最新的高中数学竞赛典型题目(一)

合集下载

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。

以下是一些高中数学竞赛赛题的精选和解答。

1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。

解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。

由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。

2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。

解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。

sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。

3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。

给定P(n)+Q(n)=n,求最小的n。

解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。

当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。

4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。

解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。

5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。

高中数学竞赛一试试题

高中数学竞赛一试试题

高中数学竞赛一试试题高中数学竞赛是一项旨在激发学生对数学的兴趣和提高数学能力的重要活动。

以下是一套模拟的高中数学竞赛一试试题,供参赛者练习使用。

一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. πB. 0.33333...(无限循环)C. √2D. 1/32. 已知函数f(x) = 2x^2 - 3x + 5,求f(-1)的值。

A. 8B. 10C. 12D. 143. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 一个等差数列的首项为3,公差为2,第10项是多少?A. 23B. 25C. 27D. 29二、填空题(每题4分,共16分)1. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是________。

2. 已知一个二次方程x^2 + 4x + 4 = 0,求其判别式Δ。

3. 一个函数y = 3x - 2的斜率是________。

4. 圆心在(1,2),半径为3的圆的标准方程是________。

三、解答题(共64分)1. (10分)证明:对于任意实数x,不等式\( e^x \geq x + 1 \)成立。

2. (12分)解不等式:\( |x - 1| + |x - 2| < 2 \)。

3. (16分)已知数列{an}的前n项和为S_n,且满足S_n = 2an - 1(n≥2),a1 = 1。

求数列{an}的通项公式。

4. (26分)一个圆与x轴相切于点A(1,0),圆心在直线y = x上,且此圆经过点B(0,4)。

求这个圆的方程。

结束语:希望这份试题能够帮助参赛者更好地准备即将到来的高中数学竞赛。

通过练习这些题目,不仅可以检验自己的数学知识掌握程度,还能提高解题技巧和速度。

祝所有参赛者取得优异的成绩!。

2023高中数学竞赛决赛试题

2023高中数学竞赛决赛试题

2023高中数学竞赛决赛试题2023高中数学竞赛决赛试题一、选择题设集合A = {x | x = 3k + 1, k Z}∈,B = {x | x = 3k + 2, k Z}∈,则集合A 和B 的关系是:A. A B ⊆B. B A ⊆C. A = B D. A ∩ B = ∅已知 x > 1,则函数 y = x + (1/x) 的最小值为:A. 2√2B. √2C. 4D. 不存在若函数 f(x) = (x - a)/(x^2 + 1) 在区间 (-2,2) 上是奇函数,则 a 的取值范围是:A. a = ±√2B. a = -√2C. a = ±1D. a = -1下列各组中的两个函数是同一函数的是:A. f(x) = x^2 和 g(x) = (√x)^2B. f(x) = x 和 g(x) = √x^2C. f(x) = |x| 和 g(x) = (√(x^2))D. f(x) = x 和 g(x) = (√(x))^2在等差数列 {an} 中,a3 + a8 > 0,则有:A. a1 + a10 > 0B. a2 + a9 > 0C. a4 + a7 > 0D. a5 + a6 > 0若实数 x, y 满足 x^2 + y^2 = 1,则 (x + 2)^2 + (y + 2)^2 的最小值为:A. 4√5/5B. √5 - 1C. √5 + 1D. 5/4下列各式中正确的是:A. lim(x→∞) (sin x/x) = 0B .lim(x→∞) (x·sin x/x) = 1C .lim(x→∞) (sin x/x^2) = 0D .lim(x→∞) ((sin x)/x)^x = e^(-1)下列说法中正确的是:A. “直线 l 在平面 α 内”等价于“直线 l 与平面 α 有公共点”B. “直线 l 与直线 l' 在平面 α 内相交”等价于“直线 l 与直线 l' 有公共点”C. “直线 l 与平面 α 的平行”等价于“直线 l 与平面 α 没有公共点”D. “直线 l 与直线 l' 在平面 α 内平行”等价于“直线 l 与直线 l' 没有公共点”一个袋子中有大小形状相同的红、黄、蓝三种颜色的球各一个,现有放回地依次取出三个球,则取到红、黄、蓝三种颜色的球各一个的概率为:A. 1/8B. 1/6C. 1/4D. 1/3在等比数列 {an} 中,a7 · a11 = 6,a3 + a13 = 5,则 a23 + a27 的值为:A. -5/6 B. -1 C. -6 D. -5/4二、填空题11. 若 f(n) = (n - a)/(n + a),则 f(4) + f(9) + ... + f(99) + f(104) 的值为 _______。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。

