当时,,即,当时,,即,所以在上为减函数,在上为增函数,又,,所以,证毕.方法二:∵,当时,,∴当,时,,令,则,令,则,由于在上是增函数,且,∴当时,,当时,,∴在上是减函数,在上是增函数,∴,又,,故在上存在唯一零点,∴当时,,时,,∴在上是减函数,在上是增函数,又∵,,∴当时,,即当时,对任意,恒成立.(1)(2)方法三:先证明当时,,令函数,因为,令函数,又,所以函数在区间为单调递增函数,所以,即,所以函数在区间为单调递增函数,所以,即在区间函数,所以,所以要证不等式成立,即证成立,令,①当时,不等式显然成立;②当时,函数是开口向下的二次函数,所以函数在区间上单调递减,所以,当,时等号成立,③当时,抛物线开口向上,在上为增函数,所以,不等式成立,综上所述:当时,对任意的,成立.解析:由题意,的极坐标方程是,记圆弧所在圆的圆心为,易得极点在圆弧所在圆上,设为上任意一点,则在中,可得,∴,的极坐标方程分别为,.不妨设,,则,,∴,(1),的极坐标方程分别为,.(2).22.(1)(2)又∵,∴,∴的面积的取值范围是.解析:∵,取等条件为,解得,即实数的取值范围为.易知,∵,∴,∴,即,由()知,当,且时,,∴的最小值为.(1).(2).23.。

2020年广东省深圳市高考文科数学模拟试卷及答案解析

2020年广东省深圳市高考文科数学模拟试卷及答案解析

2020年广东省深圳市高考文科数学模拟试卷
一.选择题(共12小题,满分60分,每小题5分)
1.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为()A.3B.4C.7D.8
2.在复平面内,复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
3.圆心为点(3,4)且过点(0,0)的圆的方程是()
A.x2+y2=25B.x2+y2=5
C.(x﹣3)2+(y﹣4)2=25D.(x+3)2+(y+4)2=25
4.函数f(x)=ln的最大值为M,最小值为m,则M+m=()A.0B.1C.2D.4
5.已知等比数列{a n}的前n项和为S n,则下列一定成立的是()
A.若a3>0,则a2016>0B.若a4>0,则a2017>0
C.若a3>0,则S2017>0D.若a4>0,则S2016>0
6.如图是求的程序框图,图中空白框中应填入()
A.A =B.A=2+C.A =D.A=1+
7.三国时期吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四
第1页(共25页)。

广东省深圳市2020届高三下学期第一次调研考试数学(文)试题Word版含答案

广东省深圳市2020届高三下学期第一次调研考试数学(文)试题Word版含答案

广东省深圳市2020届高三下学期第一次调研考试数学(文)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则A B =I ( ) A . {}2,4 B .{}4,6 C .{}6,8 D .{}2,82.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . -3 B . -2 C .2 D .33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( ) A .14 B . 13 C . 12 D . 234.设30.330.2,log 0.2,log 0.2a b c ===,则,,a b c 大小关系正确的是( ) A .a b c >> B .b a c >> C. b c a >> D .c b a >> 5. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知1cos ,1,24C a c ===,则ABC ∆的面积为( )A B 14 D .186. )A C. 2 D 7.将函数sin 64y x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中心是( )A .,02π⎛⎫⎪⎝⎭ B .,04π⎛⎫ ⎪⎝⎭ C. ,09π⎛⎫ ⎪⎝⎭ D .,016π⎛⎫ ⎪⎝⎭8. 函数()21cos 21x xf x x +=-g 的图象大致是( ) A . B .C. D .9.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π-10. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( ) A . 335 B .336 C. 337 D .33811. 已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( ) A .83π B .53π C. 43π D .23π 12. 若()32sin cos f x x a x =+在()0,π上存在最小值,则实数a 的取值范围是( ) A .30,2⎛⎫ ⎪⎝⎭ B .30,2⎛⎤ ⎥⎝⎦ C. 3,2⎡⎫+∞⎪⎢⎣⎭D .()0,+∞ 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量()()1,2,,3p q x ==,若p q ⊥,则p q += . 14. 已知α是锐角,且cos 3πα⎛⎫-= ⎪⎝⎭. 15.直线30ax y -+=与圆()()2224x y a -+-=相交于M N 、两点,若23MN ≥a 的取值范围是.16.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设n S 为数列{}n a 的前n 项和,且()*21,1n n n n S a n n N b a =-+∈=+. (1)求数列{}n b 的通项公式; (2)求数列{}n nb 的前n 项和n T .18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G ,2,3,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若060EAG ∠=,求三棱锥F BDE -的体积.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表).20.已成椭圆()2222:10x y C a b a b +=>>3.5过点()0,2P 的直线l 与椭圆C 相交于A B 、两点. (1)求椭圆C 的方程;(2)设M 是AB 中点,且Q 点的坐标为2,05⎛⎫⎪⎝⎭,当QM AB ⊥时,求直线l 的方程. 21.已知函数()()()1ln 3,,f x ax x ax a R g x =+-+∈是()f x 的导函数,e 为自然对数的底数. (1)讨论()g x 的单调性;(2)当a e >时,证明:()0a g e ->;(3)当a e >时,判断函数()f x 零点的个数,并说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线E 的参数方程为2cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出曲线E 的普通方程和极坐标方程;(2)若直线l 与曲线E 相交于点A B 、两点,且OA OB ⊥,求证:2211OAOB+为定值,并求出这个定值.23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-. (1)当1a =,解不等式()()f x g x <;(2)对任意[]()()1,1,x f x g x ∈-<恒成立,求a 的取值范围.广东省深圳市2020届高三下学期第一次调研考试数学(文)试题参考答案一、选择题1-5: BBCBA 6-10: DACDC 11、12:DD二、填空题13. 4,3⎛⎤-∞- ⎥⎝⎦ 16. 3 三、解答题17.解:(1)当1n =时,11112112a S a a ==-+=,易得110,1a b ==;当2n ≥时,()1121211n n n n n a S S a n a n --=-=-+---+⎡⎤⎣⎦, 整理得121n n a a -=+,∴()111212n n n n b a a b --=+=+=,∴数列{}n b 构成以首项为11b =,公比为2等比数列, ∴数列{}n b 的通项公式()12*n n b n N -=∈; (2)由(1)知12n n b -=,则12n n nb n -=g , 则01211222322n n T n -=⨯+⨯+⨯++⨯L ,①∴12321222322nn T n =⨯+⨯+⨯++⨯L ,② 由①-②得:0121121212122n n n T n --=⨯+⨯+⨯++⨯-⨯L12221212n n n n n n -=-⨯=--⨯-, ∴()121n n T n =-+. 18.解:(1)证明:连接EG ,∵四边形ABCD 为菱形,∵,,AD AB BD AC DG GB =⊥=, 在EAD ∆和EAB ∆中,,AD AB AE AE ==,EAD EAB ∠=∠,∴EAD EAB ∆≅∆, ∴ED EB =,∴BD EG ⊥, ∵AC EG G =I , ∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD , ∴平面ACFE ⊥平面ABCD ;(2)解法一:连接,EG FG ,∵BD ⊥面,ACFE FG ⊂平面ACFE ,∴FG BD ⊥, 在平行四边形ACFE 中,易知0060,30EGA FGC ∠=∠=,∴090EGF ∠=,即FG EG ⊥,又因为,EG BD 为平面BDE 内的两条相交直线,所以FG ⊥平面BDE ,所以点F 到平面BDE 的距离为3FG =,∵122BDE S ∆==g ∴三棱锥F BDE -的体积为133=g . 解法二:∵//,EF 2GC EF GC =,∴点F 到平面BDE 的距离为点C 到平面BDE 的距离的两倍,所以2F BDE C BDE V V --=,作EH AC ⊥,∵平面ACFE ⊥平面,ABCD EH ⊥平面ABCD ,∴1132322C BDE E BCD V V --==⨯⨯=, ∴三棱锥F BDE -19.解析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-, 当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==; (3)由题意可知:当50x =时,0.55025y =⨯=,∴()250.1P y ==, 当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==, 当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==, 故250.1750.21400.32200.23100.154100.05170.5y =⨯+⨯+⨯+⨯+⨯+⨯=.20.解:(1)由题意可知:225a b +=,又222c e a b c a ===+,∴a b ==,所以椭圆C 的方程为22:132x y C +=; (2)①若直线l 的斜率不存在,此时M 为原点,满足QM AB ⊥,所以,方程为0x =, ②若直线l 的斜率存在,设其方程为()()11222,,,,y y kx A x y B x =+, 将直线方程与椭圆方程联立可得222132y kx x y =+⎧⎪⎨+=⎪⎩,即()22231260k x kx +++=, 可得1222122372480k x x k k -⎧+=⎪+⎨⎪∆=->⎩,设()00,M x y ,则00222664,2232323k k x y k k k k --==+=+++g ,由QM AB ⊥可知00125y k x =--g ,化简得23520k k ++=, 解得1k =-或23k =-,将结果代入272480k ∆=->验证,舍掉23k =-, 此时,直线l 的方程为20x y +-=,综上所述,直线l 的方程为0x =或20x y +-=. 21.解(1)对函数()f x 求导得()()1ln g x f x a x x'==+, ()2211a ax g x x x x-'=-=, ①当0a ≤时,()0g x '<,故()g x 在()0,+∞上为减函数; ②当0a >时,解()0g x '>可得1x a >,故()g x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭; (2) ()2a a g e a e -=-+,设()2x h x e x =-,则()2x h x e x '=-, 易知当x e >时,()0h x '>,()220x e h x e x e e =->->;(3)由(1)可知,当a e >时,()g x 是先减再增的函数, 其最小值为111ln ln 10g a a a a a a ⎛⎫⎛⎫=+=+<⎪ ⎪⎝⎭⎝⎭, 而此时()1110,0aa a g e e g e --⎛⎫=+>> ⎪⎝⎭,且11a a e e a -<<,故()g x 恰有两个零点12,x x ,∵当()10,x x ∈时,()()0f x g x '=>;当()12,x x x ∈时,()()0f x g x '=<;当()2,x x ∈+∞时,()()0f x g x '=>,∴()f x 在12,x x 两点分别取到极大值和极小值,且110,x a ⎛⎫∈ ⎪⎝⎭,由()1111ln 0g x a x x =+=知111ln a x x =-, ∴()()11111111ln 3ln 2ln f x ax x ax x x =+-+=++, ∵1ln 0x <,∴111ln 2ln x x +≤-,但当111ln 2ln x x +=-时,11x e =,则a e =,不合题意,所以()10f x <,故函数()f x 的图象与x 轴不可能有两个交点.∴函数()f x 只有一个零点.22.解:(1)曲线E 的普通方程为22143x y +=, 极坐标方程为22211cos sin 143ρθθ⎛⎫+= ⎪⎝⎭, ∴所求的极坐标方程为22223cos 4sin 12ρθρθ+=;(2)不妨设设点,A B 的极坐标分别为()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭, 则()()2211222211cos sin 14311cos sin 14232ρθρθππρθρθ⎧+=⎪⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪+++= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,即22212222111cos sin 43111sin cos 43θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩, ∴221211712ρρ+=,即2211712OA OB+=(定值). 23.解:(1)当1a =,()1f x x =+,由()()f x g x <可得13x x x +<+-,即310x x x +-+->, 当3x ≤-时,原不等式等价于20x -->,即2x <-,∴3x ≤-,当31x -<<-时,原不等式等价于40x +>,即4x >-,∴31x -<<-, 当1x ≥-时,原不等式等价于20x -+>,即2x <,∴12x -≤<, 综上所述,不等式的解集为(),2-∞;(2)当[]1,1x ∈-时,()3g x =,∴3x a +<恒成立,∴33a x -<+<,即33x a x --<<-,当[]1,1x ∈-时恒成立, ∴a 的取值范围22a -<<.。

深圳市2020年普通高中高三年级统一测试文科数学试卷含答案

深圳市2020年普通高中高三年级统一测试文科数学试卷含答案

点共线,则 k
A. 0
B.1
C. 2
D. 3
4.意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以
生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那 么兔子对数依次为:1,1, 2 , 3 , 5 , 8 ,13 , 21 , 34 , 55 , 89 ,144 ……,这就 是著名的斐波那契数列,它的递推公式是 an an1 an2 (n 3, n Ν ) ,其中 a1 1 , a2 1 .若从该数列的前100 项中随机地抽取一个数,则这个数是偶数的概率为
(1)求数列 {an } 的通项公式;
1 (2)若 bn = an an+1 ,求数列{bn}前 n 项和为Tn .
解:(1)由 (n +1)an+1 − nan = 4(n +1) (n N) 可得,
2a2 − a1 = 8 ,
………………………………1 分
3a3 − 2a2 = 12 ,
4a4 − 3a3 = 16 ,
归直线方程分别为: yˆ 4x 105 , yˆ 4x 53和 yˆ 3x 104 ,其中有且仅有一位实习
员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确 的,并说明理由;
( 2 ) 若 用 y ax2 bx c 模 型 拟 合 y 与 x 之 间 的 关 系 , 可 得 回 归 方 程 为
深圳市 2020 年普通高中高三年级统一测试数学(文科)试题 第 2 页(共 6 页)
其中,正确的结论个数是
A.1
B. 2
C. 3
10.函数 f (x) cos x ln( x2 1 x) 的图象大致为

