2013全国中学生高中数学竞赛二试模拟训练题(54)
2013届高三数学二模好题集锦
![2013届高三数学二模好题集锦](https://img.taocdn.com/s3/m/a30a5ce7172ded630b1cb6df.png)
2013届高三数学二模好题集锦12、将边长为2的正方形沿对角线AC 折起,以A ,B ,C ,D 为顶点的三棱锥的体积最大值等于 .14、已知函数aax x a x a x x f 2222)1()(22-++--+=的定义域是使得解析式有意义的x 的集合,如果对于定义域内的任意实数x ,函数值均为正,则实数a 的取值范围是 .16、已知函数)2cos()2sin(2ππ-+=x x y 与直线21=y 相交,若在y 轴右侧的交点自左向右依次记为1M ,2M ,3M ( ).A π6 .B π7 .C π12 .D π1317、若22παπ≤≤-,πβ≤≤0,R m ∈,如果有0sin 3=++m αα,0cos )2(3=++-m ββπ,则)cos(βα+值为( ). .A 1- .B 0 .C21.D 1 18、正方体1111D C B A ABCD -的棱上..到异面直线AB ,1CC 的距离相等的点的个数为( ).A 2. .B 3. .C 4. .D 5.12.已知23230123(3)(3)(3)n x x x x a a x a x a x ++++=+-+-+-(3)n n a x ++-()n N *∈且012n n A a a a a =++++,则lim4nnn A →∞=___________.14.已知1()4f x x =-,若存在区间1[,](,)3a b ⊆+∞,使得{}(),[,][,]y y f x x a b ma mb =⊆=,则实数m 的取值范围是___________.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N ),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+; (3)若1a 为正整数,求证:当211log n a >+(n ∈N )时,都有0n a =.【解析】⑴设12a k =,2a k =,则:322k a k +=,30a =分两种情况: k 是奇数,则2311022a k a --===,1k =,1232,1,0a a a === 若k 是偶数,则23022a ka ===,0k =,1230,0,0a a a === ⑵当3m >时,123123423,21,2,2,m m m m a a a a ---=+=+==45122,,2,1,0m m m m n a a a a a ++-======∴1124223n m m m S S +≤=++++=+⑶∵211log n a >+,∴211log n a ->,∴112n a ->由定义可知:1,212,2nnn n n na a a a a a +⎧⎪⎪=≤⎨-⎪⎪⎩是偶数是奇数∴112n n a a +≤ ∴1211112112n n n n n n a a a a a a a a a ----=⋅⋅⋅≤⋅∴111212n n n a --<⋅= ∵n a N ∈,∴0n a =,综上可知:当211log n a >+()n N ∈时,都有0n a =12.各项为正数的无穷等比数列{}n a 的前n 项和为n S ,若1lim 1=+∞→n nn S S , 则其公比q 的取值范围是 .13.已知两个不相等的平面向量,β(0≠)满足|β|=2,且与β-的夹角为120°,则||的最大值是 .14.给出30行30列的数表A :⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛1074216183150117216342720131832721159150201510511713951,其特点是每行每列都构成等差数列,记数表主对角线上的数10743421101,,,,,按顺序构成数列{}n b ,存在正整数)1(t s t s <<、使t s b b b ,,1成等差数列,试写出一组),(t s 的值 .12. 公差为d ,各项均为正整数的等差数列{}n a 中,若11,73n a a ==,则n d +的最小值等于 .13. 已知ABC ∆的外接圆的圆心为O ,6,7,8,AC BC AB ===则AO BC ⋅=uuu r uu u r.14.设()f x 是定义在R 上的函数,若81)0(=f ,且对任意的x ∈R ,满足 (2)()3,(4)()103x x f x f x f x f x +-≤+-≥⨯,则)2014(f = .23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,过坐标原点O 作倾斜角为60的直线交抛物线2:y x Γ=于1P 点,过1P 点作倾斜角为120的直线交x 轴于1Q 点,交Γ于2P 点;过2P 点作倾斜角为60的直线交x 轴于2Q 点,交Γ于3P 点;过3P 点作倾斜角为120的直线,交x 轴于3Q 点,交Γ于4P 点;如此下去…….又设线段112231n n OQ QQ Q Q Q Q -,,,,,L L 的长分别为123,,,,,n a a a a L L,11122OPQ Q PQ ∆∆,,2331n n n Q PQ Q PQ -∆∆,,,L L 的面积分别为123,,,,,,n G G G G L L 数列{}n a 的前n 项的和为n S .(1)求12,a a ; (2)求n a ,limnn nG S →∞;(3)设(01)n an b a a a =>≠且,数列{}n b 的前n 项和为n T ,对于正整数,,,p q r s ,若p q r s <<<,且p s q +=+试比较p s T T ⋅与q r T T ⋅的大小.11.方程0cos =x x 在区间[]6,3-上解的个数为 .12.某人从标有1、2、3、4的四张卡片中任意抽取两张.约定如下:如果出现两个偶数或两个奇数,就将两数相加的和记为ξ;如果出现一奇一偶,则将它们的差的绝对值记为ξ,则随机变量ξ的数学期望为 .13.如果M 是函数)(x f y =图像上的点,N 是函数)(x g y =图像上的点,且N M ,两点之间的距离MN 能取到最小值d ,那么将d 称为函数)(x f y =与)(x g y =之间的距离.按这个定义,函数x x f =)(和34)(2-+-=x x x g 之间的距离是 .14.数列}{n a 满足1241+-=+n n n a a a (*∈N n ).①存在1a 可以生成的数列}{n a 是常数数列; ②“数列}{n a 中存在某一项6549=k a ”是“数列}{n a 为有穷数列”的充要条件; ③若{}n a 为单调递增数列,则1a 的取值范围是)2,1()1,( --∞;④只要k k k k a 232311--≠+,其中*∈N k ,则n n a ∞→lim 一定存在; 其中正确命题的序号为 .17.已知以4为周期的函数(](]⎪⎩⎪⎨⎧∈--∈-=3,1,2cos 1,1,1)(2x xx x m x f π,其中0>m 。
2013全国中学生高中数学竞赛二试模拟训练题(2)
![2013全国中学生高中数学竞赛二试模拟训练题(2)](https://img.taocdn.com/s3/m/43c8a6264b73f242336c5fc6.png)