A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。

7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。

8. 一个正六边形的内角为______度。

9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。

10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。

三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。

14. 求函数y = x^3 - 3x^2 + 2x的极值点。

15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。

答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。

当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。

高中的数学竞赛试题及答案

高中的数学竞赛试题及答案

高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。

A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。

A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。

商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。

共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。

边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。

9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。

10. 解不等式:|x + 2| + |x - 3| > 4。

四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。

五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。

证明:s =2r*sin(π/n)。

高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目为了准确满足标题描述的内容需求,我将按照数学竞赛试题的格式给你写一篇关于上海高一高中数学竞赛的文章。

以下是正文:上海高一高中数学竞赛题目第一题:几何问题已知正方形ABCD的边长为2,点E、F分别是线段BC、CD上的点,且满足BE = 3CF。

若四边形AEFD的面积为S,求S的值。

解析:首先,我们可以根据题意得知三角形BEA与三角形CFD是全等三角形,因为它们的两条边相等,所以它们的面积也相等。

又根据正方形的特性可知,三角形BEA和三角形CFD是等腰直角三角形,所以它们的面积可以通过直角边的平方除以2来求得。

设BE = x,则CF = (2 - x) / 3。

根据等腰直角三角形的面积公式,BEA的面积为 x^2 / 2,CFD的面积为 [(2 - x) / 3]^2 / 2。

由于AEFD是正方形ABCD减去三角形BEA和三角形CFD所得到的四边形,所以S = 2 - (x^2 / 2) - {[(2 - x) / 3]^2 / 2}。

将式子进行整理和计算,可得S = (5x^2 - 16x + 8) / 18。

第二题:函数问题已知函数f(x) = x^3 + ax^2 + bx + c的图像经过点P(2, 2),Q(3, 4),R(4, 8)。

求函数f(x)的解析式。

解析:首先,我们将点P(2, 2)代入函数f(x),可得 2 = 8 + 4a + 2b + c。

同理,将点Q(3, 4)代入函数f(x),可得 4 = 27 + 9a + 3b + c。

再将点R(4, 8)代入函数f(x),可得 8 = 64 + 16a + 4b + c。

通过解这个线性方程组,可以求得函数f(x)的解析式。

解方程组得到 a = -4, b = 2, c = -4,所以函数f(x)的解析式为 f(x) =x^3 - 4x^2 + 2x - 4。

第三题:概率问题若从一副完整的扑克牌中随机抽取两张牌,求这两张牌中至少有一张是红心的概率。

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

竞赛数学高中试题及答案

竞赛数学高中试题及答案

竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。

解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。

解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。

解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。

试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。

解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。

高中数学竞赛模拟题(十六套)

高中数学竞赛模拟题(十六套)

高中数学竞赛模拟题(十六套)高中数学竞赛模拟题(十六套)第一套:代数高中数学竞赛中,代数是一个重要的考察内容。

在这个模拟题的第一套中,我们将考察代数的基本概念和运算技巧。

请同学们认真阅读并解答以下题目。

1. 已知函数 $f(x) = ax^2 + 3x + b$,且函数 $f(x)$ 的图像经过点 $(-2, -1)$ 和 $(1, 4)$。

求常数 $a$ 和 $b$ 的值。

2. 某数列的前3项依次为 $a_1 = 2$,$a_2 = 5$,$a_3 = 9$。

已知数列满足递推式 $a_{n+1} = 2a_n - a_{n-1} + 1$,其中 $n \geq 2$。

求数列的第 $n$ 项 $a_n$ 的表达式。

3. 解方程组:$\begin{cases}2x - 3y = 5 \\4x + 2y = 10\end{cases}$第二套:几何几何在高中数学竞赛中也占据重要的位置。

在这个模拟题的第二套中,我们将考察几何的基本概念和解题技巧。

请认真阅读并解答以下题目。

1. 在平面直角坐标系中,直线 $l$ 过点 $A(3, 2)$,且与直线 $x - 3y - 1 = 0$ 平行。

求直线 $l$ 方程。

2. 在三角形 $ABC$ 中,已知 $\angle BAC = 30^\circ$,点 $D$ 在边$AC$ 上,且 $\angle BDC = 90^\circ$。