深圳市2020届高三年级第一次调研考试文科数学试题(含答案)

深圳市2020届高三年级第一次调研考试文科数学试题(含答案)

=
2 2
3=
3 ,………11 分
h=2 6 .
3
…………………………………………………12 分
解法二:通过证明或计算可得四棱锥 A1 − ABC 为正四面体,其高的公式 h =
6 a( a 为 3
棱长).
解法三:可利用 B1C
⊥ 平面 A1BC1 计算VC−A1B1C1
= 2VB1 − A1C1O
=
(2)设存在椭圆上的一点 P(x0 , y0 ) ,满足 OA + OB + OP = 0 ,

A(
x1,
y1 ),
B(
x2
,
y2
)
,则
x0
y0
= =
−( x1 −( y1
+ +
x2 ), y2 ),
-------------5

联立 x2 + y2 = 1与 y = x + m(m 0) ,消去 y 并整理,得 2
BC1 B1C = O , A1B1 = A1C . (1)求证: B1C ⊥ 平面 A1BC1 ; (2)若 BC = 2 ,求点 C 到平面 A1B1C1 的距离.
解:(1)证明:连接 A1O ,………1 分 侧面 BCC1B1 为正方形,
BC1 ⊥ B1C , ……………………2 分
AB = A1B1 , A1B1 = A1C ,
频率 组距
频率 组距
0.0150
0.0150
0.0125 0.0100 0.0075 0.0050 0.0025
0.0125 0.0100 0.0075 0.0050 0.0025
O 20 40 60 80 100 男生参赛成绩(百分制)