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值.2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 11213、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值. 解:令112123123412341,5,14,30,y x y x x y x x x y x x x x =-⎧⎪=+-⎪⎨=++-⎪⎪=+++-⎩ 则 0(1,2,3,4)i y i ≤=,112123234341,4,9,16,x y x y y x y y x y y =+⎧⎪=-++⎪⎨=-++⎪⎪=-++⎩ 于是 ()()()()112223411114916234U y y y y y y y =++-+++-+++-++ 123411*********10.y y y y =++++≤ 当 1121231234123410,50,140,300,y x y x x y x x x y x x x x =-=⎧⎪=+-=⎪⎨=++-=⎪⎪=+++-=⎩即12341,4,9,16x x x x ====时,max 10.U = 2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 1121 证明: 设a a ab b b n n ,,,,,,2121 是的从小到大的有序排列,即 b b b n ≤≤21,因为b i是互不相同的正整数.则n b b b n ≥≥≥,,2,121又因为n 222111132>>>>所以由排序不等式得:n a a a n 22212+++ (乱序) n bb b n22212+++≥ (倒序) n 1211+++≥即 ∑∑==≥n k n k k k k a 1121 成立. 3、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.【证】 将人看作平面上的点,得到一个有3n +1个点的图(假定任意三点都不在一直线上),当两个人玩网球或象棋或乒乓球时,我们就在相应的两点之间连一条红线或黄线或蓝线,需要证明的是,一定存在一个三条边的颜色互不相同的三角形.自一点引出的3n 条线段中,如果某两条线段的颜色不同,就称它们构成一个“异色角”.考虑异色角的个数.由于自每一点引出n 条红线,角形中有3个异色角.这个三角形的三条边颜色互不相同,即相应的三个人之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
2013全国中学生高中数学竞赛二试模拟训练题(10)(附答案)
![2013全国中学生高中数学竞赛二试模拟训练题(10)(附答案)](https://img.taocdn.com/s3/m/1820e339ee06eff9aef807f1.png)
加试模拟训练题(10)1、已知凸四边形ABCD , ,AB DC 交于点P , ,AD BC 交于点Q ,O为四边形 ABCD 内一点,且有 BOP DOQ ∠=∠,证明180AOB COD ∠+∠=︒。
2、已知),0(,,∞+∈z y x ,且1=++z y x ,证明:274222≤++x z z y y x 成立的条件.3.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?4.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.加试模拟训练题(10)1、已知凸四边形ABCD , ,AB DC 交于点P , ,AD BC 交于点Q ,O为四边形 ABCD 内一点,且有 BOP DOQ ∠=∠,证明180AOB COD ∠+∠=︒。
证明 设 BOP DOQ α∠=∠=,则()sin sin,sin sin AOD QD AQOQD OD OQD OAαα+∠==∠∠,从而有()sin sin AOD AQ OD OA QDαα+∠=。
类似地,有()sin sin AOB AP OBOA BP αα+∠=,因此有()()sin sin AOD AQ OD BP AOB AP OB QD αα+∠=+∠。
同理,由()sin sin ,sin sin COD BOQ BQ QC OQB OB OQB OCα∠-∠==∠∠,可得()()sin sin ,sin sin COD BOC QC OB PC ODBOQ OC BQ DOP OC PDαα∠-∠-==∠∠,因此有()()sin sin COD QC OB PDBOC PC OD QBαα∠-=∠-。
设 AC 与 PQ 交于点L ,由梅涅劳斯定理,1,1AQ DP CL CQ BP ALQD PC LA QB PA LC==,于是有()()()()sin sin 1sin sin AOD COD AOB BOC αααα+∠∠-=+∠∠-。
2013年全国初中数学竞赛试题(附详细答案)
![2013年全国初中数学竞赛试题(附详细答案)](https://img.taocdn.com/s3/m/32debce56294dd88d0d26b1e.png)
2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013全国数学联赛试题及答案2
![2013全国数学联赛试题及答案2](https://img.taocdn.com/s3/m/d65028745acfa1c7aa00cc2f.png)
AC sin ADC sin APE , CD sin CAD sin EPF BD BD sin BFD sin PFA AP , 由于 = EF BF sin BDF sin PAF PF
1= SPAE AP PE sin APE BD AC SPFE PF PE sin EPF EF CD
n 1
于任意正整数 n ,都有 S2n 1 bn 2
2
n(u v) 。
2 r 2 (u v )
取 n 2r (u v), r Z 时, S2n 1 2 平方数。 综上所述,结论成立。
r 2 (u v)2 2r
2
(u v )
r (u v) 都是完全
k
因此,我们取的 2k 个整数满足要求。 原题证明:对于任意正整数 2 n 2k ,都存在正整数 2 r k ,使得 2r 1 n 2r ,由引 理存在 2r 个整数它们都不是 n 的倍数,使得任意将它们分为两组都会有一组中有若干个数 之和是 n 的倍数。 再任意添加 2k 2r 个大于 n 的正整数,则得到满足题意的 2k 个整数。
蕴
秀
斋
2013 年全国高中数学联赛二试参考解答
1、 AB 是圆 的一条弦, P 是 AB 上一点, E , F 在线段 AB 上,满足 AE EF FB , 射线 PE, PF 分别与 交于 C , D 。求证: EF CD AC BD 。
P w A E F B
证明:由正弦定理
证明:令 bn S2n 1 ,则 b1 S1 a1 u v ,由已知
bn 1
2013年全国高中数学联赛一试二试试题整理详解汇编(一试二试为B卷)(含解答)
![2013年全国高中数学联赛一试二试试题整理详解汇编(一试二试为B卷)(含解答)](https://img.taocdn.com/s3/m/04b937fbc5da50e2534d7fd1.png)
AB < BC
∠AP B = ∠BP C
7
AB BC
1
B
A
P
∠BP C = ∠CP D
P
BM BC
C2 =
M; = DM CD
C
D
A, B, C, D
3.
x, y, z
x2 + y2 + z2 = 10
u = 6 − x2 + 6 − y2 + 6 − z2
6 − x2 +
6 − y2 +
2
6 − z2
x = 0, y = 0 (P
x– )
a+c = 0
ac x−
2
+ y2 =
ac 2
a+c
a+c
x–
(0, 0), (2ac/(a + c), 0)
b) x–
A, B, C, D (−1, 0), (0, 0), (1, 0), (2, 0)
∠AP B = ∠BP C
P
y–
∠BP C = ∠CP D
1 16
(y1y2
+
8)2
=
0
y1y2 = −8 (−8)2
x1x2 = 16 = 4.
F (1, 0)
−→ −−→ √ x1 − x2 = (x1 + 1) − (x2 + 1) = |F A| − |F B| = 4 3.
4
y2 = 4x
x1, x2
√2 x1 + x2 = (x1 − x2)2 + 4x1x2 = 4 3 + 4 × 4 = 8.