若 $BD = 2$,$DC = 4$,求三角形 $ABC$ 的面积。

3. 已知四边形 $ABCD$ 中,$AB = AD$,$BC = CD$,$AC$ 为对角线,且 $\angle ACB = 70^\circ$。

求 $\angle BAC$ 的度数。

第三套:数列与数表数列与数表也是高中数学竞赛的考察内容之一。

在这个模拟题的第三套中,我们将考察数列与数表的基本性质和求解能力。

请认真阅读并解答以下题目。

1. 求限制条件为 $a_n < 100$ 的等差数列 $\{a_n\}$ 的第 $n$ 项的表达式,已知数列的公差为 5。

全国高中生数学竞赛试题

全国高中生数学竞赛试题

全国高中生数学竞赛试题一、选择题(每题4分,共20分)1. 若函数\( f(x) = 2x^2 + 3x - 5 \),求\( f(-1) \)的值。

A. 0B. 1C. 2D. 32. 圆的方程为\( (x-1)^2 + (y-2)^2 = 25 \),求圆心到直线\( x + 2y - 5 = 0 \)的距离。

A. 2B. 3C. 4D. 53. 若\( a, b \)为正整数,且\( a^2 + b^2 = 2023 \),求\( a + b \)的可能值。

A. 44B. 45C. 46D. 474. 已知\( \sin A = \frac{3}{5} \),\( \cos A = -\frac{4}{5} \),求\( \tan A \)的值。

A. 3/4B. -3/4C. 4/3D. -4/35. 一个等差数列的首项为2,公差为3,求第10项的值。

A. 29B. 32C. 35D. 38二、填空题(每题5分,共30分)6. 若\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),且\( a,b > 0 \),求\( a + b \)的最小值。

7. 已知三角形ABC的三边长分别为a, b, c,且满足\( a^2 + b^2 = c^2 \),求证\( \cos A = \frac{b^2 + c^2 - a^2}{2bc} \)。

8. 若\( \log_{2}3 = m \),求\( \log_{3}2 \)的值。

9. 一个圆的半径为5,求其内接正六边形的边长。

10. 已知等比数列的前三项分别为2, 6, 18,求其第4项。

三、解答题(每题25分,共50分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4} \)。

12. 已知函数\( g(x) = x^3 - 3x^2 - 9x + 5 \),求其极值点,并判断其单调性。

高中数学竞赛题库及答案解析

高中数学竞赛题库及答案解析

高中数学竞赛题库及答案解析在高中数学的学习中,参加数学竞赛是提高自己数学水平的一个很好的途径。

为了帮助广大高中生更好地备战数学竞赛,我们整理了一套高中数学竞赛题库,并提供了相应的答案解析。

下面是题库的详细内容和解析。

第一部分:选择题1. 题目:已知等差数列$\{a_n\}$的前$n$项和为$S_n=\frac{n}{2}(2a_1+(n-1)d)$,其中$a_1=3$,$d=-2$,求该等差数列的第21项$a_{21}$的值。

解析:根据已知条件,代入公式$S_n=\frac{n}{2}(2a_1+(n-1)d)$,得到$S_{21}=\frac{21}{2}(2\cdot3+(21-1)\cdot(-2))$,计算可得$S_{21}=-105$。

由等差数列的前$n$项和公式可知$S_{21}=a_1+19d$,代入已知$a_1=3$和$d=-2$,解方程可得$a_{21}=-37$。

答案:$a_{21}=-37$。

2. 题目:已知函数$f(x)=x^3-2x^2+3x-4$,求$f(-1)$的值。

解析:将$x$的值代入函数$f(x)$中,得到$f(-1)=(-1)^3-2(-1)^2+3(-1)-4$,计算可得$f(-1)=-5$。

答案:$f(-1)=-5$。

第二部分:填空题1. 题目:已知$\sqrt{x^2+16}+x=4$,求$x$的值。

解析:移项得到$\sqrt{x^2+16}=4-x$,两边平方得到$x^2+16=(4-x)^2$。

展开计算可得$x^2+16=16-8x+x^2$,整理得到$8x=0$,解方程可得$x=0$。

答案:$x=0$。

2. 题目:已知函数$g(x)=\log_{10}(5x-2)$,求$g(3)$的值。

解析:将$x$的值代入函数$g(x)$中,得到$g(3)=\log_{10}(5\cdot3-2)$,计算可得$g(3)=\log_{10}13$。

答案:$g(3)=\log_{10}13$。

高中数学竞赛典型题目

高中数学竞赛典型题目

数学竞赛典型题目(一)1.(美国数学竞赛)设n a a a ,,,21是整数列,并且他们的最大公因子是1.令S 是一个整数集,具有性质:(1)),,2,1(n i S a i (2)}),,2,1{,(n ji S a a ji,其中j i,可以相同(3)对于S y x,,若S yx,则Syx证明:S 为全体整数的集合。