2020年广东省深圳市高考数学一模试卷(文科)含答案解析

2020年广东省深圳市高考数学一模试卷(文科)含答案解析

2020年广东省深圳市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1},B={y|y=x2﹣x,x∈A},则A∩B=()A.{0}B.{2}C.{0,1}D.{﹣1,0}2.若平面向量=(m,1),=(2,1),且(﹣2)∥,则m=()A.1 B.2 C.3 D.43.设i为虚数单位,已知,则|z1|,|z2|的大小关系是()A.|z1|<|z2|B.|z1|=|z2|C.|z1|>|z2|D.无法比较4.研究人员随机调查统计了某地1000名“上班族”每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图.若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是()A.1.78小时 B.2.24小时 C.3.56小时 D.4.32小时5.已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为πB.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增D.|f(x)|的值域是[0,1]6.直线y=k(x+1)(k∈R)与不等式组,表示的平面区域有公共点,则k的取值范围是()A.[﹣2,2] B.(﹣∞,﹣2]∪[2,+∞)C.[﹣,]D.(﹣∞,﹣]∪[,+∞)7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长度是()A.4 B.2C.6 D.48.函数f(x)=xcosx在[﹣π,π]上的大致图象是()A.B.C.D.9.已知﹣<α<,且sinα+cosα=,则α的值为()A.﹣B.C.﹣D.10.已知A,B,C是球面上三点,且AB=6,BC=8,AC=10,球心O到平面ABC的距离等于该球半径的,则此球的表面积为()A.πB.πC.πD.π11.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A.B.C.D.12.已知a>0,若函数且g(x)=f(x)+2a至少有三个零点,则a的取值范围是()A.(,1]B.(1,2]C.(1,+∞)D.[1,+∞)二、填空题:本大题共4小题,每小题5分.13.下列四个函数中:①y=﹣;②y=log2(x+1);③y=﹣;④y=.在(0,+∞)上为减函数的是.(填上所有正确选项的序号)14.甲、乙、丙、丁四支足球队举行“贺岁杯”足球友谊赛,每支球队都要与其它三支球队进行比赛,且比赛要分出胜负.若甲、乙、丙队的比赛成绩分别是两胜一负、全败、一胜两负,则丁队的比赛成绩是.15.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为.(参考数据:sin15°=0.2588,sin7.5°=0.1305)16.在平面直角坐标系xOy中,已知△ABC的顶点B(﹣5,0)和C(5,0),顶点A在双曲线的右支上,则.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列{a n}满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{a n}的前n项和为S n;(Ⅱ)若++…+=,求n的值.18.某房地产公司新建小区有A、B两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米.该公司准备从两种户型住宅中各拿出12套销售给内部员工,表是这24套住宅每平方米的销售价格:(单位:万元/平方米):房号 1 2 3 4 5 6 7 8 9 10 11 12A户型 2.6 2.7 2.8 2.8 2.9 3.2 2.9 3.1 3.4 3.3 3.4 3.5 B户型 3.6 3.7 3.7 3.9 3.8. 3.9 4.2 4.1 4.1 4.2 4.3 4.5 (Ⅰ)根据表格数据,完成下列茎叶图,并分别求出A,B两类户型住宅每平方米销售价格的中位数;(Ⅱ)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会.小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格.为了使其购房成功的概率更大,他应该选择哪一种户型抽签?19.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.20.在平面直角坐标系xOy中,椭圆E的中心在原点,经过点A(0,1),其左、右焦点分别为F1、F2,且•=0.(Ⅰ)求椭圆E的方程;(Ⅱ)过点(﹣,0)的直线l与椭圆E有且只有一个公共点P,且与圆O:x2+y2=r2(r >0)相切于点Q,求r的值及△OPQ的面积.21.已知函数f(x)=e x+ax+b(a,b∈R,e是自然对数的底数)在点(0,1)处的切线与x 轴平行.(Ⅰ)求a,b的值;(Ⅱ)若对一切x∈R,关于x的不等式f(x)≥(m﹣1)x+n恒成立,求m+n的最大值.选修4-1:几何证明选讲22.如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.(Ⅰ)证明:C,E,F,D四点共圆;(Ⅱ)若D为BC的中点,且AF=3,FD=1,求AE的长.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知三圆C1:x2+y2=4,C2:(x+)2+(y﹣1)2=4,C3:(θ为参数)有一公共点P(0,2).(Ⅰ)分别求C1与C2,C1与C3异于点P的公共点M、N的直角坐标;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过三点O、M、N的圆C 的极坐标方程.选修4-5:不等式选讲24.已知函数f(x)=|x+a|+|x﹣3|(a∈R).(Ⅰ)当a=1时,求不等式f(x)≥x+8的解集;(Ⅱ)若函数f(x)的最小值为5,求a的值.2020年广东省深圳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1},B={y|y=x2﹣x,x∈A},则A∩B=()A.{0}B.{2}C.{0,1}D.{﹣1,0}【考点】交集及其运算.【分析】把A中元素代入B求出y的值,确定出B,找出两集合的交集即可.【解答】解:把x=﹣1,0,1代入得:y=2,0,即B={2,0},∵A={﹣1,0,1},∴A∩B={0},故选:A.2.若平面向量=(m,1),=(2,1),且(﹣2)∥,则m=()A.1 B.2 C.3 D.4【考点】平面向量共线(平行)的坐标表示.【分析】利用向量的共线的充要条件,列出方程求解即可.【解答】解:平面向量=(m,1),=(2,1),且(﹣2)∥,可得m﹣4=2(﹣1),解得m=2.故选:B.3.设i为虚数单位,已知,则|z1|,|z2|的大小关系是()A.|z1|<|z2|B.|z1|=|z2|C.|z1|>|z2|D.无法比较【考点】复数求模.【分析】利用复数的运算法则分别化简z1,z2,再利用模的计算公式即可得出.【解答】解:z1====﹣i,∴|z1|=1.∵,∴|z2|==1,则|z1|=|z2|.故选:B.4.研究人员随机调查统计了某地1000名“上班族”每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图.若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是()A.1.78小时 B.2.24小时 C.3.56小时 D.4.32小时【考点】频率分布直方图.【分析】根据频率分布直方图,利用同一组数据所在区间的中点值乘以对应的频率,再求和即可.【解答】解:根据频率分布直方图,得;估计该地“上班族”每天在工作之余使用手机上网的平均时间为=0.12×2×1+0.20×2×3+0.10×2×5+0.08×2×7=3.56(小时).故选:C.5.已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为πB.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增D.|f(x)|的值域是[0,1]【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由三角函数公式化简可得f(x)=cos2x,由三角函数的性质逐个选项验证可得.【解答】解:∵f(x)=cos2x﹣sin2x=cos2x,∴f(x)的最小正周期T==π,选项A正确;由2x=kπ可得x=,k∈Z,∴x=是f(x)的一条对称轴,选项B正确;由2kπ+π≤2x≤2kπ+2π可得kπ+≤x≤kπ+π,∴函数的单调递增区间为[kπ+,kπ+π],k∈Z,C错误;|f(x)|=|cos2x|,故值域为[0,1],D正确.故选:C6.直线y=k(x+1)(k∈R)与不等式组,表示的平面区域有公共点,则k的取值范围是()A.[﹣2,2] B.(﹣∞,﹣2]∪[2,+∞)C.[﹣,]D.(﹣∞,﹣]∪[,+∞)【考点】简单线性规划.【分析】作出可行域,k表示过定点(﹣1,0)的直线y=k(x+1)的斜率,数形结合可得.【解答】解:作出不等式组所对应的可行域(如图△ABC),k表示过定点(﹣1,0)的直线y=k(x+1)的斜率,数形结合可得当直线经过点A(0,2)时,直线的斜率取最大值2,当直线经过点B(0,﹣2)时,直线的斜率取最小值﹣2,故选:A.7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长度是()A.4 B.2C.6 D.4【考点】由三视图还原实物图.【分析】根据几何体的三视图还原几何体形状,由题意解答.【解答】解:由几何体的三视图得到几何体是以俯视图为底面的四棱锥,如图:由网格可得AD最长为=;故答案为:.8.函数f(x)=xcosx在[﹣π,π]上的大致图象是()A.B.C.D.【考点】利用导数研究函数的单调性;余弦函数的图象.【分析】根据奇偶函数图象的对称性排除A、C;利用特殊点排除D,从而得到答案.【解答】解:由f(x)=xcosx为奇函数知,其图象关于原点对称,排除A、C;又f(π)=πcosπ=﹣π<0,故排除D;故选B.9.已知﹣<α<,且sinα+cosα=,则α的值为()A.﹣B.C.﹣D.【考点】同角三角函数基本关系的运用.【分析】利用两角和的正弦函数公式化简已知可得sin()=,从而可得sin ()=,结合α的范围,利用正弦函数的图象和性质即可求值得解.【解答】解:因为:sinα+cosα=,所以:sin()=,所以:sin()=.又因为:﹣<α<,可得:,所以:=,解得:.故选:A.10.已知A,B,C是球面上三点,且AB=6,BC=8,AC=10,球心O到平面ABC的距离等于该球半径的,则此球的表面积为()A.πB.πC.πD.π【考点】球的体积和表面积.【分析】求出三角形ABC的外心,利用球心到△ABC所在平面的距离为球半径的一半,求出球的半径,即可求出球的表面积.【解答】解:由题意AB=6,BC=8,AC=10,∵62+82=102,可知三角形是直角三角形,三角形的外心是AC的中点,球心到截面的距离就是球心与三角形外心的距离,设球的半径为R,球心到△ABC所在平面的距离为球半径的一半,所以R2=(R)2+52,解得R2=,∴球的表面积为4πR2=π.故选:C.11.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A.B.C.D.【考点】抛物线的简单性质.【分析】可以求出抛物线的焦点坐标,从而可以写出弦AB所在直线方程为,可设A(x1,y1),B(x2,y2),直线AB的方程和抛物线方程联立消去x可得到关于y的一元二次方程,由韦达定理即可求出弦AB的中点坐标为,而弦AB的垂直平分线方程可写出为y﹣2=﹣x,弦中点坐标带入该方程便可求出p的值.【解答】解:,过焦点F且倾斜角为的直线方程为:,设A(x1,y1),B(x2,y2);由得,y2﹣2py﹣p2=0;∴y1+y2=2p,x1+x2=3p;∴弦AB的中点坐标为;弦AB的垂直平分线方程为y﹣2=﹣x,弦AB的中点在该直线上;∴;解得.故选:C.12.已知a>0,若函数且g(x)=f(x)+2a至少有三个零点,则a的取值范围是()A.(,1]B.(1,2]C.(1,+∞)D.[1,+∞)【考点】函数零点的判定定理.【分析】把函数零点问题转化为方程根的问题,然后画出a=1及a=2时的分段函数的简图,由图判断a=1及a=2时满足题意,结合选项得答案.【解答】解:函数g(x)=f(x)+2a的零点的个数等价于方程f(x)=﹣2a根的个数,即函数y=f(x)的图象与直线y=﹣2a交点的个数,利用特殊值验证法:当a=1时,y=f(x)的图象如图:满足题意;当a=2时,y=f(x)的图象如图:满足题意.