Tn
n=3
2013二模理科数学答案.doc
![2013二模理科数学答案.doc](https://img.taocdn.com/s3/m/6421e9b426fff705cc170a6d.png)
永州市2013年高考第二次模拟考试 数学(理科)参考答案及评分标准一、选择题(每小题5分,共40分)D ADC BAAC二、填空题(每小题5分,共35分)(一)选做题(9-11题,考生只能从中选做2题,如果多做则按前两题计分)9. 2cos 0ρθ+= 10.1(1,)3-- 11. (二)必做题(12-16题)12. 90 13. i 14. -10 15. <16. (1)15(2)7 三、解答题(本大题共6小题,共75分,解答须写出文字说明、证明过程或演算步骤) 17.(本题满分12分)解:(1)20人只有2人过关,过关率为110,估计100名学员中有11001010⨯=人一次过关; …………3分(2)设“过科目一、二、三”分别为事件A 、B 、C ,过科目一的12人中有2人过了科目二却没过科目三,故P =21(|)126P BC A ==;…6分 (3)设这个学员一次过关的科目数为η,则η的分布列为: …………………8分E η=22119012355101010⨯+⨯+⨯+⨯=, ………………10分 ξ=100η,E (ξ)=E (100η)=100 ×E (η)=100×910=90. ………………12分18.(本小题满分12分)解法一(1)证明:连接OE ,OF ,由图1知:OE //AC ,OF //AD ,而OE ,OF 不在平面ACD 上,且OE 交OF 于O ,故平面OEF //平面ACD ,所以EF //平面ACD . ………………5分(2)取AD 的中点G ,连接OG ,则∠CGO 就是二面角C -AD -O 的平面角, OGCO =2,………………9分90oCOG ∠=,tan CO CGO OG∠===, ………………11分故二面角C -AD -O.……………12分解法二:证明(1)如图建立空间直角坐标系,A (0,-2,0),C (0,0,2),D,-1,0), E(0,),,1,0),(0,2,2),AC =(3,1,0)AD =, (3,1EF =设平面ACD 的法向量(,,)m x y z =,依题意有:m AC m AD ⊥⊥⎧⎪⎨⎪⎩(,,)(0,2,2)220(,,)0)0m AC x y z y z m AD x y z y ⋅=⋅=+=⇒⊥=⋅=+=⎧⎪⎨⎪⎩,令x =-1,则y,z =,则(m =-,………………3分因为(m EF ⋅=-⋅-0==,所以m EF ⊥,又EF 不在平面ACD 上,故EF//平面ACD . ………………6分 (2)易求得平面OAD 的一个法向量(0,0,1)n =,设二面角C -AD -O 的大小为θ,由图知θ为锐角,(1,cos ||||||mn m n θ⋅-===,………………9分tan cos 3θθ===………………11分故二面角C -AD -O的正切值为3. ………………12分19.(本小题满分12分) 解:(1) 由|f (x )|=|2sin(3πx +6π)|=2得sin(3πx +6π)=±1, 即3πx +6π=k π+2π,∴ x =3k +1,k ∈N ,∴ {a n }是首项为1,公差为3的等差数列,∴ a n =3n -2,n ∈N *, …………4分3222n a n n b -==,{n b }是首项是2,公比是8的等比数列,其前n 项和2(18)2(81)187n nn S -==--; ………………6分 (2) 12231tan tan tan tan tan tan n n n T a a a a a a +=+++tan1tan 4tan 4tan 7tan(32)tan(31)n n =⋅+⋅++-⋅+, ………………8分由tan(31)tan(32)tan 3tan[(31)(32)]1tan(31)tan(32)n n n n n n +--=+--=++⋅-, ………………9分有tan(31)tan(32)tan(32)tan(31)1tan 3n n n n +---⋅+=-, ………………10分14473231n T n n =⋅+⋅++-⋅+tan tan tan tan tan()tan()4174107111333---=-+-+-+tan tan tan tan tan tan ()()()tan tan tan313213n n +--+-tan()tan()[]tan 3113n n +-=-tan()tan tan . ……………12分20.(本小题满分13分)解:(1) 设B (x 1,y 1),C (x 2,y 2),直线BC 过焦点F (0,1), 故设BC 的直线方程为y =kx +1,由 ⎩⎨⎧=+=yx kx y 412 得x 2-4kx -4=0,故x 1+x 2=4k ,x 1x 2=-4, ……………3分 ∴ |x 1-x 2|=212214)(x x x x -+=16162+k ∴ S △EBC =S △EBF +S △CEF =21|x 1| |EF |+21|x 2| |EF | =|x 1-x 2|=142+k =5,求得k =34±,此时,BC 方程为314y x =±+, 点 B 的坐标为(±4,4),故l 的方程为514y x =±-; ………………6分 (2)设B (x 1,y 1),A (x 3,y 3),l 方程:y =kx -1,由⎩⎨⎧=-=yx kx y 412, 得x 2-4kx +4=0,△=16k 2-16>0,k 2>1,故x 1+x 3=4k ,x 1x 3=4,又A 在E 与B 之间, ∴0<∣x 3∣<∣x 1∣, ∴0<|x 3|2<∣x 1 x 3∣=4, ∴0<∣x 3∣<2,x 1=34x ,直线BC 的方程为1111y y x x -=+, ………………9分 设M (3x ,y o ),点M 在直线BC 上,有13111o y y x x -=+,即2131141o x y x x -=+,整理得y o =2-234x ,M (3x ,2-234x ), (-2<3x <2且3x ≠0)|EM|==,令234x =t ,则(0,1)t ∈,|EM|==. ………………12分 线段EM长的取值范围为. ………………13分 21.(本题满分13分)解:(1)连结 OP ,因30o BAP ∠=,120o ABP ∠=30oAPB ∴∠=.在三角形PBO 中,222102021020cos120700OP =+-⨯⨯=22(1012)OP >+ 即22OP >故该外轮未进入我领海主权范围内. ………………5分 (2)作PQ AN ⊥于Q ,PS AB ⊥于S,则AQ SP ==30PQ =,因60oNAP ∠=,NMP θ∠=,首先应有60oθ>, 30sin PM θ=,30cos sin AM θθ=,设MP 方向的船速为V ,则我救助船全速到达P 点共所需时间为130cos 13030cos ()]sin sin sin T VV VVθλθθλθθλθ-=+⋅=⨯, ……………7分221cos 301cos 30()sin sin T VVθλθλθλθθ--'=⨯=⨯,令()0T θ'=得1cos θλ=.设使1cos θλ=的那个锐角为λθ,则当(60,)oλθθ∈时,()0T θ'<,当(,90)o λθθ∈时,()0T θ'>,()T θ在(60,)oλθ位减函数,在(,90)o λθ位增函数,(注:将(60,)o λθ写成 (0,)oλθ 不扣分)所以当1cos θλ=时()T θ能取得最小值. ………………9分另一方面,延长PC 与AN 交于0M ,须0QM QM ≥(即0QM P θ≥∠)救助船才能沿直线MP 航行.0cos cos QM P θ∠===≤,由1λ≤解得λ≥.此时0Q M P λθ≥∠,而当λ<时,0Q M P λθ<∠,由()T θ的单调性知θ取0QM P ∠时()T θ最小. ………………11分综上知,为使到达P 点的时间最短,当λ≥时,救助船选择的拐角θ应满足1cos θλ=;当λ<时,救助船应在0M 处拐头直朝P 点航行,此时cosθ=. ………………13分22.(本题满分13分)解:(1)∵()2ln()f x a x b =+,∴2()af x x b'=+,则()f x 在切点(0,2ln )A a b 处切线的 斜率2(0)a k f b '==,则()f x 在点(0,2ln )A a b 处切线方程为22ln a y x a b b =+.又由2()1x g x e =-,得2()2x g x e '=,则()g x 在切点B(0,0)处切线的斜率(0)2k g '==, 则()g x 在点B 处切线方程为2y x =. 