2.(美国数学竞赛)c b a ,,是正实数,证明:3252525)()3)(3)(3(c b a ccbbaa3.(加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。

其中S 中没有两个元素,一个是另一个的倍数。

4.(英国数学竞赛)证明:存在一个整数n 满足下列条件:(1)n 的二进制表达式中恰好有2004个1和2004个0;(2)2004能整除n .5.(英国数学竞赛)在0和1之间,用十进制表示为21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031ka a a kkk ,证明:x 是有理数。

6.(亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S nm,,则Sn m n m),(7.(亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。

证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。

8.(亚太地区数学竞赛)证明:)()!1(*2N n nnn 是偶数。

9.(亚太地区数学竞赛)z y x ,,是正实数,证明:)(9)2)(2)(2(222zx yz xy zyx10.(越南数学竞赛)函数f 满足)0(2sin 2cos )(cot xx xx f ,令)11)(1()()(xx f x f x g ,求)(x g 在区间]1,1[的上最值。

11.(越南数学竞赛)定义17612)(,91524)(2323x xxx q x xxx p ,证明:(1)每个多项式都有三个不同的实根;(2)令A 为)(x p 的最大实根,B 为)(x q 的最大实根,证明:4322B A 12.(越南数学竞赛)令F 为所有满足R R f :且x x f f x f )]2([)3(对任意R x成立的函数f 的集合。

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。

高中数学竞赛题

高中数学竞赛题

1、在一组数据中,平均数为15,中位数为14,众数为13。

如果将每个数据点增加2,新的平均数、中位数和众数分别是多少?A. 17, 16, 15B. 17, 15, 14C. 17, 16, 15(答案)D. 17, 15, 132、一个矩形的长是宽的2倍,如果矩形的周长是36厘米,那么矩形的长是多少厘米?A. 6厘米B. 9厘米C. 12厘米(答案)D. 18厘米3、一个等边三角形的边长是10厘米,那么这个等边三角形的面积是多少平方厘米?A. 25√3平方厘米B. 50√3平方厘米(答案)C. 75√3平方厘米D. 100√3平方厘米4、一个正方体的边长是5厘米,那么这个正方体的对角线长度是多少厘米?A. 5√3厘米(答案)B. 10√3厘米C. 15√3厘米D. 20√3厘米5、一个圆的直径是10厘米,那么这个圆的面积是多少平方厘米?A. 25π平方厘米(答案)B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米6、一个梯形的上底长4厘米,下底长8厘米,高是3厘米,那么这个梯形的面积是多少平方厘米?A. 6平方厘米B. 12平方厘米(答案)C. 18平方厘米D. 24平方厘米7、一个长方体的长是6厘米,宽是4厘米,高是3厘米,那么这个长方体的体积是多少立方厘米?A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 72立方厘米(答案)8、一个等腰三角形的底边长是12厘米,两腰各长10厘米,那么这个等腰三角形的高是多少厘米?A. 6厘米B. 8厘米(答案)C. 10厘米D. 12厘米。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

数学竞赛试题及答案高中

数学竞赛试题及答案高中

数学竞赛试题及答案高中一、选择题(每题4分,共40分)1. 若函数f(x) = 3x^2 - 6x + 5,下列哪个选项是f(x)的对称轴?A. x = 1B. x = -1C. x = 2D. x = -2答案:A2. 已知数列{an}的通项公式为an = 2^n,求数列{an}的前n项和Sn。

A. Sn = 2^(n+1) - 2B. Sn = 2^(n+1) - 1C. Sn = 2^(n+1) - 2^nD. Sn = 2^(n+1) - 2^(n-1)答案:B3. 已知向量a = (3, -2),向量b = (1, 2),求向量a与向量b的数量积。