结合选项可知,a的范围是D.故选:D.二、填空题:本大题共4小题,每小题5分.13.下列四个函数中:①y=﹣;②y=log2(x+1);③y=﹣;④y=.在(0,+∞)上为减函数的是①④.(填上所有正确选项的序号)【考点】函数单调性的判断与证明.【分析】根据单调性的定义,对数函数和指数函数的单调性,以及不等式的性质即可判断每个函数在(0,+∞)上的单调性,从而写出在(0,+∞)上为减函数的序号.【解答】解:∵x∈(0,+∞);①x增大时,增大,﹣减小,即y减小,∴该函数在(0,+∞)上为减函数;②x增大时,x+1增大,log2(x+1)增大,即y增大,∴该函数在(0,+∞)上为增函数;③x增大时,x+1增大,减小,增大,∴该函数在(0,+∞)上为增函数;④x增大时,x﹣1增大,减小,即y减小,∴该函数在(0,+∞)上为减函数;∴在(0,+∞)上为减函数的是①④.故答案为:①④.14.甲、乙、丙、丁四支足球队举行“贺岁杯”足球友谊赛,每支球队都要与其它三支球队进行比赛,且比赛要分出胜负.若甲、乙、丙队的比赛成绩分别是两胜一负、全败、一胜两负,则丁队的比赛成绩是全胜.【考点】进行简单的合情推理.【分析】根据题意可得,共有6胜6负,由甲,乙,丙的成绩,运用补集思想即可求出丁的成绩.【解答】解:由题意可得,甲、乙、丙、丁四支足球队举行“贺岁杯”足球友谊赛,每支球队都要与其它三支球队进行比赛,且比赛要分出胜负,则共需进行=6场,∵每场都会产生胜方和负方,∴比赛共产生6胜6负,∵甲、乙、丙队的比赛成绩分别是两胜一负、全败、一胜两负,已有3胜6负,∴丁队的比赛成绩是全胜,即3胜.故答案为:全胜.15.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为24.(参考数据:sin15°=0.2588,sin7.5°=0.1305)【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故答案为:24.16.在平面直角坐标系xOy中,已知△ABC的顶点B(﹣5,0)和C(5,0),顶点A在双曲线的右支上,则=.【考点】双曲线的简单性质.【分析】首先由正弦定理,有=,进而根据双曲线的几何性质,可得|CB|=2c=4,|AB|﹣|CA|=2a=6,代入,即可得到答案.【解答】解:根据正弦定理:在△ABC中,有=,又由题意C、B分别是双曲线的左、右焦点,则|CB|=2c=10,且△ABC的顶点A在双曲线的右支上,又可得|AB|﹣|AC|=2a=6,则===.故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列{a n}满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{a n}的前n项和为S n;(Ⅱ)若++…+=,求n的值.【考点】数列的求和;等差数列的前n项和.【分析】(Ⅰ)通过a1+a3=8,a2+a4=12与等差中项的性质可知a2=4,a3=6,进而可知公差及首项,利用等差数列的求和公式计算即得结论;(Ⅱ)通过(I)裂项可知=﹣,进而并项相加并与已知条件比较即得结论.【解答】解:(Ⅰ)∵a1+a3=8,a2+a4=12,∴a2=4,a3=6,∴等差数列{a n}的公差d=a3﹣a2=6﹣4=2,首项a1=a2﹣d=4﹣2=2,∴数列{a n}是首项、公差均为2的等差数列,于是其前n项和为S n=2•=n(n+1);(Ⅱ)由(I)可知,==﹣,∴++…+=1﹣+﹣+…+﹣=,又∵++…+=,∴=,即n=999.18.某房地产公司新建小区有A、B两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米.该公司准备从两种户型住宅中各拿出12套销售给内部员工,表是这24套住宅每平方米的销售价格:(单位:万元/平方米):房号 1 2 3 4 5 6 7 8 9 10 11 12 A户型 2.6 2.7 2.8 2.8 2.9 3.2 2.9 3.1 3.4 3.3 3.4 3.5 B户型 3.6 3.7 3.7 3.9 3.8. 3.9 4.2 4.1 4.1 4.2 4.3 4.5 (Ⅰ)根据表格数据,完成下列茎叶图,并分别求出A,B两类户型住宅每平方米销售价格的中位数;(Ⅱ)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会.小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格.为了使其购房成功的概率更大,他应该选择哪一种户型抽签?【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【分析】(Ⅰ)由表格数据,能作出茎叶图,并能求出A,B两类户型住宅每平方米销售价格的中位数.(Ⅱ)若选择A户型抽签,求出成功购房的概率;若选择B户型抽签,求出成功购房的概率.由此得到该员工选择购买A户型住房的概率较大.【解答】解:(Ⅰ)由表格数据,作出茎叶图:A户型销售价格的中位数是=3.0,B户型销售价格的中位数是=4.0.(Ⅱ)若选择A户型抽签,则每平方米均价不得高于3.2万元,有能力购买其中的8套住房,∴成功购房的概率是=,若选择B户型抽签,每平方米均价不得高于4.0万元,有能力购买其中的6套住房,成功购房的概率是,∵,∴该员工选择购买A户型住房的概率较大.19.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(I)取BC中点M,连结AM,由AB=AC得AM⊥BC,由菱形和等边三角形的性质得出BC⊥B1M,故BC⊥平面AB1M,故而AB1⊥BC;(II)利用勾股定理的逆定理得出AM⊥B1M,从而B1M⊥平面ABC,故而B1M为棱柱的高,根据棱柱的体积列方程解出AB.【解答】解:(I)取BC中点M,连结AM,B1M,∵AB=AC,M是BC的中点,∴AM⊥BC,∵侧面BB1C1C是菱形,∠B1BC=60°,∴B1M⊥BC,又AM⊂平面AB1M,B1M⊂平面AB1M,AM∩B1M=M,∴BC⊥平面AB1M,∵AB1⊂平面AB1M,∴BC⊥AB1.(II)设AB=x,则AC=x,BC=x,∵M是BC的中点,∴AM=,BB1=,B1M=,又∵AB1=BB1,∴AB1=,∴AB12=B1M2+AM2,∴B1M⊥AM.由(I)知B1M⊥BC,AM⊂平面ABC,BC⊂平面ABC,AM∩BC=M,∴B1M⊥平面ABC,∴V==,∴x=2,即AB=2.20.在平面直角坐标系xOy中,椭圆E的中心在原点,经过点A(0,1),其左、右焦点分别为F1、F2,且•=0.(Ⅰ)求椭圆E的方程;(Ⅱ)过点(﹣,0)的直线l与椭圆E有且只有一个公共点P,且与圆O:x2+y2=r2(r >0)相切于点Q,求r的值及△OPQ的面积.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆E的方程为=1(a>b>0),由椭圆E经过点A(0,1),•=0,求出a,b,由此能求出椭圆E的方程.(Ⅱ)设直线l:y=k(x+),联立,得(2k2+1)x2+4x+6k2﹣2=0,由此利用根的判别式、直线与圆相切、两点间距离公式,结合已知条件能求出r的值及△OPQ的面积.【解答】解:(Ⅰ)∵在平面直角坐标系xOy中,椭圆E的中心在原点,其左、右焦点分别为F1、F2,∴设椭圆E的方程为=1(a>b>0),∵椭圆E经过点A(0,1),∴b=1,∵•=0,且AF1=AF2,∴b=c=1,∴a2=1+1=2,∴椭圆E的方程是.(Ⅱ)设直线l:y=k(x+),联立,整理,得(2k2+1)x2+4x+6k2﹣2=0,①∴,∵直线l与椭圆相切,∴△=0,解得k=±1,代入方程①中,得到,解得x=﹣,代入直线l的方程中,得y=,即P(﹣,),又∵直线l与圆x2+y2=r2相切,∴r===,∵|OP|==,∴|PQ|===,S△OPA=.21.已知函数f(x)=e x+ax+b(a,b∈R,e是自然对数的底数)在点(0,1)处的切线与x 轴平行.(Ⅰ)求a,b的值;(Ⅱ)若对一切x∈R,关于x的不等式f(x)≥(m﹣1)x+n恒成立,求m+n的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)根据导数的几何意义,建立方程关系即可求a,b的值;(Ⅱ)将不等式恒成立进行转化,构造函数,求函数的导数,利用函数单调性,极值和最值与导数的关系进行求解即可.【解答】解:(Ⅰ)函数的导数f′(x)=e x+a,∵函数f(x)在点(0,1)处的切线与x轴平行,∴f′(0)=0,即f′(0)=e0+a=1+a=0,则a=﹣1,又f(0)=1+b=1,则b=0;(Ⅱ)由(Ⅰ)知,f(x)=e x﹣x,则不等式f(x)≥(m﹣1)x+n恒成立等价为e x≥mx+n,即e x﹣mx﹣n≥0,设g(x)=e x﹣mx﹣n,则g′(x)=e x﹣m,当m≤0时,g′(x)>0恒成立,则g(x)在R上递增,没有最小值,故不成立,当m>0时,由g′(x)=0得x=lnm,当g′(x)<0时,得x<lnm,当g′(x)>0时,得x>lnm,即当x=lnm时,函数取得最小值g(lnm)=e lnm﹣mlnm﹣n=m﹣mlnm﹣n≥0,即m﹣mlnm≥n,2m﹣mlnm≥m+n,令h(m)=2m﹣mlnm,则h′(m)=1﹣lnm,令h′(m)=0得m=e,当0<m<e时,h(m)单调递增,当m>e时,h(m)单调递减,故当m=e时,h(m)取得最大值h(e)=e,∴e≥m+n,故m+n的最大值为e.选修4-1:几何证明选讲22.如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.(Ⅰ)证明:C,E,F,D四点共圆;(Ⅱ)若D为BC的中点,且AF=3,FD=1,求AE的长.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(Ⅰ)连结EF,BE,说明AB是⊙O是直径,推出∠ABE=∠C,然后证明C,E,F,D四点共圆.(Ⅱ)利用切割线定理求解BD,利用C、E、F、D四点共圆,得到AE•AC=AF•AD,然后求解AE.【解答】(Ⅰ)证明:连结EF,BE,则∠ABE=∠AFE,因为AB是⊙O是直径,所以,AE⊥BE,又因为AB⊥BC,∠ABE=∠C,所以∠AFE=∠C,即∠EFD+∠C=180°,∴C,E,F,D四点共圆.(Ⅱ)解:因为AB⊥BC,AB是直径,所以,BC是圆的切线,DB2=DF•DA=4,即BD=2,所以,AB==2,因为D为BC的中点,所以BC=4,AC==2,因为C、E、F、D四点共圆,所以AE•AC=AF•AD,即2AE=12,即AE=.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知三圆C1:x2+y2=4,C2:(x+)2+(y﹣1)2=4,C3:(θ为参数)有一公共点P(0,2).(Ⅰ)分别求C1与C2,C1与C3异于点P的公共点M、N的直角坐标;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过三点O、M、N的圆C 的极坐标方程.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)求出圆C3的普通方程,解方程组得出交点坐标;(2)求出过三点的圆的普通方程,转化为极坐标方程.【解答】解:(I)圆C3的直角坐标方程为(x﹣)2+(y﹣1)2=4.联立方程组,解得或.联立方程组,解得或.∴M(﹣,﹣1),N(,﹣1).(II)M,N的中垂线方程为x=0,故过点M,N,O三点的圆圆心在y轴上,设圆的半径为r,则(r﹣1)2+=r2,解得r=2.∴圆心坐标为(0,﹣2).∴经过三点O、M、N的圆C的直角坐标方程为x2+(y+2)2=4.即x2+y2+4y=0.∴经过三点O、M、N的圆C的极坐标方程为ρ2+4ρsinθ=0,即ρ=﹣4sinθ.选修4-5:不等式选讲24.已知函数f(x)=|x+a|+|x﹣3|(a∈R).(Ⅰ)当a=1时,求不等式f(x)≥x+8的解集;(Ⅱ)若函数f(x)的最小值为5,求a的值.【考点】绝对值不等式的解法;函数的最值及其几何意义;分段函数的应用.【分析】(Ⅰ)当a=1时,不等式即|x+1|+|x﹣3|≥x+8,分类讨论去掉绝对值,分别求得它的解集,再取并集,即得所求.(Ⅱ)由条件利用绝对值三角不等式求得f(x)的最小值,再根据f(x)的最小值为5,求得a的值.【解答】解:(Ⅰ)当a=1时,求不等式f(x)≥x+8,即|x+1|+|x﹣3|≥x+8,若x<﹣1,则有﹣x﹣1+3﹣x≥x+8,求得x≤﹣2.若﹣1≤x≤3,则有x+1+3﹣x≥x+8,求得x≤﹣4,不满足要求.若x>3,则有x+1+x﹣3≥x+8,求得x≥10.综上可得,x的范围是{x|x≤﹣2或x≥10}.(Ⅱ)∵f(x)=|x+a|+|x﹣3|=|x+a|+|3﹣x|≥|x+a+3﹣x|=|a+3|,∴函数f(x)的最小值为|a+3|=5,∴a+3=5,或a+3=﹣5,解得a=2,或a=﹣8.2020年7月30日第21页(共21页)。