由22ab= 和2ln 0a b =解得1a =,1b =. ()2ln(1)(1)f x x x =+>-,2()1xg x e =-. ………………4分(2)由002[1g(x x m ->+202x m x e <-, 令2()2h x x e =-要使22m x e <-[0,)+∞上有解,只需max [()]m h x <. ………………5分 ①当0x =时,(0)0h =,所以0m <; ………………6分②当0x >时,2()2x h x e '=-,∵0x >,有2≥,e 1x >,∴2()20x h x e '=-<函数2()2h x x e =-[0,)+∞上单调递减,所以max ()(0)0h x h ==, 所以0m <综合①②得实数m 的取值范围是(,0)-∞ ……………8分(3)令2()()()12ln(1)(1)x u x g x f x e x x =-=--+>-,则2222(1)2()211xx e x u x e x x +-'=-=++.∴当0x ≥时,由于21,11xex ≥+≥,所以 22(1)2x e x +≥∴()0u x '≥在0x ≥上恒成立, 函数()u x 在区间(0,)+∞上单调递增, ∴当0x >时,()(0)0u x u >=恒成立,故对于任意210x x >>,有2121()()g x x f x x ->-. ………………10分 又∵212121111()1011x x x x x x x x +--+-=>++,∴2212111ln(1)ln ln(1)ln(1)1x x x x x x +-+>=+-++. ∴2121()()()f x x f x f x ->-, ………………12分 从而2121()()()g x x f x f x ->-. ………………13分方法2:也可按下面思路:先证明212()2112()x x e x x -->- [构造2()12x u x e x =--,求导再分析单调性] 再证明2121ln(1)ln(1)x x x x ->+-+ [通过构造()ln(x 1)v x x =-+,求导后分析单调性](详略)。
2013年全国高中数学联赛模拟试题
![2013年全国高中数学联赛模拟试题](https://img.taocdn.com/s3/m/0f7cd5284b35eefdc8d333bf.png)
等 于 . 3 . 设 数列 n 1 , a 2 , …, a , …, 满足 a l —a 2 —1 , a 3
、
( 本题满分 4 0分 ) 如图。 锐 角 △ ABC 内 接 于
—2 , 且 对 任 何 自 然 数 , 都有 a n a 卅 a + 。 ≠1 , 又
a n + 1 口 2 n H 十 3 : = = a +n + l +a ” + 2 +n + 3 , 则 a 1 +a 2
( ∈ N) .
7 . 在平 面 直角坐 标 系 x O y中 , 抛物 线 Y 。 一2 x的
焦点 为 F, 设 M 是 抛 物线 上 的动 点 , 则
为 .
三、 ( 本题 满分 5 O分 ) 设 S是一 些 互不 相 同的 四 元数 组 ( 口 , a 。 , a 。 , a ) 的 集合 , 其中a 一 0或 1 , i =1 , 2 , 3 , 4 . 已知 S的元 素个 数 不超 过 1 5 , 且满足 : 若( a ,
二、 ( 本题 满分 4 O分 ) 设 P
×5 0 2 , 则 N 除以 2 0 1 2的余 数 是 . 6 . 已知 函数 厂 ( z ) 满 足对 于一切 z∈R都有 - 厂 ( z ) +f( 2 0 1 2一 z)一 2 0 1 3成 立 , 且方 程 2 0 1 2 f( z) 一2 0 1 3 x 有 7个 不 同的实 数 根 , 则 这 7个 实 数 根 的 和
} —一 … 一 — ~ ~ r … … ~ … ~ … … … …… … ~ … ' - … … … … … 一 … ~ 一 撕 W 1 n … 0 船 勰 s 轧 j { 《 轴 让 《 ㈣ ¨ . _ … ~ … 一 … ~ . … ~ … … … … … … … … … ~ ” 一 稿 , 矗 宽时 | | I 簟
2013届高三数学第二次模拟考试试题 科(西城二模)新人教B版
![2013届高三数学第二次模拟考试试题 科(西城二模)新人教B版](https://img.taocdn.com/s3/m/06f1dce64431b90d6d85c7e6.png)
北京市西城区2013年高三二模试卷高三数学(文科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数 i (1i)⋅-= (A )1i + (B )1i -+ (C )1i - (D )1i --2.已知向量(=a ,)=λb .若a 与b 共线,则实数=λ (A )1- (B )1 (C )3- (D )33.给定函数:①2y x =;②2xy =;③cos y x =;④3y x =-,其中奇函数是(A )① (B )② (C )③ (D )④4.若双曲线221y x k+=的离心率是2,则实数k = (A )3 (B )3- (C )13(D )13-5.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值, 则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是 (A )m n ⊥,n ∥α(B )m ∥β,⊥βα (C )m ⊥β,n ⊥β,n ⊥α (D )m n ⊥,n ⊥β,⊥βα7.已知函数||()e ||x f x x =+.若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是 (A )(0,1) (B )(1,)+∞(C )(1,0)-(D )(,1)-∞-8.已知集合{1,2,3,4,5}的非空子集A 具有性质P :当a A ∈时,必有6a A -∈.则具有性质P 的集合A 的个数是 (A )8 (B )7(C )6(D )5第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知直线1:310l x y -+=,2:210l x my +-=.若1l ∥2l ,则实数m =______.10.右图是甲,乙两组各6名同学身高(单位:cm )数据的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则x 甲______x 乙. (填入:“>”,“=”,或“<”)11.在△ABC 中,2BC =,AC =,3B π=,则AB =______;△ABC 的面积是______.12.设a ,b 随机取自集合{1,2,3},则直线30ax by ++=与圆221x y +=有公共点的概率是______.13.已知命题:p 函数(1)1y c x =-+在R 上单调递增;命题:q 不等式20x x c -+≤的解集是∅.若p 且q 为真命题,则实数c 的取值范围是______.14.在直角坐标系xOy 中,已知两定点(1,0)A ,(1,1)B .动点(,)P x y 满足01,0 2.OP OA OP OB ⎧≤⋅≤⎪⎨≤⋅≤⎪⎩则点P 构成的区域的面积是______;点(,)Q x y x y +-构成的区域的面积是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知等比数列{}n a 的各项均为正数,28a =,3448a a +=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log n n b a =.证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .16.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.17.(本小题满分14分)如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ; (Ⅲ)证明:平面PFC ⊥平面PCD .18.(本小题满分13分)已知函数322()2(2)13f x x x a x =-+-+,其中0a >. (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[2,3]上的最小值. 19.(本小题满分14分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(,55,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m20.(本小题满分13分)已知集合1212{(,,,)|,,,n n n S x x x x x x =是正整数1,2,3,,n 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩ 对于12(,,)n na a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈,10b =,称i b 为i a 的满意指数.