A. 2B. -2C. 4D. -4答案:B4. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)。

A. 3x^2 - 6x + 2B. x^2 - 3x + 2C. 3x^2 - 6xD. x^2 - 3x答案:A5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,求双曲线的离心率e。

A. e = √(1 + b^2/a^2)B. e = √(1 - b^2/a^2)C. e = √(a^2 + b^2)D. e = √(a^2 - b^2)答案:A6. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. 1C. 0D. -1答案:A7. 已知等差数列{an}的首项a1 = 1,公差d = 2,求数列{an}的第10项a10。

B. 20C. 21D. 22答案:A8. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。

A. 0B. 1C. 2D. 3答案:A9. 已知向量a = (2, 3),向量b = (-1, 1),求向量a与向量b的夹角θ。

A. π/3B. π/4D. 2π/3答案:D10. 已知函数f(x) = e^x - e^(-x),求f'(x)。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. πC. √2D. 0.33333(无限循环小数)答案:B2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -7C. -3D. 1答案:B3. 一个圆的半径为r,圆心到直线的距离为d,如果d < r,那么该直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内含答案:B4. 如果一个等差数列的前三项和为9,第四项为5,求该数列的首项a1。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共12分)5. 一个长方体的长、宽、高分别是a、b、c,其体积的公式是______。

答案:abc6. 若sinθ = 1/3,且θ在第一象限,求cosθ的值。

答案:2√2/37. 已知等比数列的前n项和公式为S_n = a1(1 - r^n) / (1 - r),其中a1是首项,r是公比。

如果S_5 = 31,a1 = 1,求r的值。

答案:2三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 能被30整除。

证明:由题意,我们需要证明n^5 - n 能被30整除。

首先,我们知道任何正整数n都能被1、2、3、5中的至少一个整除。

设n = 2a + b,其中a和b是整数,且b属于{0, 1, 2, 3, 4}。

则n^5 - n = (2a + b)^5 - (2a + b) = 32a^5 + 20a^4b + 5a^3b^2 + a^2b^3 + 2ab^4 - 2a - b。

可以看到,除了最后两项,其他项都能被2整除。

对于最后两项,我们有2a - b = 2(a - b/2),当b为偶数时,2a - b能被2整除;当b为奇数时,a - b/2为整数,所以2a - b也能被2整除。

同理,b - 1能被3整除,因为b属于{0, 1, 2, 3, 4}。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题1.若直线l1:y = -2x + 3,直线l2过点(1,5)且与l1垂直,则l2的方程是:A. y = x + 4B. y = -x + 6C. y = x - 4D. y = -x + 4答案:C2.已知集合A = {x | |x - 3|< 2},则A的值是: A. (-∞, 1) U (5, ∞) B. (-∞,1) U (3, ∞) C. (1, 5) D. (1, 5] U (5, ∞)答案:D二、填空题1.若a、b满足a+b=5,且ab=6,则a和b的值分别是____。

答案:2和32.若某几何体的体积V和表面积S满足S=3V,且V>0,则该几何体的体积V的值为____。

答案:1/3三、解答题1.设数列{an}满足a1=1,a2=2,an+2 = an + 2n,求数列的通项公式。

解答:首先给出数列的前几项: a1 = 1 a2 = 2 a3 = 1 + 2 × 1 = 3 a4 = 2 + 2 × 2 =6 a5 = 3 + 2 × 3 = 9 … 从数列的前几项可以观察到,第n项的值为n^2 - 1。