2019-2020学年广东省深圳市高考数学考前模拟考试(文科)试题Word版含解析

2019-2020学年广东省深圳市高考数学考前模拟考试(文科)试题Word版含解析

2019-2020学年广东省深圳市高考考前模拟考试数学(文科)试题一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣12<0},B={x|y=log2(x+4)},则A∩B=()A.(﹣3,3)B.(﹣3,4)C.(0,3)D.(0,4)2.复数z=,复数是z的共轭复数,则z•=()A.1 B.C.D.43.已知Sn 是等差数列{an}的前n项和,若4S6+3S8=96,则S7=()A.48 B.24 C.14 D.74.已知x,y的取值如表:x01234 y1 1.3 3.2 5.68.9若依据表中数据所画的散点图中,所有样本点(xi ,yi)(i=1,2,3,4,5)都在曲线y=x2+a附近波动,则a=()A.1 B.C.D.﹣5.执行如图所示的程序框图后输出的S值为()A.B.0 C. D.6.某几何体的三视图如图所示,正视图与俯视图完全相同,则该几何体的体积为()A.B.C. D.16+16+4(﹣1)π7.直线x+y=1与曲线y=(a>0)恰有一个公共点,则a的取值范围是()A.a=B.a>1或a=C.≤a<1 D.<a<18.如图,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=,则多面体ABC﹣A1B1C1的外接球的表面积为()A.2π B.4π C.6π D.8π9.已知过抛物线y2=4x的焦点F作直线l交抛物线于A,B两点,若=2,则点A的横坐标为()A.B.C.D.10.如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象与二次函数y=﹣x2+x+1的图象交于A(x1,0)和B(x2,1),则f(x)的解析式为()A.f(x)=sin(x+)B.f(x)=sin(x+)C.f(x)=sin(x+)D.f(x)=sin(x+)11.已知双曲线=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x﹣a相交所得的平行四边形的面积为6b2.则双曲线的离心率是()A.B.C.D.212.已知函数f(x)=﹣x+log2,若方程m﹣e﹣x=f(x)在[﹣,]内有实数解,则实数m的最小值是()A.e+ B.e+ C.e﹣ D.e﹣二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)(a>0且a≠1),若f(2)+f(﹣2)=,则a= .14.若P为满足不等式组的平面区域Ω内任意一点,Q为圆M:(x﹣3)2+y2=1内(含边界)任意一点,则|PQ|的最大值是.15.在边长为2的菱形ABCD中,∠BAD=60°,P,Q分别是BC,BD的中点,则向量与的夹角的余弦值为.16.设Rn 是等比数列{an}的前n项的积,若25(a1+a3)=1,a5=27a2,则当Rn取最小值时,n= .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A,B,C所对的边分别为a,b,c且2acos2C+2ccosAcosC+b=0.(1)求角C的大小;(2)若B=4sinB,求△ABC面积的最大值.18.某烹饪学院为了弘扬中国传统的饮食文化,举办了一场由在校学生参加的厨艺大赛.组委会为了了解本次大赛参赛学生的成绩情况,从参赛学生中抽取了n名学生的成绩(满分100分)作为样本,将所得数据经过分析整理后画出了频率分布直方图和茎叶图,其中茎叶图受到了污损,请据此解答下列问题:(Ⅰ)求样本容量n和频率分布直方图中a的值;(Ⅱ)规定大赛成绩在[80,90)的学生为厨霸,在[90,100]的学生为厨神.现从被称为厨霸、厨神的学生中随机抽取2人去参加校际之间举办的厨艺大赛,求所抽取的2人中至少有1人是厨神的概率.19.在多面体ABCDEFG中,四边形ABCD与CDEF均为边长为4的正方形,CF⊥平面ABCD,BG ⊥平面ABCD,且AB=2BG=4BH.(1)求证:GH⊥平面EFG;(2)求三棱锥G﹣ADE的体积.20.已知椭圆C: +=1(a>b>0)的右焦点到直线x﹣y+3=0的距离为5,且椭圆C的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C的标准方程;(2)给出定点Q(,0),对于椭圆C的任意一条过Q的弦AB, +是否为定值?若是,求出该定值,若不是,请说明理由.21.已知函数f(x)=a2lnx﹣x2+ax(a≠0),g(x)=(m﹣1)x2+2mx﹣1.(1)求函数f(x)的单调区间;(2)若a=1时,关于x的不等式f(x)≤g(x)恒成立,求整数m的最小值.请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点P作一条割线与⊙O交于C、A两点,直线PQ切⊙O于点Q,BD为过CA中点F的⊙O的直径.(1)已知PC=4,PQ=6,求DF•BF的值;(2)过D作⊙O的切线交BA的延长线于点E,若CD=,BC=5,求AE的值.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ﹣2ρsinθ﹣3=0.(1)分别写出曲线C1的普通方程与曲线C2的直角坐标方程;(2)若曲线C1与曲线C2交于P、Q两点,求△POQ的面积.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣1|.(1)若不等式f(x+)≤2m+1(m>0)的解集为[﹣2,2],求实数m的值;(2)对任意x,y∈R,求证:f(x)≤2y++|2x+3|.2019-2020学年广东省深圳市高考考前模拟考试数学(文科)试题参考答案一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣12<0},B={x|y=log2(x+4)},则A∩B=()A.(﹣3,3)B.(﹣3,4)C.(0,3)D.(0,4)【考点】1E:交集及其运算.【分析】求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣4)(x+3)<0,解得:﹣3<x<4,即A=(﹣3,4),由B中y=log2(x+4),得到x+4>0,解得:x>﹣4,即B=(﹣4,+∞),则A∩B=(﹣3,4),故选:B.2.复数z=,复数是z的共轭复数,则z•=()A.1 B.C.D.4【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,求得z,再由得答案.【解答】解:∵z===,∴z•=|z|2=1.故选:A.3.已知Sn 是等差数列{an}的前n项和,若4S6+3S8=96,则S7=()A.48 B.24 C.14 D.7【考点】85:等差数列的前n项和.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{an}的公差为d,∵4S6+3S8=96,∴+=96,化为:a1+3d=2=a4.则S7==7a4=14.故选:C.4.已知x,y的取值如表:x01234 y1 1.3 3.2 5.68.9若依据表中数据所画的散点图中,所有样本点(xi ,yi)(i=1,2,3,4,5)都在曲线y=x2+a附近波动,则a=()A.1 B.C.D.﹣【考点】BI:散点图.【分析】令t=x2,则回归直线方程为y=t+a,求得和,代入回归直线y=y=t+a,求得a的值.【解答】解:由y=x2+a,将t=x2,则所有样本点(xi ,yi)(i=1,2,3,4,5)都在直线y=t+a,则=6, =4,将(6,4)代入回归方程求得a=1,故答案为:A.5.执行如图所示的程序框图后输出的S值为()A.B.0 C. D.【考点】EF:程序框图.【分析】模拟程序的运行,根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,从而到结论.【解答】解:模拟程序的运行,可得S=0,i=1满足条件i≤2016,执行循环体,S=﹣,i=2满足条件i≤2016,执行循环体,S=,i=3满足条件i≤2016,执行循环体,S=0,i=4满足条件i≤2016,执行循环体,S=﹣,i=5…观察规律可知,S的值取值周期为3,由于2016=672×3,可得:满足条件i≤2016,执行循环体,S=,i=2016满足条件i≤2016,执行循环体,S=0,i=2017不满足条件i≤2016,退出循环输出S的值为0.故选:B.6.某几何体的三视图如图所示,正视图与俯视图完全相同,则该几何体的体积为()A.B.C. D.16+16+4(﹣1)π【考点】L!:由三视图求面积、体积.【分析】由三视图可知:该几何体是一个四棱锥,挖去一个圆锥所得的组合体,分别计算四棱锥和圆锥的体积,相减可得答案【解答】解:由三视图可知:该几何体是一个正四棱锥,挖去一个圆锥所得的组合体,四棱锥的体积为=,圆锥的体积为: =,故组合体的体积故选:C.7.直线x+y=1与曲线y=(a>0)恰有一个公共点,则a的取值范围是()A.a=B.a>1或a=C.≤a<1 D.<a<1【考点】57:函数与方程的综合运用;53:函数的零点与方程根的关系.【分析】将曲线y=(a>0)看成一个半圆,画出直线x+y=1与半圆恰有一个公共点时的情况,求解a的取值范围即可.【解答】解:由曲线y=(a>0),知y≥0,等式两边同时平方,整理可得x2+y2=a2,即曲线y=(a>0)是以(0,0)点为圆心,以为半径的半圆(y≥0)已知直线x+y=1,可在直角坐标系中给出图象(如下图)由图象可知,当半圆的半径>1即a>1时或者半圆与直线相切时恰有一个公共交点,当半圆与直线相切时,圆心(0,0)到直线的距离即为半圆的半径,此时,即a=所以当直线x+y=1与曲线y=(a>0)恰有一个公共点时,a的取值范围是a=或a>1.故选:B.8.如图,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=,则多面体ABC﹣A1B1C1的外接球的表面积为()A.2π B.4π C.6π D.8π【考点】LG:球的体积和表面积.【分析】由题意,多面体ABC﹣A1B1C1为棱长为的正方体,切去一个角,可得多面体ABC﹣A 1B1C1的外接球的直径、半径,即可求出多面体ABC﹣A1B1C1的外接球的表面积.【解答】解:由题意,多面体ABC﹣A1B1C1为棱长为的正方体,切去一个角,∴多面体ABC﹣A1B1C1的外接球的直径为=,半径为,∴多面体ABC﹣A1B1C1的外接球的表面积为4πR2=4=6π.故选:C.9.已知过抛物线y2=4x的焦点F作直线l交抛物线于A,B两点,若=2,则点A的横坐标为()A.B.C.D.【考点】K8:抛物线的简单性质.【分析】设A,B的坐标,联立直线和抛物线的方程,表示出y1和y2的关系进行求解即可.【解答】解:设A(x1,y1),B(x2,y2).则抛物线的焦点F(1,0),设过F的直线斜率为k,则y=k(x﹣1),联立y2=4x得ky2﹣4y﹣4k=0,则y1y2=﹣4,∵=2,∴(1﹣x2,﹣y2)=2(x1﹣1,y1)得﹣y2=2y1,得﹣y1y2=2y1y1,即﹣(﹣4)=2y12,则y12=2,即y12=2=4x1,即x1=,则点A的横坐标为,故选:B10.如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象与二次函数y=﹣x2+x+1的图象交于A(x1,0)和B(x2,1),则f(x)的解析式为()A.f(x)=sin(x+)B.f(x)=sin(x+)C.f(x)=sin(x+)D.f(x)=sin(x+)【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用二次函数求出A,B两点的坐标,根据正弦函数的性质得出f(x)的周期,代入特殊点B的坐标即可求出φ.【解答】解:把y=0代入二次函数y=﹣x2+x+1得x=1或x=﹣.由图象可知x1<0,∴A(﹣,0).把y=1代入二次函数y=﹣x2+x+1得x=0或x=.由图象可得x2>0,∴B(,1).∴f(x)的周期T==4,解得ω=.把B(,1)代入f(x)得sin(+φ)=1,∴φ=2kπ,∴φ=+2kπ,k∈Z.∵|φ|,∴φ=.∴f(x)=sin().故选:C.11.已知双曲线=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x﹣a相交所得的平行四边形的面积为6b2.则双曲线的离心率是()A.B.C.D.2【考点】KC:双曲线的简单性质.【分析】将直线y=x+a代入双曲线的方程,运用韦达定理和弦长公式,再由两平行直线的距离公式,结合平行四边形的面积公式,化简整理,运用双曲线的离心率公式,计算即可得到所求值.【解答】解:由y=x+a代入双曲线的方程,可得(b2﹣a2)x2﹣2a3x﹣a4﹣a2b2=0,设交点A(x1,y1),B(x2,y2),x 1+x2=,x1x2=,由弦长公式可得|AB|=•=•=2•,由两平行直线的距离公式可得d=,由题意可得6b2=2••,化为a2=3b2,又b2=c2﹣a2,可得c2=a2,即e==.故选:B.12.已知函数f(x)=﹣x+log2,若方程m﹣e﹣x=f(x)在[﹣,]内有实数解,则实数m的最小值是()A.e+B.e+ C.e﹣D.e﹣【考点】54:根的存在性及根的个数判断.【分析】化简f(x)=﹣x+log2=﹣x+log2(﹣1),从而由复合函数及函数的四则运算可得函数f(x)是[﹣,]上的减函数;化简可得方程m=e﹣x+f(x)在[﹣,]内有实数解,而函数y=e﹣x+f(x)=e﹣x﹣x+log2在[﹣,]上是减函数,从而可得实数m的最小值是﹣+log2=﹣.