排列12,,,n b b b 为排列12,,,n a a a 的生成列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列; (Ⅱ)证明:若12,,,n a a a 和12,,,n a a a '''为n S 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于n S 中的排列12,,,n a a a ,进行如下操作:将排列12,,,n a a a 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加2.北京市西城区2013年高三二模试卷高三数学(文科)参考答案及评分标准2013.5 一、选择题:本大题共8小题,每小题5分,共40分.1. A ; 2.A ; 3.D ; 4.B ; 5.C ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.6-; 10.>; 11.3,2; 12.59; 13.(1,)+∞; 14.2,4. 注:11、14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解:设等比数列{}n a 的公比为q ,依题意 0q >. ………………1分 因为 28a =,3448a a +=, 两式相除得 260q q +-=, ………………3分解得 2q =, 舍去 3q =-. ………………4分所以 214a a q==. ………………6分 所以数列{}n a 的通项公式为 1112n n n a a q -+=⋅=. ………………7分(Ⅱ)解:由(Ⅰ)得 41log 2n n n b a +==. ………………9分 因为 1211222n n n n b b +++-=-=, 所以数列{}n b 是首项为1,公差为12d =的等差数列. ………………11分所以 21(1)324n n n n nS nb d -+=+=. ………………13分16.(本小题满分13分)(Ⅰ)解:由三角函数定义,得 1cos x =α,2cos()3x π=+α.2分因为 ,)62ππ∈(α,1cos 3=α,所以 sin ==α. ………………3分所以 211cos()cos sin 3226x π-=+==αα-α. ………………5分 (Ⅱ)解:依题意得 1sin y =α,2sin()3y π=+α. 所以 111111cos sin sin 2224S x y ==⋅=ααα, ………………7分 2221112||[cos()]sin()sin(2)223343S x y πππ==-+⋅+=-+ααα.……………9分依题意得 2sin 22sin(2)3π=-+αα, 整理得 cos20=α. ………………11分因为 62ππ<<α, 所以 23π<<πα, 所以 22π=α, 即 4π=α. ………………13分17.(本小题满分14分)(Ⅰ)解:由左视图可得 F 为AB 的中点,所以 △BFC 的面积为 12121=⋅⋅=S .………………1分 因为⊥PA 平面ABCD , ………………2分 所以四面体PBFC 的体积为 PA S V BFC BFC P ⋅=∆-31………………3分 322131=⋅⋅=. ………………4分(Ⅱ)证明:取PC 中点Q ,连结EQ ,FQ . ………………5分由正(主)视图可得 E 为PD 的中点,所以EQ ∥CD ,CD EQ 21=. ………6分 又因为AF ∥CD ,CD AF 21=, 所以AF ∥EQ ,EQ AF =. 所以四边形AFQE 为平行四边形,所以AE ∥FQ . ………………8分 因为 ⊄AE 平面PFC ,⊂FQ 平面PFC ,所以 直线AE ∥平面PFC . ………………9分 (Ⅲ)证明:因为 ⊥PA 平面ABCD ,所以 CD PA ⊥.因为面ABCD 为正方形,所以 CD AD ⊥.所以 ⊥CD 平面PAD . ………………11分 因为 ⊂AE 平面PAD ,所以 AE CD ⊥. 因为 AD PA =,E 为PD 中点,所以 PD AE ⊥.所以 ⊥AE 平面PCD . ………………12分 因为 AE ∥FQ ,所以⊥FQ 平面PCD . ………………13分 因为 ⊂FQ 平面PFC , 所以 平面PFC ⊥平面PCD . ………………14分18.(本小题满分13分)(Ⅰ)解:()f x 的定义域为R , 且 2()242f x x x a '=-+-. ………………2分当2a =时,1(1)3f =-,(1)2f '=-, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 12(1)3y x +=--, 即 6350x y +-=. ………………4分 (Ⅱ)解:方程()0f x '=的判别式80a =>∆, ………………5分令 ()0f x '=,得 112x =-,或212x =+. ………………6分 ()f x 和()f x '的情况如下:故()f x 的单调增区间为(,1-∞,(1)++∞;单调减区间为(1-+. ………………9分① 当02a <≤时,22x ≤,此时()f x 在区间(2,3)上单调递增, 所以()f x 在区间[2,3]上的最小值是7(2)23f a =-. ………………10分 ② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2,3]上的最小值是 25()33f x a =--. ………………12分 ③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减, 所以()f x 在区间[2,3]上的最小值是(3)73f a =-. ………………13分 综上,当02a <≤时,()f x 在区间[2,3]上的最小值是723a -;当28a <<时,()f x在区间[2,3]上的最小值是53a --;当8a ≥时,()f x 在区间[2,3]上的最小值是73a -.19.(本小题满分14分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,9(,55P ,所以 点M 的坐标为2(5. ………………2分由点M 在椭圆C 上, 所以41212525m+=, ………………4分解得 47m =. ……………6分 (Ⅱ)解:设00(,)M x y ,则 2201y x m+=,且011x -<<. ① ………………7分 因为 M 是线段AP 的中点,所以 00(21,2)P x y +. ………………8分 因为 OP OM ⊥,所以 2000(21)20x x y ++=.② ………………9分由 ①,② 消去0y ,整理得 20020222x x m x +=-. ………………11分 所以00111622(2)82m x x =+≤++-+, ………………13分 当且仅当02x =- 所以 m的取值范围是1(0,2-. ………………14分20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3-. ………………3分(Ⅱ)证明:设12,,,n a a a 的生成列是12,,,n b b b ;12,,,n a a a '''的生成列是与12,,,n b b b '''.从右往左数,设排列12,,,n a a a 与12,,,na a a '''第一个不同的项为k a 与k a ',即:n n a a '=,11n n a a --'=,,11k ka a ++'=,k k a a '≠. 显然 n nb b '=,11n n b b --'=,,11k kb b ++'=,下面证明:k k b b '≠.………………5分 由满意指数的定义知,i a 的满意指数为排列12,,,n a a a 中前1i -项中比i a 小的项的个数减去比i a 大的项的个数.由于排列12,,,n a a a 的前k 项各不相同,设这k 项中有l 项比k a 小,则有1k l --项比k a 大,从而(1)21k b l k l l k =---=-+.同理,设排列12,,,n a a a '''中有l '项比k a '小,则有1k l '--项比k a '大,从而21kb l k ''=-+. 因为 12,,,k a a a 与12,,,ka a a '''是k 个不同数的两个不同排列,且k k a a '≠, 所以 l l '≠, 从而 k kb b '≠. 所以排列12,,,n a a a 和12,,,na a a '''的生成列也不同. ………………8分 (Ⅲ)证明:设排列12,,,n a a a 的生成列为12,,,n b b b ,且k a 为12,,,n a a a 中从左至右第一个满意指数为负数的项,所以 1210,0,,0,1k k b b b b -≥≥≥≤-. ………………9分 依题意进行操作,排列12,,,n a a a 变为排列1211,,,,,,k k k n a a a a a a -+,设该排列的生成列为12,,,nb b b '''. ………………10分 所以 1212()()n n b b b b b b '''+++-+++121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++- 1212[()()()]k k k k g a a g a a g a a -=--+-++-22k b =-≥.所以,新排列的各项满意指数之和比原排列的各项满意指数之和至少增加2.………………13分。