所以数列的通项公式为an = n^2 - 1。

2.已知函数f(x) = x^3 - 3x^2 + 4x - 2,求f(x)的最小值及取得最小值时的x值。

解答:对于任意x,有f’(x) = 3x^2 - 6x + 4。

令f’(x) = 0,可以解得x = 1。

再求f’‘(x) = 6x - 6,当x = 1时,f’’(x) = 0。

所以x = 1是f(x)的极小值点。

代入f(x) = x^3 - 3x^2 + 4x - 2计算得最小值为-2。

所以f(x)的最小值是-2,取得最小值时的x值为1。

四、简答题1.数列的极限是什么?如何判断一个数列的极限存在?答:数列的极限是指当项数趋向无穷大时,数列的项的值趋向的一个确定的数。

2024年全国高中数学竞赛试题

2024年全国高中数学竞赛试题

选择题设函数f(x) = sin(x) + cos(2x),则f'(π/4) 的值为:A. -√2/2B. √2/2C. -1D. 1(正确答案)已知等差数列{an} 的前n 项和为Sn,且a1 = 1,S3 = 9,则a4 的值为:A. 5B. 6C. 7(正确答案)D. 8若复数z 满足(1 + i)z = 2i,则z 的共轭复数为:A. 1 - iB. 1 + i(正确答案)C. -1 - iD. -1 + i已知向量a = (1, 2),b = (3, 4),则a 与b 的夹角的余弦值为:A. √5/5B. 2√5/5(正确答案)C. 3/5D. 4/5设函数f(x) = ex - x - 1,则不等式f(x) > 0 的解集为:A. (-∞, 0)B. (0, +∞)(正确答案)C. (-∞, 1)D. (1, +∞)已知椭圆C: x2/4 + y2/3 = 1,F1,F2 分别为椭圆的左、右焦点,P 为椭圆上一点,且PF1 ⊥ PF2,则|PF1| × |PF2| 的值为:A. 6/7B. 12/7C. 9/4(正确答案)D. 3/2已知函数f(x) = ln(x + 1) - x,则f(x) 的单调递增区间为:A. (-1, 0)(正确答案)B. (0, +∞)C. (-∞, -1)D. (-∞, 0)已知三角形ABC 的内角A,B,C 对应的边分别为a,b,c,且a = 2,b = 3,cos C = -1/2,则三角形ABC 的面积为:A. 3√3/4B. 3√3/2(正确答案)C. 3/2D. 3已知数列{an} 满足a1 = 1,an+1 = 2an + 3,则数列{an} 的通项公式为:A. an = 2n - 1B. an = 2(n+1) - 3C. an = 2n + 3 - 4/2n(正确答案)D. an = 2(n-1) + 3。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题4分,共40分)1. 如果函数f(x)=x^2-4x+3,那么f(2)的值为:A. -1B. 1C. 3D. 5答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值为:A. 9B. 10C. 11D. 12答案:A3. 函数y=sin(x)的周期为:A. 2πB. πC. 4πD. 1答案:A4. 已知三角形ABC的三个内角A、B、C满足A+B=2C,那么角C的度数为:A. 30°B. 45°C. 60°D. 90°答案:C5. 已知复数z=1+i,那么|z|的值为:B. 2C. √3D. 3答案:A6. 函数f(x)=x^3-3x^2+2在区间[1,2]上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:C7. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,那么b的值为:A. √3C. √5D. 2答案:A8. 已知椭圆C:x^2/4+y^2/3=1,那么椭圆C的离心率为:A. √3/2B. 1/2C. √2/2D. 2/3答案:C9. 已知向量a=(2,1),b=(1,-1),则向量a+2b的坐标为:A. (4, -1)B. (4, 1)C. (2, -1)D. (2, 1)答案:A10. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 的元素个数为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3+3x^2-9x+5,求f'(x)的值为:______。

答案:3x^2+6x-912. 已知等比数列{bn}的首项b1=2,公比q=3,那么b4的值为:______。

答案:5413. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标为:(______,______)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛典型题目(一)1.(2004美国数学竞赛)设n a a a ,,,21 是整数列,并且他们的最大公因子是1.令S 是一个整数集,具有性质:(1)),,2,1(n i S a i =∈(2) }),,2,1{,(n j i S a a j i ∈∈-,其中j i ,可以相同(3)对于S y x ∈,,若S y x ∈+,则S y x ∈-证明:S 为全体整数的集合。

2.(2004美国数学竞赛)c b a ,,是正实数,证明:3252525)()3)(3)(3(c b a c c b b a a ++≥+-+-+-3.(2004加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。

其中S 中没有两个元素,一个是另一个的倍数。

4.(2004英国数学竞赛)证明:存在一个整数n 满足下列条件:(1)n 的二进制表达式中恰好有2004个1和2004个0;(2)2004能整除n .5.(2004英国数学竞赛)在0和1之间,用十进制表示为 21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031≤≤++k a a a k k k ,证明:x 是有理数。

6.(2004亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S n m ∈,,则S n m n m ∈+),( 7.(2004亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。