【解答】解:∵f(x)=﹣x+log2=﹣x+log2(﹣1),而y=﹣x是[﹣,]上的减函数,y=﹣1是[﹣,]上的减函数,y=log2x是(0,+∞)上的增函数,∴函数f(x)是[﹣,]上的减函数;∵方程m﹣e﹣x=f(x)在[﹣,]内有实数解,∴方程m=e﹣x+f(x)在[﹣,]内有实数解,又∵y=e﹣x在[﹣,]上是减函数,∴函数y=e﹣x+f(x)=e﹣x﹣x+log2在[﹣,]上是减函数,∴﹣+log2≤e﹣x﹣x+log2≤++log22,∴﹣+log2≤m≤++log22,∴实数m的最小值是﹣+log2=﹣;故选D.二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)(a>0且a≠1),若f(2)+f(﹣2)=,则a= 2或.【考点】3T:函数的值.【分析】化简f(2)=a2,f(﹣2)=+1,从而可得a2+=,从而求得.【解答】解:f(2)=a2,f(﹣2)=+1,故f(2)+f(﹣2)=a2++1=,则a2+=,故a2=4或a2=,故a=2或a=,故答案为:2或.14.若P为满足不等式组的平面区域Ω内任意一点,Q为圆M:(x﹣3)2+y2=1内(含边界)任意一点,则|PQ|的最大值是+1 .【考点】7C:简单线性规划.【分析】由题意作平面区域,从而可得|AB|==,|PQ|的最大值是|AB|+1=+1.【解答】解:由题意作平面区域如下,,易知当P在点A时,点B到平面区域Ω有最大值,而B(3,0),A(﹣2,﹣3);故|AB|==,故|PQ|的最大值是|AB|+1=+1,故答案为: +1.15.在边长为2的菱形ABCD中,∠BAD=60°,P,Q分别是BC,BD的中点,则向量与的夹角的余弦值为.【考点】LM:异面直线及其所成的角.【分析】由平面向量基本定理把向量用基底和表示,由向量的夹角公式可得.【解答】解:由题意可得和的模长均为2,且夹角为60°,∵P,Q分别是BC,BD的中点,由向量的知识可得:=+, =(+),∴•=(+)•(+)=(+•+)=(4+×2×2×+2)=||===同理可得||=∴向量与的夹角的余弦值为=故答案为:16.设Rn 是等比数列{an}的前n项的积,若25(a1+a3)=1,a5=27a2,则当Rn取最小值时,n=6 .【考点】89:等比数列的前n项和.【分析】由a5=27a2可得q=3;从而可得25a1(1+q2)=1,从而解得a1=,从而可得an=•3n﹣1,从而求Rn取最小值时的n.【解答】解:∵a5=27a2,∴=q3=27,∴q=3;∵25(a1+a3)=1,∴25a1(1+q2)=1,∴a1=,∴an=•3n﹣1,若使Rn取得最小值,则an =•3n﹣1≤1,an+1=•3n>1;解得,n=6;故当Rn取最小值时,n=6,故答案为:6.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A,B,C所对的边分别为a,b,c且2acos2C+2ccosAcosC+b=0.(1)求角C的大小;(2)若B=4sinB,求△ABC面积的最大值.【考点】HP:正弦定理.【分析】(1)先利用正弦定理转化为角的三角等式,再结合三角变换公式可求角C的大小;(2)先利用正弦定理可求c,再利用余弦定理建立关于a,b的等式,再结合基本不等式求得ab的最大值,进而可求面积的最大值.【解答】(本题满分为12分)解:(1)∵acos2C+2ccosAcosC+a+b=0,∴2acos2C+2ccosAcosC+b=0.∴由正弦定理可得:2sinAcos2C+2sinCcosAcosC+sinB=0.∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,∵0°<B<180°,∴sinB≠0,∴cosC=﹣,∴C=120°…6分(2)根据(1),由正弦定理,可得:c==2,由余弦定理,可得(2)2=a2+b2﹣2abcos120°=a2+b2+ab≥3ab,…10分∴ab≤4,∴S△ABC=absinC.∴△ABC面积的最大值为…18.某烹饪学院为了弘扬中国传统的饮食文化,举办了一场由在校学生参加的厨艺大赛.组委会为了了解本次大赛参赛学生的成绩情况,从参赛学生中抽取了n名学生的成绩(满分100分)作为样本,将所得数据经过分析整理后画出了频率分布直方图和茎叶图,其中茎叶图受到了污损,请据此解答下列问题:(Ⅰ)求样本容量n和频率分布直方图中a的值;(Ⅱ)规定大赛成绩在[80,90)的学生为厨霸,在[90,100]的学生为厨神.现从被称为厨霸、厨神的学生中随机抽取2人去参加校际之间举办的厨艺大赛,求所抽取的2人中至少有1人是厨神的概率.【考点】B8:频率分布直方图;BA:茎叶图.【分析】(Ⅰ)求出样本容量,从而求出a的值,和平均数;(Ⅱ)厨霸有0.0150×10×40=6人,分别记为a1,a2,a3,a4,a5,a6,厨神有0.0075×10×40=3人,分别记为b1,b2,b3,共9人列出事件A包含的基本事件,从而求出满足条件的概率即可.【解答】解:(Ⅰ)由题意可知,样本容量,所以.所以平均成绩为55×0.125+65×0.2+75×0.45+85×0.15+95×0.075=73.5.(Ⅱ)由题意可知,厨霸有0.0150×10×40=6人,分别记为a1,a2,a3,a4,a5,a6,厨神有0.0075×10×40=3人,分别记为b1,b2,b3,共9人.从中任意抽取2人共有36种情况:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,a6),(a1,b 1),(a1,b2),(a1,b3),(a2,a3),(a2,a4),(a2,a5),(a2,a6),(a2,b1),(a2,b2),(a2,b 3),(a3,a4),(a3,a5),(a3,a6),(a3,b1),(a3,b2),(a3,b3),(a4,a5),(a4,a6),(a4,b 1),(a4,b2),(a4,b3),(a5,a6),(a5,b1),(a5,b2),(a5,b3),(a6,b1),(a6,b2),(a6,b 3),(b1,b2),(b1,b3),(b2,b3),其中至少有1人是厨神的情况有21种,所以至少有1人是厨神的概率为=.19.在多面体ABCDEFG中,四边形ABCD与CDEF均为边长为4的正方形,CF⊥平面ABCD,BG ⊥平面ABCD,且AB=2BG=4BH.(1)求证:GH⊥平面EFG;(2)求三棱锥G﹣ADE的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直的判定.【分析】(I)利用勾股定理证明GH⊥FG,由EF⊥平面BCFG得EF⊥GH,故而得出GH⊥平面EFG;(II)先证明AB⊥平面ADE,再由公式VG﹣ADE =VB﹣ADE=计算棱锥的体积.【解答】证明:(I)连结FH,∵CD⊥CF,CD⊥BC,∴CD⊥平面BCFG,又GH⊂平面BCFG,∴CD⊥GH,又CD∥EF,∴EF⊥GH,∵AB=4,∴BH=1,BG=2,CF=4,CH=3,∴GH=,FG=2,FH=5,∴GH2+FG2=FH2,∴GH⊥FG.又EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,∴GH⊥平面EFG.(2)∵四边形ABCD与CDEF均为边长为4的正方形,∴CD⊥DE,CD⊥AD,CD∥AB.又AD⊂平面ADE,DE⊂平面ADE,AD∩DE=D,∴CD⊥平面ADE,又AB∥CD,∴AB⊥平面ADE.∴VG﹣ADE =VB﹣ADE===.20.已知椭圆C: +=1(a>b>0)的右焦点到直线x﹣y+3=0的距离为5,且椭圆C的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C的标准方程;(2)给出定点Q(,0),对于椭圆C的任意一条过Q的弦AB, +是否为定值?若是,求出该定值,若不是,请说明理由.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程.【分析】(1)首先利用焦点到直线的距离求出c,又=,a2=b2+c2,联立解出即可得出.(2)设直线AB的方程为:x=my+,A(x1,y1),B(x2,y2).联立得到方程组,利用根与系数的关系对|QA|与|QB|进行转化,要注意对特殊情况进行验证.【解答】解:(1)由右焦点(c,0)到直线x﹣y+3=0的距离为5,可得: =5,解得c=2.又=,a2=b2+c2,联立解得a=3,b=1.∴椭圆C的标准方程为=1.(2)当直线与x轴重合时, +=+=10.当直线与x轴不重合时,设直线AB的方程为:x=my+,A(x1,y1),B(x2,y2).联立,化为:(m2+9)y2+y﹣=0,△>0,∴y1+y2=,y1y2=.∴==,同理可得: =.∴+=+====10.综上可得: +=10.21.已知函数f(x)=a2lnx﹣x2+ax(a≠0),g(x)=(m﹣1)x2+2mx﹣1.(1)求函数f(x)的单调区间;(2)若a=1时,关于x的不等式f(x)≤g(x)恒成立,求整数m的最小值.【考点】6B:利用导数研究函数的单调性;3R:函数恒成立问题.【分析】(1)首先求函数的导函数,然后分a>0,a=0,a<0三种情况进行分类求函数的单调区间;(2)首先构造函数h(x)=f(x)﹣g(x),然后求导函数,根据导函数的解析式分m≤0与m >0两种情况求出函数h(x)的最小值,并建立关于m的不等式进行求解.【解答】解:(1)f′(x)=﹣2x+a=﹣﹣,x>0,当a>0时,由f′(x)>0,得0<x<a,由f′(x)<0,得x>a,∴f(x)的单调增区间为(0,a),单调减区间为(a,+∞)当a<0时,由f′(x)>0,得0<x<﹣,由f′(x)<0,得x>﹣,∴f(x)的单调增区间为(0,﹣),单调减区间为(﹣,+∞);(2)令h(x)=f(x)﹣g(x)=lnx﹣mx2+(1﹣2m)x+1,x>0,则h′(x)=﹣2mx+1﹣2m==﹣当m≤0时,h′(x)>0,∴h(x)在(0,+∞)上单调递增,∵h(1)=ln1﹣m×12+(1﹣2m)+1=﹣3m+2>0,∴关于x的不等式f(x)≤g(x)恒成立,当m>0时,由h′(x)>0,得0<x<,由f′(x)<0,得x>,∴h(x)的单调增区间为(0,),单调减区间为(,+∞);=h()=ln﹣m•()2+(1﹣2m)×+1=﹣ln(2m),∴h(x)max令φ(m)=﹣ln(2m),∵φ()=,φ(1)=﹣ln2<0,又φ(x)在(0,+∞)是减函数,∴当m≥1时,φ(m)<0,故整数m的最小值为1.请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点P作一条割线与⊙O交于C、A两点,直线PQ切⊙O于点Q,BD为过CA中点F的⊙O的直径.(1)已知PC=4,PQ=6,求DF•BF的值;(2)过D作⊙O的切线交BA的延长线于点E,若CD=,BC=5,求AE的值.【考点】N4:相似三角形的判定;N1:平行截割定理.【分析】(1)由切割线定理,可得PQ2=PC•PA,求出PA,计算出CA,可得AF,由相交弦定理,可得DF•BF;(2)证明BD⊥DE,利用AD⊥AB,可得AD2=AB•AE,即可求AE的值.【解答】解:(1)由切割线定理,可得PQ2=PC•PA,∴PA==9,∴CA=PA﹣PC=5,∵F是CA的中点,∴AF=FC=.由相交弦定理,可得DF•BF=AF•FC=;(2)∵BD是直径,F是AC的中点,∴AD=CD=,AB﹣BC=5.∵DE是切线,∴BD⊥DE,∵AD⊥AB,∴AD2=AB•AE,∴AE==2.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ﹣2ρsinθ﹣3=0.(1)分别写出曲线C1的普通方程与曲线C2的直角坐标方程;(2)若曲线C1与曲线C2交于P、Q两点,求△POQ的面积.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.的参数方程为(α为参数),利用平方关系消去α可得普通【分析】(1)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ﹣3=0,利用互化公式可得直角坐标方程.方程.曲线C2(2)圆心(2,﹣3)到直线的距离d,可得弦长|PQ|=2.△POQ的高h为一点到直线的距离,可得S=h|PQ|.△POQ的参数方程为(α为参数),利用平方关系可得:(x 【解答】解:(1)曲线C1﹣2)2+(y+3)2=9.的极坐标方程为ρcosθ﹣2ρsinθ﹣3=0,利用互化公式可得直角坐标方程:x﹣2y﹣曲线C23=0.(2)圆心(2,﹣3)到直线的距离d==.∴弦长|PQ|=2=4.△POQ的高h为一点到直线的距离,∴h==.∴S=h|PQ|=×4=.△POQ[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣1|.(1)若不等式f(x+)≤2m+1(m>0)的解集为[﹣2,2],求实数m的值;(2)对任意x,y∈R,求证:f(x)≤2y++|2x+3|.【考点】R6:不等式的证明;R5:绝对值不等式的解法.【分析】(1)由题意可得|2x|≤2m+1,(m>0),由解集为[﹣2,2],可得2m+1=4,即可得到m 的值;(2)原不等式即为|2x﹣1|﹣|2x+3|≤2y+.运用绝对值不等式的性质可得不等式左边的最大值为4,由基本不等式可得右边的最小值为4,即可得证.【解答】解:(1)不等式f(x+)≤2m+1⇔|2x|≤2m+1,(m>0),由解集为[﹣2,2],可得2m+1=4,解得m=;(2)证明:原不等式即为|2x﹣1|﹣|2x+3|≤2y+.由g(x)=|2x﹣1|﹣|2x+3|≤|(2x﹣1)﹣(2x+3)|=4,当2x+3≤0,即x≤﹣时,g(x)取得最大值4,又2y+≥2=4,当且仅当2y=,即y=1时,取得最小值4.则|2x﹣1|﹣|2x+3|≤2y+.故原不等式成立.。