2013全国中学生高中数学竞赛二试模拟训练题(8)(附答案)
![2013全国中学生高中数学竞赛二试模拟训练题(8)(附答案)](https://img.taocdn.com/s3/m/fdf096771711cc7931b716f1.png)
加试模拟训练题(8)1、已知圆1234,,,O O O O 按顺时针的顺序内切于圆O ,设圆(),14i j O O i j ≤<≤的外公切线长为ij l ,证明依次以12233414,,,l l l l 为边长,以1324,l l 为对角线构成的凸四边形是圆内接四边形。
2.设ABC ∆三边长为c b a ,,,有不等式∑∑-+≥-,)(31)(22c b acb c b ------① 试证不等式①中的系数31是最优的.3、设M={ 1,2,3,…,2m n} (m,n ∈N *)是连续2m n 个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在m+1个数,a 1,a 2,…a m+1,满足a i |a i+1 (i=1,2,…,m).4.已知*,,,N n m b a ∈,且2,1),(>=a b a ,试问mmnnb a b a ++|的充要条件是m n |吗? 2006年山东省第二届夏令营试题)加试模拟训练题(8)1、已知圆1234,,,O O O O 按顺时针的顺序内切于圆O ,设圆(),14i j O O i j ≤<≤的外公切线长为ij l ,证明依次以12233414,,,l l l l 为边长,以1324,l l 为对角线构成的凸四边形是圆内接四边形。
证明 设圆1234,,,,O O O O O 的半径分别为1234,,,,R r r r r ,圆1234,,,O O O O 与圆O 的切点分别为 ,,,A B C D ,1234,,,OO a OO b OO c OO d ====,1223,O OO O OO αβ∠=∠=,3414,O OO O OO γδ∠=∠=,因为12R a r b r =+=+,所以有()()()22222221212122cos 21cos 4sin 2l O O r r a b ab a b ab ab ααα=--=+---=-=,即122l α=。
2013北师大版中考二模数学试题
![2013北师大版中考二模数学试题](https://img.taocdn.com/s3/m/c19b4c0326fff705cd170a8e.png)
2013年初三年级学业水平考试数学模拟二注意事项:1.本试题分第I卷和第II卷两部分.第I卷满分45分;第II卷满分75分.本试题共10页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面的数中,与2-的和为0的是()1 D.A.2B.2- C.221- 2.据2013年4月1日《CCTV —10讲述》栏目报道,2012年7月11日,一位26岁的北京小伙樊蒙,推着坐在轮椅上的母亲,开始从北京到西双版纳的徒步旅行,圆了母亲的旅游梦,历时93天,行程3 359公里.请把3 359用科学记数法表示应为( )A .233.5910⨯B .43.35910⨯C .33.35910⨯D .433.5910⨯3.下面四个几何体中,俯视图为四边形的是( )4.一次函数23y x =+的图象交y 轴于点A ,则点A 的坐标为( )A .(0,3)B .(3,0)C .(1,5)D .(-1.5,0)5. 下列运算正确的是( )A .328-=B .()23-=9-C 2=D .020=6.从下列不等式中选择一个与x +1≥2组成不等式组,若要使该不等式组的解集为x ≥1,则可以选择的不等式是A B CA.x>0 B.x>2 C.x<0D.x<27.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D8. 一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85, 98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91D.众数是989.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=15°,则∠2的度数是()A. 25°B. 30°C. 60°D. 65°10. 已知两个变量x和y,它们之间的3组对应值如下表所示:x-101A CB D O y -1 1 3则y 与x 之间的函数关系式可能是( )A .y=xB .y=x2+x+1C .y= 3xD .y=2x+111.如图O ⊙是ABC △的外接圆,AD 是O ⊙的直径,O ⊙半径为32,2AC ,则sin B ( )A .23B .32C .34D .43 12.面积为0.8 m2的正方形地砖,它的边长介于( ) A .90 cm 与100 cm 之间 B .80 cm 与90cm 之间C .70 cm 与80 cm 之间D .60 cm 与70 cm 之间13.如图所示,平面直角坐标系中,已知三点A (-1,0), B (2,0),C (0,1),若以A 、B 、C 、D 为顶点的四边形是平 行四边形,则D 点的坐标不可能是( )A.(3,1)B.(-3,1)C.(1,3)D.(1,-1)14.如图为二次函数y =ax2+bx +c 的图象,则下列说法中错误的是( )A .ac<0B .2a +b =0C .a +b +c>0D .对于任意x 均有ax2+bx ≥a +b15. 在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△; ②CDE △为等边三角形; ③2EH BE =; ④EDC EHC S AH S CH =△△.其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④2013年初三年级学业水平考试数 学 模 拟 二注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.考试期间,一律不得使用计算器.第II 卷(非选择题 共72分)二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上)16. 因式分解:2x2-8= .17. 随机掷一枚均匀的硬币两次,两次都是正面的概率是 .18.已知函数x x f -=22)(,那么=-)1(f . 19.如图,扇形的半径为6,圆心角θ为120︒,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .20.反比例函数y1=x 4、y2=x k (0≠k )在第一象限的图象如图,过y1上的任意一点A ,作x轴的平行线交y2于B ,交y 轴于C .若S △AOB =1,则k = .21.如图,边长为1的菱形ABCD 中,60DAB ∠=°,连结对角线AC ,以AC 为边作第二个菱形11ACC D ,得 评卷C 1D 1D 2 C 2 D CA B 图使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作 的第n 个菱形的面积为___________.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤)22. (本题满分7分) (1) 18 -6cos45°-( 3 -1)0(2)先化简,再求值:()()2a b a b b +-+,其中a=2,1b =. 23.(本题满分7分) ??如图所示,当一热气球在点A 处时,其探测器显示,从热气球看高楼顶部点B 的仰角为????°,看高楼底部点C 的俯角为??°,热气球与高楼的水平距离为??米,那么这栋楼高是多少米?(结果保留根号)。
2013全国中学生高中数学竞赛二试模拟训练题(63)
![2013全国中学生高中数学竞赛二试模拟训练题(63)](https://img.taocdn.com/s3/m/53f4dc007cd184254b3535f4.png)
加试模拟训练题(63)(附详细答案)1.△ABC中∠C=30°,O是外心,I是内心,边AC上的D点与边BC上的E 点使得AD=BE=AB.求证:OI丄DE,OI=DE.2.若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.OABCDEFIK30°3. 在黑板上写下n 个数,每次允许擦掉任意两个数,例如a 和b ,换成(a +b)/4.这样的运算重复n -1次,结果在黑板上只剩下一个数.证明:若开始时在黑板上写的是n 个1,则最后留在黑板上的数不小于1/n .4.已知p 为大于3的素数.且,,,)1(131********N b a ba p ∈=-++++ .(a,b )=1,证明p a 。