证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。

8.(2004亚太地区数学竞赛)证明:)()!1(*2N n n n n ∈⎥⎦⎤⎢⎣⎡+-是 偶数。

9.(2004亚太地区数学竞赛)z y x ,,是正实数,证明:)(9)2)(2)(2(222zx yz xy z y x ++≥+++10.(2003越南数学竞赛)函数f 满足)0(2sin 2cos )(cot π<<+=x x x x f ,令 )11)(1()()(≤≤--=x x f x f x g ,求)(x g 在区间]1,1[-的上最值。

11.(2003越南数学竞赛)定义17612)(,91524)(2323+-+=+--=x x x x q x x x x p ,证明:(1)每个多项式都有三个不同的实根;(2)令A 为)(x p 的最大实根,B 为)(x q 的最大实根,证明:4322=+B A12.(2003越南数学竞赛)令F 为所有满足++→R R f :且x x f f x f +≥)]2([)3(对任意+∈R x 成立的函数f 的集合。

求最大实数A 使得Ax x f ≥)(对所有+∈∈R x F f ,都成立。

13.(2003美国数学竞赛)证明:对于每个n ,我们可以找到一个n 位数,他的所有数字都是奇数,并且可以被n 5整除。

14.(2003美国数学竞赛)一个凸多边形的所有边和所有对角线都是有理数,连接所有的对角线将多边形分成若干的小凸边形,证明:所有小多边形的边长都是有理数。

15.(2003巴尔干数学竞赛)一个矩形ABCD 的边,,n AD m AB ==其中n m ,是互质的奇数。

矩形被分成了mn 个单位正方形,对角线AC 交单位正方形于点C A A A A A N ==,,,,321 ,证明:1223341(1)N N N AC A A A A A A A A mn--+-+-= 16.(2002美国数学竞赛)S 为含有2002个元素的集合,并且P 是S所有子集的集合,证明:对于任意)0(P n n ≤≤ ,我们可以将P的n 个元素染成白色,其余染成黑色,使得P的任何两个具有相同元素的并集仍有相同的颜色。

17.(2002美国数学竞赛)求所有定义在实数集上的实值函数满足:)()()(22y yf x xf y x f -=-对于任意实数y x ,成立。

18.(2001美国数学竞赛)非负实数z y x ,,满足4222=+++xyz z y x ,证明:2+≤++≤xyz zx yz xy xyz19.(2002巴尔干数学竞赛)数列:}{n a 11213,30,20-+-===n n n a a a a a ,求所有n 使151++n n a a 是完全平方数。

20.(2002巴尔干数学竞赛)N为正整数的集合,求所有N N f →:使得2002220012)())((++=+n n n f n f f 或 21.(2009年协作体)求证:存在无穷多个棱长都是整数的长方体,使其满足每个面的面积都是两个数的平方和,并且其体积等于对角线的平方。

22.(2001巴尔干数学竞赛)一个凸五边形的边长是有理数,并且5个角相等,证明:它是正五边形。

23.(2001巴尔干数学竞赛)正实数c b a ,,满足c b a abc ++≤,证明:abc c b a 3222≥++24.(2001加拿大数学竞赛)210,,A A A 位于半径为1的圆上,并且21A A 不是直径,点列}{n A 定义如下:n A 是321---∆n n n A A A 的外心,证明: 13951,,,A A A A 共线,并求所有的21,A A 使得2001100110011A A A A 是一个整数的50次幂。

25.(2002年越南数学竞赛)n 为正整数,证明:方程21111211122=-++-+-x n x x 有唯一的解1>n x ,且∞→n 时,4→n x 26.(2001年越南)对于实数b a ,定义如下数列:.,,,210 x x x 由a x =0,n n n x b x x sin 1+=+确定(1)若.1=b 证明:对于任何a ,数列有极限;(2)若.2>b 证明:对于某些a ,数列没有极限.27.(2000年越南)定义一个正实数序列:.,,,210 x x x b x =0,.1n n x c c x +-=+求所有实数c ,使得对所有),0(c b ∈,数列存在极限.28.(2002波兰数学竞赛)k 是正整数,数列k ka a a k a a n n n n +-=+=+211,1:}{,证明:数列中的任两项互质。

29.(2001波兰数学竞赛)数列n n n n x x x b x a x x +===++1221,,:}{,一个数c 如果在数列中出现的次数超过1次,就称它是“重复的”,证明:我们可以选择b a ,使数列中有超过2000个重复值,但没有无穷多个重复值。