2020年广东省深圳市高考数学一模试卷1 (含答案解析)

2020年广东省深圳市高考数学一模试卷1 (含答案解析)

2020年广东省深圳市高考数学一模试卷1一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈N|x<4},B={x|x≥−1},则A∩B=()A. {x|0≤x<4}B. {1,2,3}C. {0,1,2,3,4}D. {0,1,2,3}2.已知复数z=3+2i,则|2−3iz|=()A. 1B. √13C. √1313D. 133.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(−35,45 ),则sin(α+π)=()A. −35B. 35C. −45D. 454.设x,y满足约束条件{x+y−2≤0x−2y+1≤02x−y+2≥0,则z=3x+y的最大值为()A. −3B. 4C. 2D. 55.函数f(x)是R上的偶函数且在(−∞,0)上是增函数,又f(3)=1,则不等式f(x−1)<1的解集为()A. {x|x<2}B. {x|−2<x<4}C. {x|x<−2或x>4}D. {x|x>3}6.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A. 2B. 83C. 6D. 87.已知圆锥的母线长为5,高为4,则圆锥的表面积为()A. 30πB. 18πC. 24πD. 27π8.如图,三棱锥A−BCD中,AB⊥底面BCD,BC⊥CD,且AB=BC=1,CD=2,点E为CD的中点,则AE的长为()A. √2B. √3C. 2D. √59.关于函数f(x)=2sin(2x+π6),下列说法正确的是()A. 若x1,x2是函数f(x)的零点,则x1−x2是π的整数倍B. 函数f(x)的图象关于直线x=−π12对称C. 函数f(x)的图象与函数y=2cos(2x−π3)的图象相同D. 函数f(x)的图象可由函数y=2sin2x的图象向左平移π6个单位长度得到10.在长方体ABCD−A1B1C1D1中,AB=BC=2,AA1=√2,则异面直线AD1与DB1所成角的余弦值为()A. √36B. √1515C. −√1515D. −√3611.已知F1,F2是椭圆与x2a2+y2b2=1(a>b>0)的左、右焦点,过左焦点F1的直线与椭圆交于A,B两点,且满足|AF1|=2|BF1|,|AB|=|BF2|,则该椭圆的离心率是()A. 12B. √33C. √32D. √5312.函数f(x)=2ln x−x的最大值为()A. −1B. 2ln2−2C. 1D. 4ln2−4二、填空题(本大题共4小题,共20.0分)13.曲线y=xe x−1在点(1,1)处切线的斜率等于__________.14.已知向量a⃗,b⃗ 满足|a⃗+b⃗ |=|a⃗−b⃗ |,则a⃗⋅b⃗ =_______.15.已知F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左右焦点,A,B是双曲线的左右顶点,M是以F1,F2为直径的圆与双曲线的渐近线的一个交点,若∠AMB=45°,则该双曲线的离心率是______.16.在△ABC中,D为边BC上一点,BD=12DC,∠ADB=120°,AD=2,若△ADC的面积为3−√3,则∠BAC=_______.三、解答题(本大题共7小题,共82.0分)17.等差数列{a n}中,a3=1,a11=9,(1)求该等差数列的通项公式a n(2)求该等差数列的前n项和S n18.某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率.(2)在该样本的一等品中,随机抽取2件产品, ①用产品编号列出所有可能的结果; ②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.19.如图,四棱锥P−ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC=2(I)求证:AC⊥CD;(Ⅱ)点E在棱PC的中点,求点B到平面EAD的距离.20.已知抛物线C:y2=2px(p>0),直线y=x−1与C交于A,B两点,且|AB|=8.(1)求p的值;(2)如图,过原点O的直线l与抛物线C交于点M,与直线x=−1交于点H,过点H作y轴的垂线交抛物线C于点N,证明:直线MN过定点.21. 已知函数f(x)=e x −1−x −ax 2,当x ≥0时,f(x)≥0恒成立,求实数a 的取值范围.22. 在直角坐标系xOy 中,直线l 的参数方程为{x =2−3ty =√3t,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=4cosθ.(1)求l 的极坐标方程和C 1的直角坐标方程;(2)若曲线C 2的极坐标方程为θ=π6,C 2与l 的交点为A ,与C 1异于极点的交点为B ,求|AB|.23. 设f(x)=|2x −1|+|x +1|.(1)解不等式f(x)≤3;(2)若不等式m|x|≤f(x)恒成立,求m 的取值范围.-------- 答案与解析 --------1.答案:D解析: 【分析】可解出集合A ,然后进行交集的运算即可.考查描述法、列举法的定义,以及交集的运算. 【解答】解:A ={0,1,2,3}; ∴A ∩B ={0,1,2,3}. 故选D .2.答案:A解析: 【分析】把复数z =3+2i 代入|2−3i z|,再由商的模等于模的商求解.本题考查复数模的求法,是基础的计算题. 【解答】解:∵z =3+2i , ∴|2−3i z|=|2−3i 3+2i |=|2−3i||3+2i|=1.故选:A .3.答案:C解析: 【分析】本题考查三角函数的定义,求出角的终边上的点到原点的距离,利用任意角的三角函数公式求出α的三角函数值. 【解答】解:∵α的顶点在原点,始边与x 轴的非负半轴重合, 又终边过点(−35,45),∴|OP|=√(−35)2+(45)2=1,,,故选C .4.答案:B解析: 【分析】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,代入最优解的坐标得答案. 【解答】解:由约束条件{x +y −2≤0x −2y +1≤02x −y +2≥0作出可行域如图,由{x +y −2=0x −2y +1=0,解得{x =1y =1,即B(1,1),化目标函数z =3x +y 为y =−3x +z ,由图可知,当直线y =−3x +z 过B(1,1)时,直线在y 轴上的截距最大, 此时z 有最大值为3×1+1=4. 故选:B .5.答案:C解析:解:函数f(x)是R 上的偶函数且在(−∞,0)上是增函数, 可得f(x)=f(|x|),且f(x)在(0,+∞)上是减函数, 不等式f(x −1)<1=f(3), 即为f(|x −1|)<f(3), 可得|x −1|>3,即为x −1>3或x −1<−3,解得x>4或x<−2,即解集为{x|x>4或x<−2},故选:C.由题意可得f(x)=f(|x|),且f(x)在(0,+∞)上是减函数,不等式f(x−1)<1=f(3),可得|x−1|> 3,解不等式即可得到所求解集.本题考查函数的奇偶性和单调性的判断和运用:解不等式,运用偶函数的性质:f(x)=f(|x|),以及转化思想是解题的关键,属于中档题.6.答案:A解析:【分析】本题主要考查空间几何体的三视图及四棱锥体积的计算,难度一般,属于中档题.将三视图还原成几何体,再根据三棱锥体积公式计算即可.【解答】解:由三视图可知:该四棱锥的底面为上底和下底分别为1和2且高为2的直角梯形,有一条棱和底面垂直,几何体的高为2,故体积为V=13×(1+2)×22×2=2,故选:A.7.答案:C解析:【分析】本题考查的知识点是圆锥的表面积,熟练掌握圆锥的几何特征是解答的关键.由题意得到圆锥的底面半径为3,代入圆锥的表面积公式求解.【解答】解:由题意知圆锥的底面半径为3,则圆锥的表面积为π×3×5+π×32=24π.8.答案:B解析:|AE|2=|AC|2+|CE|2=|AB|2+|BC|2+|CE|2=1+1+1=3,故|AE|=√3.9.答案:C解析:本题考查三角函数的图像与性质,属中档题. 【解答】解:由题意知函数y =f (x )的图象与x 轴的相邻两交点间的距离为π2,故A 错误; 函数y =f (x )的图象关于点(−π12,0)对称,故B 错误;函数f (x )=2sin (2x +π6)=2sin [(2x −π3)+π2]=2cos (2x −π3),故C 正确; 函数f (x )的图象可由函数y =2sin2x 的图象向左平移π12个单位长度得到,故D 错误, 故选C .10.答案:B解析: 【分析】本题考查异面直线所成角的余弦值的求法,考查空间中线线位置关系等基础知识,考查运算求解能力,属于基础题.以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AD 1与DB 1所成角的余弦值. 【解答】解:在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AA 1=√2, 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则A(2,0,0),D 1(0,0,√2),D(0,0,0),B 1(2,2,√2), AD 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,√2),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,√2), 设异面直线AD 1与DB 1所成角为θ,则cosθ=|AD1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅DB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|DB 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√6⋅√10=√1515. ∴异面直线AD 1与DB 1所成角的余弦值为√1515. 故选:B .11.答案:B解析:本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可.【解答】解:作出图形,如下:由题意可得:|F1B|+|BF2|=2a,|AB|=|BF2|,可得|AF1|=a,|AF2|=a,|AB|=|BF2|=32a,|F1F2|=2c,在△ABF2中,由余弦定理得cos∠BAF2=94a2+a2−94a22×32a×a=13,在△AF1F2中,由余弦定理得cos∠BAF2=a2+a2−4c22×a×a =1−2(ca)2,所以13=1−2(ca)2,所以e=ca=√33.故选:B.12.答案:B解析:【分析】本题考查利用导数研究函数的单调性,利用导数求函数的最值,依题意,f′,(x)=2x −1=2−xx,(x>0),所以x∈(0,2)时,f′(x)>0,函数f(x)递增,x∈(2,+∞)时,f′(x)<0,函数f(x)递减,即可求得结果.【解答】解:f′,(x)=2x −1=2−xx,(x>0),所以x∈(0,2)时,f′(x)>0,函数f(x)递增,x∈(2,+∞)时,f′(x)<0,函数f(x)递减,所以函数f(x)=2ln x−x的最大值为f(2)=2ln2−2,故选B.13.答案:2解析:由y =xe x−1可得:y′=&e x−1+xe x−1,所以y′|x=1=e 0+e0=2,所以曲线y =xe x−1在点(1,1)处切线的斜率k =2.14.答案:0解析: 【分析】本题考查了向量的模、向量的数量积. 只需对模两边平方即可. 【解答】解:由|a ⃗ +b ⃗ |=|a ⃗ −b ⃗ |,得a ⃗ 2+b ⃗ 2+2a ⃗ ⋅b ⃗ =a ⃗ 2+b ⃗ 2−2a ⃗ ⋅b ⃗ ,∴a ⃗ ⋅b ⃗ =0.故答案为0.15.答案:√5解析:解:双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线方程为:bx −ay =0, 以F 1,F 2为直径的圆:x 2+y 2=c 2,可得{bx −ay =0x 2+y 2=c 2,不妨设M(a,b),可知MB ⊥x 轴.∠AMB =45°,所以∠MAB =45°,∴k MA =b−0a−(−a)=1,可得b =2a ,可得c 2−a 2=4a 2,解得e =√5. 故答案为:√5.利用双曲线的渐近线与圆联立方程,求出M 的坐标,通过∠AMB =45°,得到直线的斜率关系,转化求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,考查计算能力转化思想的应用.16.答案:60°解析: 【分析】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.先根据三角形的面积公式利用△ADC 的面积求得DC ,进而根据三角形ABC 的面积求得BD 和BC ,进而根据余弦定理求得AB.最后在三角形ABC 中利用余弦定理求得cos∠BAC ,求得∠BAC 的值. 【解答】解:由△ADC 的面积为3−√3可得S △ADC =12⋅AD ⋅DC ⋅sin60°=√32DC =3−√3 S △ABC=32(3−√3)=12AB ⋅AC ⋅sin∠BAC 解得DC =2√3−2,则BD =√3−1,BC =3√3−3.AB 2=AD 2+BD 2−2AD ⋅BD ⋅cos120°=4+(√3−1)2+2(√3−1)=6, AB =√6,AC 2=AD 2+CD 2−2AD ⋅CD ⋅cos60°=4+4(√3−1)2−4(√3−1)=24−12√3AC=√6(√3−1)则cos∠BAC =BA 2+AC 2−BC 22AB⋅AC=√3−9(4−2√3)26⋅6(3−1)=√3−612(3−1)=12. 故∠BAC =60°. 故答案为60°.17.答案:解:(1)∵a 11=a 3+8d ,∴d =1∴a n =a 3+(n −3)d =n −2, (2)∵a n =n −2, ∴a 1=−1, ∴S n =(a 1+a n )n2=n (n−3)2.解析:本题考查等差数列: (1)考查等差数列的通项公式; (2)考查等差数列的前n 项和.18.答案:解:(1)计算10件产品的综合指标S ,如下表:其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件, 故该样本的一等品率为610,从而可估计该批产品的一等品率为0.6.(2) ①在该样本的一等品中,随机抽取2件产品的所有可能结果为: {A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9}, {A 2,A 4}{,A 2,A 5},{A 2,A 7},{A 2,A 9}, {A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种. ②在该样本的一等品中,综合指标S等于4的产品编号分别为:A1,A2,A5,A7,则事件B发生的可能结果为:{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=615=25.解析:本题考查了随机事件,考查了古典概型及其概率计算公式,是基础题.(1)用综合指标S=x+y+z计算出10件产品的综合指标并列表表示,则样本的一等品率可求;(2)①直接用列举法列出在该样品的一等品中,随机抽取2件产品的所有等可能结果;②列出在取出的2件产品中,每件产品的综合指标S都等于4的所有情况,然后利用古典概型概率计算公式求解.19.答案:(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD,因为∠PCD=90°,所以PC⊥CD,所以CD⊥平面PAC,所以CD⊥AC.…(4分)(Ⅱ)解:因为PA=AB=AC=2,E为PC的中点,所以AE⊥PC,AE=√2.由(Ⅰ)知AE⊥CD,所以AE⊥平面PCD.作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平面EAD.因为BC//AD,所以点B与点C到平面EAD的距离相等,CF即为点C到平面EAD的距离.…(8分)在Rt△ECD中,CF=CE×CDDE =2√33.所以,点B到平面EAD的距离为2√33.…(12分)解析:(I)证明CD⊥平面PAC,可得AC⊥CD;(Ⅱ)作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平面EAD.因为BC//AD,所以点B与点C到平面EAD的距离相等,CF即为点C到平面EAD的距离,利用等面积可得结论.本题考查线面垂直的性质与判定,考查点B到平面EAD的距离,考查学生分析解决问题的能力,属于中档题.20.答案:(1)解:由{y 2=2pxy=x−1,消x可得y2−2py−2p=0,设A(x1,y1),B(x2,y2),∴y1+y2=2p,y1y2=−2p,∴弦长|AB|=√12+12√(y1+y2)2−4y1y2 =√2√4p2+8p=8,解得p=2或p=−4(舍去),∴p=2;(2)证明:由(1)可得y2=4x,设M(14y02,y0),∴直线OM的方程y=4y0x,当x=−1时,y H=−4y,则y H=y N=−4y,代入抛物线方程y2=4x,可得x N=4y,∴N(4y02,−4y0),∴直线MN的斜率k=y0+4y0y024−4y02=4y0y02−4,直线MN的方程为y−y0=4y0y02−4(x−14y02),整理可得y=4y0y02−4(x−1),故直线MN过点(1,0).解析:本题考查抛物线的标准方程和直线与抛物线的位置关系,属中档题.(1)根据弦长公式即可求出p的值;(2)由(1)可得y2=4x,设M(14y02,y0),根据题意求出点N的坐标,即可表示出直线MN的方程,即可求直线过定点.21.答案:解:f′(x)=e x−1−2ax,令ℎ(x)=e x−1−2ax,则ℎ′(x)=e x−2a.1)当2a≤1时,在[0,+∞)上,ℎ′(x)≥0,ℎ(x)递增,ℎ(x)≥ℎ(0),即f′(x)≥f′(0)=0,∴f(x)在[0,+∞)为增函数,∴f(x)≥f(0)=0,∴a ≤12时满足条件; 2)当2a >1时,令ℎ′(x)=0, 解得x =ln2a ,当x ∈[0,ln2a)上,ℎ′(x)<0,ℎ(x)单调递减, ∴x ∈(0,ln2a)时,有ℎ(x)<ℎ(0)=0, 即f′(x)<f′(0)=0,∴f(x)在区间(0,ln2a)为减函数, ∴f(x)<f(0)=0,不合题意, 综上得实数a 的取值范围为(−∞,12].解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属难题.求出函数的导数,通过讨论a 的范围,求出函数的单调区间,进而得出实数a 的取值范围.22.答案:解:(1)直线l 的参数方程为{x =2−3ty =√3t,(t 为参数),转换为直角坐标方程为:x +√3y −2=0. 设代入x +√3y −2=0,整理得直线l 的极坐标方程为,曲线C 1的极坐标方程为ρ=4cosθ.转换为直角坐标方程为:(x −2)2+y 2=4,(2)曲线C 2的极坐标方程为θ=π6,曲线C 2与l 的交点为A , 则:ρA cos π6+√3ρA sin π6−2=0, 解得:ρA =2√33, 与C 1异于极点的交点为B , 所以:ρB =4cos π6=2√3, 则:|AB|=|ρA −ρB |=4√33.解析:本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,三角函数关系式的恒等变换,直线方程的求法及应用,主要考查学生的运算能力和转化能力.属于基础题型. (1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换,(2)利用线的关系建立方程组,求出极径,进一步求出结果.23.答案:解:(1)当x<−1时,f(x)=−(2x−1)−(x+1)=−3x≤3,解得x≥−1,故此情况无解;当−1≤x≤12时,f(x)=−(2x−1)+(x+1)=−x+2≤3,解得x≥−1,故−1≤x≤12;当x>12时,f(x)=(2x−1)+(x+1)=3x≤3,解得x≤1,故12<x≤1;综上所述,满足f(x)≤3的解集为{x|−1≤x≤1}.(2)当x=0时,可知对于∀m∈R,不等式均成立;当x≠0时,由已知可得:m≤f(x)|x|=|2x−1|+|x+1||x|=|2−1x|+|1+1x|≤|(2−1x)+(1+1x)|=3,当x≤−1或x≥12时,等号成立,综上所述,使得不等式恒成立的m的取值范围为m≤3.解析:(1)通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可;(2)问题转化为m≤f(x)|x|,再根据绝对值的性质求出m的范围即可.本题考查了解绝对值不等式问题,考查绝对值的性质,以及分类讨论思想,是一道中档题.。