加试模拟训练题(63)1.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E点使得AD =BE =AB .求证:OI 丄DE ,OI =DE . (1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°, ∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO=30°+21(∠BAC -∠BAO ) =30°+21(∠BAC -60°)=21∠BAC =∠BAI =∠BEI .∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .2. 若x 为正实数,n 为正整数.证明:其中[t]表示不超过t 的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n ≤k -1均成立.kx k =kx k-1+[kx]=(k -1)x k-1+x k-1+[kx] (2)O A B CD E F I K 30°(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3) …2x 2=x 1+x 1+[2x] (k ) 将(2)至(k )式相加,得kx k =x k-1+x k-2+…+x 1+x 1+[kx]+[(k -1)x]+…+[2x]因此,由归纳假定,kx k ≤[kx]+2([(k -1)x]+[(k -2)x]+…+[x])但是[(k -m )x]+[mx]≤[(k -m )x+mx](m <k ),所以 kx k ≤[kx]+([(k -1)x )]+[x])+…+([x]+[(k -1)x])≤k[kx] 即x k ≤[kx].此即所欲证之(1)式.3. 在黑板上写下n 个数,每次允许擦掉任意两个数,例如a 和b ,换成(a +b)/4.这样的运算重复n -1次,结果在黑板上只剩下一个数.证明:若开始时在黑板上写的是n 个1,则最后留在黑板上的数不小于1/n .【题说】第二十五届(1991年)全苏数学奥林匹克九年级题2. 【解】易知所以经过一次运算后,黑板上各数的倒数和不大于运算前的倒数和.最4.已知p 为大于3的素数.且,,,)1(131********N b a ba p ∈=-++++ .(a,b )=1,证明p a 。
2013年全国数学竞赛试题详细参考答案
![2013年全国数学竞赛试题详细参考答案](https://img.taocdn.com/s3/m/fa063123b4daa58da0114a34.png)
(第3题)一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )12+ (C )72+ (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得21x ==2y ==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )E12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ). (A(B )1 (C (D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要(第4题)(第8题)接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.(第8题答案)(第9题答案)另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF 交 AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r a DE a a a h h a b c -=⋅=-=-++()a b c a b c+=++, 故 879168793DE ⨯+==++().另解:ABC S rp ∆===(这里2a b cp ++=)所以12r ==2ABC a S h a ===△ 由△ADE ∽△ABC ,得23a a h r DE BC h -===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
2013全国中学生高中数学竞赛二试模拟训练题(87)
![2013全国中学生高中数学竞赛二试模拟训练题(87)](https://img.taocdn.com/s3/m/74207e41fe4733687e21aa4b.png)
加试模拟训练题(87)2.已知整数列{a 0,a 1,a 2,…}满足:(1)a n+1=3a n -3a n-1+a n-2,n=2,3,…; (2)2a 1=a 0+a 2-2;(3)对任意自然数m ,在数列{a 0,a 1,a 2,…}中必有相继的m 项a k ,a k+1,…,a k+m-1都是完全平方数.求证:{a 0,a 1,a 2,…)的所有项都是完全平方数.一条直线上;直线所作垂线的垂足在且由该点向四条的外接圆相交于一点,交所构成的四个三角形求证:四条直线两两相13.有24个面积为S 的全等小矩形,把所有这些小矩形拼成一个与小矩形相似的大矩形,问小矩形的边长各是多少?4. 设10,a =)1231,2,n n a a n +==,证明对于n a 不可能有某一正整数N ,使2N a 能被1989整除.(P.185,32)加试模拟训练题(87)2.已知整数列{a 0,a 1,a 2,…}满足:(1)a n+1=3a n -3a n-1+a n-2,n=2,3,…; (2)2a 1=a 0+a 2-2;(3)对任意自然数m ,在数列{a 0,a 1,a 2,…}中必有相继的m 项a k ,a k+1,…,a k+m-1都是完全平方数.求证:{a 0,a 1,a 2,…)的所有项都是完全平方数. 【题说】1992年中国数学奥林匹克题6. 【证】令d n =a n -a n-1,则由(1)d n+1-d n =d n -d n-1=…=d 2-d 1所以{d n }是等差数列,从而由(2),d 2-d 1=a 2-2a 1+a 0=2,所以a n =n 2+bn +c ,b 、c ∈Z若b 为奇数2t+1,则在n 充分大时,在同一条直线上、、、故在一条直线上,、、在一条直线上,、、由西姆松定理可知,、、、、所作垂线的垂足分别为、、、向若点交于同一点、圆、圆、圆圆也过点同理圆过点,即圆的另一个交点为与圆圆,于点交,于点交中,、、、线证明:如图,设四条直P N M L P N M N M L P N M L E DA CD BC AB G GAED ABF CDF BCE GAED G ABF A BGF CDA BEC CGF BGC BGF GCDF BCE F AD BC E CD AB AD CD BC AB ∴︒=∠+∠∴∠+∠=∠+∠=∠∴180一条直线上;直线所作垂线的垂足在且由该点向四条的外接圆相交于一点,交所构成的四个三角形求证:四条直线两两相1大于(n+t)2,小于(n+t+1)2(=(n+t)2+2n+2t+1),因而a n不是平方数.而由(3),{a n}有任意大的平方数,矛盾!所以b为偶数2t,从而a n=(n+ t)2+c-t2在c-t2>0时,对于充分大的n,a n介于(n+ t)2与(n+t+1)2之间,与(3)矛盾.同样c-t2<0也导出矛盾(考虑连续平方数(n+t-1)2与(n+t)2).所以c-t2=0,a n=(n+ t)2.【注】(3)可减弱为{a n}中有任意大的平方数,即{a n}中有无穷多个平方数.3.有24个面积为S的全等小矩形,把所有这些小矩形拼成一个与小矩形相似的大矩形,问小矩形的边长各是多少?【题说】 1980年北京市赛题6.【解】设小矩形边长为a、b(不妨令a>b).因大矩形与小矩形长边包含x1个小矩形的长边与x2个小矩形短边(x1、x2均为非负整数),而大矩形短边包含y1个小矩形的长边与y2个小矩形的短边(y1、y2均为非负整数).由题意得方程:用b除上述方程,并解出a/b,得:方程的左边是整数;仅当x1+y2=0时,右边才是整数.因x1与y2均非负,故x1=y2=0.代入方程(1)、(2)、(3),得:因此a>b,所以x2>y1.因此y1只能取数值1,2,3,4(x2相应地取数值24,12,8,6).4. 设10,a =)1231,2,n n a a n +==,证明对于n a 不可能有某一正整数N ,使2N a 能被1989整除.(P.185,32)证明 由已知有12220n n n n n a a a a a +-=+>+≥,得 1n n a a +>.又由已知有123n n a a +-=平方得 2211310n n n n a a a a ++-+-=, 同理 2211310n n n n a a a a ---+-=,这表明11,n n a a +-是二次方程()()22310n n x a x a -+-=的两个不等根,得113n n n a a a +-+=-, 即 113n n n a a a +-=--.若存在某一正整数N ,使2N a 能被1989整除,则2N a 能被3整除,由221223N N N a a a --=--知22N a -能被3整除,如此类推,可得2a 能被3整除,但(211312a a =+=, 这一矛盾说明,不存在某一正整数N ,使2N a 能被1989整除.。