30.(2001波兰数学竞赛)b a ,都是整数,使得b a n +2对所有非负整数n 都是完全平方数,证明:0=a31.(2001波兰数学竞赛)数列}{n a 定义如下:1a 和2a 为素数,n a 为200021++--n n a a 的最大素因子。

证明:数列}{n a 有界.32.(2001波兰数学竞赛))(x p 是一个多项式,次数为奇次,满足1)()1(22-=-x p x p 对所有x 成立。

证明:x x p =)(33.(1978年国际数学竞赛)将集合}1978,,3,2,1{ =S 分成六个不同的集合)6,5,4,3,2,1(=i A i ,即621A A A S ⋃⋃⋃= 且Φ=⋂j i A A ,求证:在某个i A 中存在一个元素是其他两个元素的和或者一个元素是另一个元素的2倍。

34.(1999年国际数学竞赛)设n 是一个固定的正偶数.考虑一块n n ⨯的正方板,它被分成2n 个单位正方格.板上两个不同的正方格,如果有一条公共边,就称它们为相邻的.将板上N 个单位正方格作上标记,使得板上的任意正方格(作上标记的或者没有作上标记的)都与至少一个作上标记的正方格相邻.确定N 的最小值.35.一个99⨯方格能否被15个22⨯方格和6个L型方格(由3个小方格组成)和3个单位方格覆盖?36.已知边长为n 的正方形及其内部的2)1(+n 个点,其中无3点共线,证明:必存在3个点,以其为顶点的三角形的面积不大于21。

37.已知x 是循环节为p 的纯循环小数,y 是无限小数,其小数点后的第n 位与数x 小数点后的第n n 位的数字相同,问:y 是否是有理数?38.求所有的正整数b a ,使得1,122++++a a b b b a39.11106,3,1:}{-+-===n n n n x x x x x x ,证明:除第一项外,}{n x 中无完全平方数。

40.c bx ax x f ++=2)(是实系数多项式,且对于任何整数)(,00x f x 是完全平方数,证明:2)()(d ex x f +=,其中d e ,是整数。

41.能否找到含有1990个正整数的集合S,使(1)S 中任意两个数互质;(2)S 中任意)2(≥k k 个数的和是合数。

42.(1998年越南数学竞赛)是否存在)10(<<αα,使得有一个无穷的正数列}{n a 满足:,11n n n a n a a α+≤++),2,1( =n .43.一个整数有限序列n a a a ,,,10 称为一个二次序列,如果对于每个21},,,2,1{i a a n i i i =-∈- ;(1)证明:对于任何两个整数c b ,,都存在一个正整数n 和一个二次序列使c a b a n ==,0;(2)求满足下列条件的最小正整数n ,使1996,00==n a a44.z y x ,,是正实数,求证:49))(1)(1)(1)((222≥+++++++x z z y y x zx yz xy 45.用16个31⨯矩形和一个11⨯正方形拼成一个77⨯正方形,求证:11⨯正方形要么在大正方形中心,要么在大正方形边界上。

46.环形公路上有n 个加油站,每个加油站有汽油若干桶,n 个站的总存油量够一辆汽车行驶一周,证明:必存在一站,从该站起,汽车逆时针行驶(每到一站装上所有汽油)可回到原站。

47.正实数c b a ,,满足1=abc ,求证:23)(1)(1)(1333≥+++++b a c a c b c b a +])()()([41222a b a b c a c a c b b c b c a +-++-++- 48.),,2,1(n i R x i =∈+,证明:11222221121111n nx x x x x x x x +++≤++++++ 49.数列1,21:}{2211+-==+n n n n n a a a a a a ,证明:11<∑=n k k a 50.求方程y x y x =+!!的正整数解51.求所有三次多项式)(x p 使得对任意的非负实数y x ,有)()()(y p x p y x p +≥+52.},|2{22Z y x y x S ∈+=,对于整数a ,若S a ∈3,证明:S a ∈ 53.[]53,1:}{10n n n n x x x x x +==+,已知712,136,26,54321====x x x x ,求2007x54.(波兰)数列}{n a 由)1(012,10110≥=++++-=-n n a n a a a a n n 确定,证明: )0(0>>n a n55.非负实数z y x ,,满足1222=++z y x ,证明:21111≤+++++≤xy z zx y yz x 56.圆周上有7个点,将他们两两连线,求这些直线在圆内部交点个数的最小值。

相关文档
最新文档