2020年广东省深圳市高考数学一模试卷1(含答案解析)

2020年广东省深圳市高考数学一模试卷1(含答案解析)

2020年⼴东省深圳市⾼考数学⼀模试卷1(含答案解析)2020年⼴东省深圳市⾼考数学⼀模试卷1⼀、选择题(本⼤题共12⼩题,共60.0分)1.已知集合A={x∈N|x<4},B={x|x≥?1},则A∩B=()A. {x|0≤x<4}B. {1,2,3}C. {0,1,2,3,4}D. {0,1,2,3}2.已知复数z=3+2i,则|2?3iz|=()A. 1B. √13C. √1313D. 133.已知⾓α的顶点与原点O重合,始边与x轴的⾮负半轴重合,它的终边过点P(?35,45 ),则sin(α+π)=()A. ?35B. 35C. ?45D. 454.设x,y满⾜约束条件{x+y?2≤0x?2y+1≤02x?y+2≥0,则z=3x+y的最⼤值为()A. ?3B. 4C. 2D. 55.函数f(x)是R上的偶函数且在(?∞,0)上是增函数,⼜f(3)=1,则不等式f(x?1)<1的解集为()A. {x|x<2}B. {x|?2C. {x|x4}D. {x|x>3}6.如图所⽰,⽹络纸上⼩正⽅形的边长为1,粗线画出的是某四棱锥的三视图,则该⼏何体的体积为()A. 2B. 83C. 6D. 87.已知圆锥的母线长为5,⾼为4,则圆锥的表⾯积为()A. 30πB. 18πC. 24πD. 27π8.如图,三棱锥A?BCD中,AB⊥底⾯BCD,BC⊥CD,且AB=BC=1,CD=2,点E为CD的中点,则AE的长为()A. √2B. √3C. 2D. √59.关于函数f(x)=2sin(2x+π6),下列说法正确的是()A. 若x1,x2是函数f(x)的零点,则x1?x2是π的整数倍B. 函数f(x)的图象关于直线x=?π12对称C. 函数f(x)的图象与函数y=2cos(2x?π3)的图象相同D. 函数f(x)的图象可由函数y=2sin2x的图象向左平移π6个单位长度得到10.在长⽅体ABCD?A1B1C1D1中,AB=BC=2,AA1=√2,则异⾯直线AD1与DB1所成⾓的余弦值为()A. √36B. √1515C. ?√1515D. ?√3611.已知F1,F2是椭圆与x2a2+y2b2=1(a>b>0)的左、右焦点,过左焦点F1的直线与椭圆交于A,B两点,且满⾜|AF1|=2|BF1|,|AB|=|BF2|,则该椭圆的离⼼率是()A. 12B. √33C. √32D. √5312.函数f(x)=2ln x?x的最⼤值为()A. ?1B. 2ln2?2C. 1D. 4ln2?4⼆、填空题(本⼤题共4⼩题,共20.0分)13.曲线y=xe x?1在点(1,1)处切线的斜率等于__________.14.已知向量a?,b? 满⾜|a?+b? |=|a??b? |,则a??b? =_______.15.已知F1,F2是双曲线C:x2a2?y2b2=1(a>0,b>0)的左右焦点,A,B是双曲线的左右顶点,M是以F1,F2为直径的圆与双曲线的渐近线的⼀个交点,若∠AMB=45°,则该双曲线的离⼼率是______.16.在△ABC中,D为边BC上⼀点,BD=12DC,∠ADB=120°,AD=2,若△ADC的⾯积为3?√3,则∠BAC=_______.三、解答题(本⼤题共7⼩题,共82.0分)17.等差数列{a n}中,a3=1,a11=9,(1)求该等差数列的通项公式a n(2)求该等差数列的前n项和S n18.某产品的三个质量指标分别为x,y,z,⽤综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为⼀等品.先从⼀批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利⽤上表提供的样本数据估计该批产品的⼀等品率.(2)在该样本的⼀等品中,随机抽取2件产品,①⽤产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发⽣的概率.19.如图,四棱锥P?ABCD的底⾯ABCD是平⾏四边形,PA⊥底⾯ABCD,∠PCD=90°,PA=AB=AC=2(I)求证:AC⊥CD;(Ⅱ)点E在棱PC的中点,求点B到平⾯EAD的距离.20.已知抛物线C:y2=2px(p>0),直线y=x?1与C交于A,B两点,且|AB|=8.(1)求p的值;(2)如图,过原点O的直线l与抛物线C交于点M,与直线x=?1交于点H,过点H作y轴的垂线交抛物线C于点N,证明:直线MN过定点.21. 已知函数f(x)=e x ?1?x ?ax 2,当x ≥0时,f(x)≥0恒成⽴,求实数a 的取值范围.22. 在直⾓坐标系xOy 中,直线l 的参数⽅程为{x =2?3ty =√3t,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建⽴极坐标系,曲线C 1的极坐标⽅程为ρ=4cosθ.(1)求l 的极坐标⽅程和C 1的直⾓坐标⽅程;(2)若曲线C 2的极坐标⽅程为θ=π6,C 2与l 的交点为A ,与C 1异于极点的交点为B ,求|AB|.23. 设f(x)=|2x ?1|+|x +1|.(1)解不等式f(x)≤3;(2)若不等式m|x|≤f(x)恒成⽴,求m 的取值范围.-------- 答案与解析 --------1.答案:D解析:【分析】可解出集合A ,然后进⾏交集的运算即可.考查描述法、列举法的定义,以及交集的运算.【解答】解:A ={0,1,2,3};∴A ∩B ={0,1,2,3}.故选D .2.答案:A解析:【分析】把复数z =3+2i 代⼊|2?3i z|,再由商的模等于模的商求解.本题考查复数模的求法,是基础的计算题.【解答】解:∵z =3+2i ,∴|2?3i z|=|2?3i 3+2i |=|2?3i||3+2i|=1.故选:A .3.答案:C解析:【分析】本题考查三⾓函数的定义,求出⾓的终边上的点到原点的距离,利⽤任意⾓的三⾓函数公式求出α的三⾓函数值.【解答】解:∵α的顶点在原点,始边与x 轴的⾮负半轴重合,⼜终边过点(?35,45),∴|OP|=√(?35)2+(45)2=1,,,故选C .4.答案:B解析:【分析】本题考查简单的线性规划,考查了数形结合的解题思想⽅法,是基础题.由约束条件作出可⾏域,化⽬标函数为直线⽅程的斜截式,数形结合得到最优解,代⼊最优解的坐标得答案.【解答】解:由约束条件{x +y ?2≤0x ?2y +1≤02x ?y +2≥0作出可⾏域如图,由{x +y ?2=0x ?2y +1=0,解得{x =1y =1,即B(1,1),化⽬标函数z =3x +y 为y =?3x +z ,由图可知,当直线y =?3x +z 过B(1,1)时,直线在y 轴上的截距最⼤,此时z 有最⼤值为3×1+1=4.故选:B .5.答案:C解析:解:函数f(x)是R 上的偶函数且在(?∞,0)上是增函数,可得f(x)=f(|x|),且f(x)在(0,+∞)上是减函数,不等式f(x ?1)<1=f(3),即为f(|x ?1|)3,即为x ?1>3或x ?1解得x>4或x即解集为{x|x>4或x故选:C.由题意可得f(x)=f(|x|),且f(x)在(0,+∞)上是减函数,不等式f(x?1)<1=f(3),可得|x?1|> 3,解不等式即可得到所求解集.本题考查函数的奇偶性和单调性的判断和运⽤:解不等式,运⽤偶函数的性质:f(x)=f(|x|),以及转化思想是解题的关键,属于中档题.6.答案:A解析:【分析】本题主要考查空间⼏何体的三视图及四棱锥体积的计算,难度⼀般,属于中档题.将三视图还原成⼏何体,再根据三棱锥体积公式计算即可.【解答】解:由三视图可知:该四棱锥的底⾯为上底和下底分别为1和2且⾼为2的直⾓梯形,有⼀条棱和底⾯垂直,⼏何体的⾼为2,故体积为V=13×(1+2)×22×2=2,故选:A.7.答案:C解析:【分析】本题考查的知识点是圆锥的表⾯积,熟练掌握圆锥的⼏何特征是解答的关键.由题意得到圆锥的底⾯半径为3,代⼊圆锥的表⾯积公式求解.解:由题意知圆锥的底⾯半径为3,则圆锥的表⾯积为π×3×5+π×32=24π.8.答案:B解析:|AE|2=|AC|2+|CE|2=|AB|2+|BC|2+|CE|2=1+1+1=3,故|AE|=√3.9.答案:C解析:本题考查三⾓函数的图像与性质,属中档题.【解答】解:由题意知函数y =f (x )的图象与x 轴的相邻两交点间的距离为π2,故A 错误;函数y =f (x )的图象关于点(?π12,0)对称,故B 错误;函数f (x )=2sin (2x +π6)=2sin [(2x ?π3)+π2]=2cos (2x ?π3),故C 正确;函数f (x )的图象可由函数y =2sin2x 的图象向左平移π12个单位长度得到,故D 错误,故选C .10.答案:B解析:【分析】本题考查异⾯直线所成⾓的余弦值的求法,考查空间中线线位置关系等基础知识,考查运算求解能⼒,属于基础题.以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建⽴空间直⾓坐标系,利⽤向量法能求出异⾯直线AD 1与DB 1所成⾓的余弦值.【解答】解:在长⽅体ABCD ?A 1B 1C 1D 1中,AB =BC =2,AA 1=√2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建⽴空间直⾓坐标系,则A(2,0,0),D 1(0,0,√2),D(0,0,0),B 1(2,2,√2), AD 1 =(?2,0,√2),DB 1 =(2,2,√2),设异⾯直线AD 1与DB 1所成⾓为θ,则cosθ=|AD1???????? ?DB 1???????? ||AD 1|?|DB 1|=√6?√10=√1515.∴异⾯直线AD 1与DB 1所成⾓的余弦值为√1515.故选:B .11.答案:B本题考查椭圆的简单性质的应⽤,考查数形结合以及转化思想的应⽤,属于中档题利⽤已知条件,画出图形,通过三⾓形的边长关系,结合余弦定理,求解椭圆的离⼼率即可.【解答】解:作出图形,如下:由题意可得:|F1B|+|BF2|=2a,|AB|=|BF2|,可得|AF1|=a,|AF2|=a,|AB|=|BF2|=32a,|F1F2|=2c,在△ABF2中,由余弦定理得cos∠BAF2=94a2+a2?94a22×32a×a=13,在△AF1F2中,由余弦定理得cos∠BAF2=a2+a2?4c22×a×a =1?2(ca)2,所以13=1?2(ca)2,所以e=ca=√33.故选:B.12.答案:B解析:【分析】本题考查利⽤导数研究函数的单调性,利⽤导数求函数的最值,依题意,f′,(x)=2x ?1=2?xx,(x>0),所以x∈(0,2)时,f′(x)>0,函数f(x)递增,x∈(2,+∞)时,f′(x)<0,函数f(x)递减,即可求得结果.【解答】解:f′,(x)=2x ?1=2?xx,(x>0),所以x∈(0,2)时,f′(x)>0,函数f(x)递增,x∈(2,+∞)时,f′(x)<0,函数f(x)递减,所以函数f(x)=2ln x?x的最⼤值为f(2)=2ln2?2,故选B.13.答案:2解析:由y =xe x?1可得:y′=&e x?1+xe x?1,所以y′|x=1=e 0+e0=2,所以曲线y =xe x?1在点(1,1)处切线的斜率k =2.14.答案:0解析:【分析】本题考查了向量的模、向量的数量积.只需对模两边平⽅即可.【解答】解:由|a ? +b ? |=|a ? ?b ? |,得a ? 2+b ? 2+2a ? ?b ? =a ? 2+b ? 22a b ,∴a ? ?b ? =0.故答案为0.15.答案:√5解析:解:双曲线C :x 2a 2y 2b 2=1(a >0,b >0)的⼀条渐近线⽅程为:bx ?ay =0,以F 1,F 2为直径的圆:x 2+y 2=c 2,可得{bx ?ay =0x 2+y 2=c 2,不妨设M(a,b),可知MB ⊥x 轴.∠AMB =45°,所以∠MAB =45°,∴k MA =b?0a?(?a)=1,可得b =2a ,可得c 2?a 2=4a 2,解得e =√5.故答案为:√5.利⽤双曲线的渐近线与圆联⽴⽅程,求出M 的坐标,通过∠AMB =45°,得到直线的斜率关系,转化求解双曲线的离⼼率即可.本题考查双曲线的简单性质的应⽤,考查计算能⼒转化思想的应⽤.16.答案:60°解析:【分析】本题主要考查解三⾓形中的边⾓关系及其⾯积等基础知识与技能,分析问题解决问题的能⼒以及相应的运算能⼒.先根据三⾓形的⾯积公式利⽤△ADC 的⾯积求得DC ,进⽽根据三⾓形ABC 的⾯积求得BD 和BC ,进⽽根据余弦定理求得AB.最后在三⾓形ABC 中利⽤余弦定理求得cos∠BAC ,求得∠BAC 的值.【解答】解:由△ADC 的⾯积为3?√3可得S △ADC =12?AD ?DC ?sin60°=√32DC =3?√3 S △ABC=32(3?√3)=12AB ?AC ?sin∠BAC 解得DC =2√3?2,则BD =√3?1,BC =3√3?3.AB 2=AD 2+BD 2?2AD ?BD ?cos120°=4+(√3?1)2+2(√3?1)=6, AB =√6,AC 2=AD 2+CD 2?2AD ?CD ?cos60°=4+4(√3?1)2?4(√3?1)=24?12√3AC=√6(√3?1)则cos∠BAC =BA 2+AC 2?BC 22AB?AC=√3?9(4?2√3)26?6(3?1)=√3?612(3?1)=12.故∠BAC =60°.故答案为60°.17.答案:解:(1)∵a 11=a 3+8d ,∴d =1∴a n =a 3+(n ?3)d =n ?2, (2)∵a n =n ?2,∴a 1=?1,∴S n =(a 1+a n )n2=n (n?3)2.解析:本题考查等差数列: (1)考查等差数列的通项公式; (2)考查等差数列的前n 项和.18.答案:解:(1)计算10件产品的综合指标S ,如下表:其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的⼀等品率为610,从⽽可估计该批产品的⼀等品率为0.6.(2)?①在该样本的⼀等品中,随机抽取2件产品的所有可能结果为: {A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4}{,A 2,A 5},{A 2,A 7},{A 2,A 9}, {A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的⼀等品中,综合指标S等于4的产品编号分别为:A1,A2,A5,A7,则事件B发⽣的可能结果为:{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=615=25.解析:本题考查了随机事件,考查了古典概型及其概率计算公式,是基础题.(1)⽤综合指标S=x+y+z计算出10件产品的综合指标并列表表⽰,则样本的⼀等品率可求;(2)①直接⽤列举法列出在该样品的⼀等品中,随机抽取2件产品的所有等可能结果;②列出在取出的2件产品中,每件产品的综合指标S都等于4的所有情况,然后利⽤古典概型概率计算公式求解.19.答案:(Ⅰ)证明:因为PA⊥底⾯ABCD,所以PA⊥CD,因为∠PCD=90°,所以PC⊥CD,所以CD⊥平⾯PAC,所以CD⊥AC.…(4分)(Ⅱ)解:因为PA=AB=AC=2,E为PC的中点,所以AE⊥PC,AE=√2.由(Ⅰ)知AE⊥CD,所以AE⊥平⾯PCD.作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平⾯EAD.因为BC//AD,所以点B与点C到平⾯EAD的距离相等,CF即为点C到平⾯EAD的距离.…(8分)在Rt△ECD中,CF=CE×CDDE =2√33.所以,点B到平⾯EAD的距离为2√3.…(12分)解析:(I)证明CD⊥平⾯PAC,可得AC⊥CD;(Ⅱ)作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平⾯EAD.因为BC//AD,所以点B与点C到平⾯EAD的距离相等,CF即为点C到平⾯EAD的距离,利⽤等⾯积可得结论.本题考查线⾯垂直的性质与判定,考查点B到平⾯EAD的距离,考查学⽣分析解决问题的能⼒,属于中档题.20.答案:(1)解:由{y 2=2pxy=x?1,消x可得y2?2py?2p=0,设A(x1,y1),B(x2,y2),∴y1+y2=2p,y1y2=?2p,∴弦长|AB|=√12+12√(y1+y2)2?4y1y2 =√2√4p2+8p=8,解得p=2或p=?4(舍去),∴p=2;(2)证明:由(1)可得y2=4x,设M(14y02,y0),∴直线OM的⽅程y=4y0x,当x=?1时,y H=?4y,则y H=y N=?4y,代⼊抛物线⽅程y2=4x,可得x N=4y,∴N(4y02,?4y0),∴直线MN的斜率k=y0+4y04y02=4y0y02?4,直线MN的⽅程为y?y0=4y0y02?4(x?14y02),整理可得y=4y0y02?4(x?1),故直线MN过点(1,0).解析:本题考查抛物线的标准⽅程和直线与抛物线的位置关系,属中档题.(1)根据弦长公式即可求出p的值;(2)由(1)可得y2=4x,设M(14y02,y0),根据题意求出点N的坐标,即可表⽰出直线MN的⽅程,即可求直线过定点.21.答案:解:f′(x)=e x?1?2ax,令?(x)=e x?1?2ax,则?′(x)=e x?2a.1)当2a≤1时,在[0,+∞)上,?′(x)≥0,?(x)递增,?(x)≥?(0),即f′(x)≥f′(0)=0,∴f(x)在[0,+∞)为增函数,∴f(x)≥f(0)=0,∴a ≤12时满⾜条件; 2)当2a >1时,令?′(x)=0,解得x =ln2a ,当x ∈[0,ln2a)上,?′(x)<0,?(x)单调递减,∴x ∈(0,ln2a)时,有?(x)∴f(x)在区间(0,ln2a)为减函数,∴f(x)2].解析:本题考查了函数的单调性、最值问题,考查导数的应⽤以及分类讨论思想,转化思想,属难题.求出函数的导数,通过讨论a 的范围,求出函数的单调区间,进⽽得出实数a 的取值范围.22.答案:解:(1)直线l 的参数⽅程为{x =2?3t,(t 为参数),转换为直⾓坐标⽅程为:x +√3y ?2=0.设代⼊x +√3y ?2=0,整理得直线l 的极坐标⽅程为,曲线C 1的极坐标⽅程为ρ=4cosθ.转换为直⾓坐标⽅程为:(x ?2)2+y 2=4,(2)曲线C 2的极坐标⽅程为θ=π6,曲线C 2与l 的交点为A ,则:ρA cos π6+√3ρA sin π6?2=0,解得:ρA =2√33,与C 1异于极点的交点为B ,所以:ρB =4cos π6=2√3,则:|AB|=|ρA ?ρB |=4√33.解析:本题考查的知识要点:参数⽅程直⾓坐标⽅程和极坐标⽅程之间的转换,三⾓函数关系式的恒等变换,直线⽅程的求法及应⽤,主要考查学⽣的运算能⼒和转化能⼒.属于基础题型. (1)直接利⽤转换关系,把参数⽅程直⾓坐标⽅程和极坐标⽅程之间进⾏转换,(2)利⽤线的关系建⽴⽅程组,求出极径,进⼀步求出结果.23.答案:解:(1)当x当?1≤x≤12时,f(x)=?(2x?1)+(x+1)=?x+2≤3,解得x≥?1,故?1≤x≤12;当x>12时,f(x)=(2x?1)+(x+1)=3x≤3,解得x≤1,故12综上所述,满⾜f(x)≤3的解集为{x|?1≤x≤1}.(2)当x=0时,可知对于?m∈R,不等式均成⽴;当x≠0时,由已知可得:m≤f(x)|x|=|2x?1|+|x+1||x|=|2?1x|+|1+1x|≤|(2?1x)+(1+1x)|=3,当x≤?1或x≥12时,等号成⽴,综上所述,使得不等式恒成⽴的m的取值范围为m≤3.解析:(1)通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可;(2)问题转化为m≤f(x)|x|,再根据绝对值的性质求出m的范围即可.本题考查了解绝对值不等式问题,考查绝对值的性质,以及分类讨论思想,是⼀道中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档