2013全国中学生高中数学竞赛二试模拟训练题(68)
![2013全国中学生高中数学竞赛二试模拟训练题(68)](https://img.taocdn.com/s3/m/5354e6c005087632311212f4.png)
加试模拟训练题(68)(附详细答案)1.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2,O 3四点共圆.2.一个数列的前五项是1,2,3,4,5,从第六项开始,每项比前面所有项的乘积少1.证明:此数列的前70项的乘积恰是它们的平方和.A B CO O O O 123??3. 按某种顺序把从1到1993的自然数排成一行,对这一行数实行下述变换:如果数k 占有第一个位置,则把这行中的前k 个数按相反的顺序重新进行排列,证明:经过有限次这种变换以后,一定可以使数l 占有第一个位置.4.设,x y 是区间[2,100]中的整数,证明存在正整数n 使得22nnx y 是合数.加试模拟训练题(68)1.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.(第27届莫斯科数学奥林匹克)分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3 垂直平分OA .观察△OBC 及其外接圆, 立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1 O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.2.一个数列的前五项是1,2,3,4,5,从第六项开始,每项比前面所有项的乘积少1.证明:此数列的前70项的乘积恰是它们的平方和.【题说】1995年城市数学联赛低年级高水平题2. 【证】设第n 项为a n ,a 6=119.n ≥6时,a n+1=a 1a 2·…·a n -1=a 1a 2·…·a n-1·a n-1=a n (a n +1)-1=a 71-119+65+55 =a 1a 2·…·a 70[别证]记第n 项为a n ,则a 1=1,a 2=2,a 3=3,a 4=4,a 5=5,a 6=119,n ≥6时,a n+1=a 1·a 2·…·a n -1=(a n +1)a n-1=55+(a 71-a 6+65)=a 71+1=a 1·a 2·…·a 70ABCOO O O 123??3. 按某种顺序把从1到1993的自然数排成一行,对这一行数实行下述变换:如果数k 占有第一个位置,则把这行中的前k 个数按相反的顺序重新进行排列,证明:经过有限次这种变换以后,一定可以使数l 占有第一个位置.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题6. 【解】将1993改为n 并用归纳法来证明.n =1显然.设对n -1,结论成立,考虑n 个数的情形,如果经过有限次变换,数n 排在最后则对前n -1个数应用归纳假设便得到所需的结论(因为n 已不会再移动).如果数n 不可能移到最后,这时它也不可能占有第一个位置.所以,位于最后的数在任何一次变换中不会移动.从而参与变动的仅有前面的n -1个数,应用归纳假设就可以达到我们的目的.4.设,x y 是区间[2,100]中的整数,证明存在正整数n 使得22nnx y +是合数.证 如果x=y ,令n=1,则22x y +是一个大于2的偶数,故为合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加试模拟训练题(54)(附详细答案)
1.AD,BE,CF是△ABC的三条中线,P是任意一点.证明:在△P AD,△PBE,△PCF中,其中一个面积等于另外两个面积的和.
2. 若0≤a,b,c≤1,证明:
A
A'
F
F'
G E
E'
D'
C'
P
C B
D
3. 在黑板上写下从1到1988的所有自然数.对这些数依次反复施行运算A 和B :先是A 后是B ,接着再是A ,然后再是B ,如此继续下去.运算A 是从每个写在黑板上的数减去同一个自然数(对不同次的运算A ,减数可以不相同).运算B 是抹去黑板上写着的两个数,然后写下它们的和数.运算A 和B 如此顺次施行,直至某次运算B 后,黑板上只留下一个数,并且它是非负的,问这个数是多少?
4.设a ,b ,c 是正整数,且 )()1(),1(22b a c c c c ab +++- 证明:a ,b 中有一个数等
于c ,另一个数等于12+-c c 。
加试模拟训练题(54)
1.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,
△PCF 中,其中一个面积等于另外两个面积的和. 分析:设G 为△ABC 重心,直线PG 与AB
,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′,
D ′,
E ′,
F ′.
易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,
∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .
两边各扩大3倍,有S △PBE =S △P AD +S △PCF .
2. 若0≤a ,b ,c ≤1,证明:
【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n 个数的情形. 【证】令
因为 (1-b )(1-c )(1+b+c )≤(1-b )(1-c )(1+b )(1+c ) =(1-b 2)(1-c 2)≤1(当a 、b 、c 轮换时均成立)因此δ≥0.
3. 在黑板上写下从1到1988的所有自然数.对这些数依次反复施行运算A 和B :先是A 后是B ,接着再是A ,然后再是B ,如此继续下去.运算A 是从每个写在黑板上的数减去同一个自然数(对不同次的运算A ,减数可以不相同).运算B 是抹去黑板上写着的两个数,然后写下它们的和数.运算A 和B 如此顺次施行,直至某次运算B 后,黑板上只留下一个数,并且它是非负的,问这个数是多少?
【题说】第十四届(1988年)全俄数学奥林匹克十年级题3.
【解】施行运算A 和B 各一次后,黑板上的数就少了一个.所以运算A 和B 各施行1987次后,黑板上就留下一个数.
设施行第k 次运算A 时,减数为自然数d k ,k =1,2,…,1987.经第k 次的运算A 后,写在黑板上的数的和少了(1989-k)d k ;而经运算B 后,这个和数是不变的.所以运算A 和B 各施行1987次后,黑板上写的数是
A A 'F F 'G E
E '
D '
C '
P
C
B D
x =(1+2+…+1988)-1988d 1-1987d 2-…-2d 1987 =1988(1-d 1)+1987(1-d 2)+…+ (1989-k)(1-d k )+…+2(1-d 1987)+1
显然(1989-k)(1-d k )≤0,并且若对某个k ,有d k ≥2,则 (1989-k)(d k -1)≥2
故 x ≤(1989-k)(1-d k )+1≤-1
与题设矛盾.因此,对一切k =1,2,…,1987,d k =1.所以x =1,即黑板上最后留下的数是1.
4.设a ,b ,c 是正整数,且 )()1(),1(22b a c c c c ab +++- 证明:a ,b 中有一个数等
于c ,另一个数等于12+-c c 。
证明:∵b a c ++12
∴设+∈+=+N k c k b a ),1(2
则b c k a -+=)1(2
∴[
]
)1()1(22
+--+c c c b
c k b
∴[
]
)()1(22
b b k k
c kc c b
c k b -++--+ ∴)()1(2b kc c b c k +--+
∵)1(2
+-c c c ab ∴若a ,b 均大于c 。
则1)1(2
2+=+-+<+c c c c b a 与b a c ++12
矛盾。
∴不妨设b ≤c. ∴0)(≤+-b kc c 等号成立当且仅当1=k 且c b = 若等号不成立,则[
]
b c k b kc c -+-≤+-)1()(2
∴b k kc bc kc +--≤+-22 ∴k b bc -≤ 矛盾。
∴一定有.0)(=+-b kc c 从而1=k 且c b = ∴1)1(2
2
+-=-+=c c b c k a ∴命题成立。