2013全国中学生高中数学竞赛二试模拟训练题(54)
2013届高三数学二模好题集锦

2013届高三数学二模好题集锦12、将边长为2的正方形沿对角线AC 折起,以A ,B ,C ,D 为顶点的三棱锥的体积最大值等于 .14、已知函数aax x a x a x x f 2222)1()(22-++--+=的定义域是使得解析式有意义的x 的集合,如果对于定义域内的任意实数x ,函数值均为正,则实数a 的取值范围是 .16、已知函数)2cos()2sin(2ππ-+=x x y 与直线21=y 相交,若在y 轴右侧的交点自左向右依次记为1M ,2M ,3M ( ).A π6 .B π7 .C π12 .D π1317、若22παπ≤≤-,πβ≤≤0,R m ∈,如果有0sin 3=++m αα,0cos )2(3=++-m ββπ,则)cos(βα+值为( ). .A 1- .B 0 .C21.D 1 18、正方体1111D C B A ABCD -的棱上..到异面直线AB ,1CC 的距离相等的点的个数为( ).A 2. .B 3. .C 4. .D 5.12.已知23230123(3)(3)(3)n x x x x a a x a x a x ++++=+-+-+-(3)n n a x ++-()n N *∈且012n n A a a a a =++++,则lim4nnn A →∞=___________.14.已知1()4f x x =-,若存在区间1[,](,)3a b ⊆+∞,使得{}(),[,][,]y y f x x a b ma mb =⊆=,则实数m 的取值范围是___________.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N ),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+; (3)若1a 为正整数,求证:当211log n a >+(n ∈N )时,都有0n a =.【解析】⑴设12a k =,2a k =,则:322k a k +=,30a =分两种情况: k 是奇数,则2311022a k a --===,1k =,1232,1,0a a a === 若k 是偶数,则23022a ka ===,0k =,1230,0,0a a a === ⑵当3m >时,123123423,21,2,2,m m m m a a a a ---=+=+==45122,,2,1,0m m m m n a a a a a ++-======∴1124223n m m m S S +≤=++++=+⑶∵211log n a >+,∴211log n a ->,∴112n a ->由定义可知:1,212,2nnn n n na a a a a a +⎧⎪⎪=≤⎨-⎪⎪⎩是偶数是奇数∴112n n a a +≤ ∴1211112112n n n n n n a a a a a a a a a ----=⋅⋅⋅≤⋅∴111212n n n a --<⋅= ∵n a N ∈,∴0n a =,综上可知:当211log n a >+()n N ∈时,都有0n a =12.各项为正数的无穷等比数列{}n a 的前n 项和为n S ,若1lim 1=+∞→n nn S S , 则其公比q 的取值范围是 .13.已知两个不相等的平面向量,β(0≠)满足|β|=2,且与β-的夹角为120°,则||的最大值是 .14.给出30行30列的数表A :⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛1074216183150117216342720131832721159150201510511713951,其特点是每行每列都构成等差数列,记数表主对角线上的数10743421101,,,,,按顺序构成数列{}n b ,存在正整数)1(t s t s <<、使t s b b b ,,1成等差数列,试写出一组),(t s 的值 .12. 公差为d ,各项均为正整数的等差数列{}n a 中,若11,73n a a ==,则n d +的最小值等于 .13. 已知ABC ∆的外接圆的圆心为O ,6,7,8,AC BC AB ===则AO BC ⋅=uuu r uu u r.14.设()f x 是定义在R 上的函数,若81)0(=f ,且对任意的x ∈R ,满足 (2)()3,(4)()103x x f x f x f x f x +-≤+-≥⨯,则)2014(f = .23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,过坐标原点O 作倾斜角为60的直线交抛物线2:y x Γ=于1P 点,过1P 点作倾斜角为120的直线交x 轴于1Q 点,交Γ于2P 点;过2P 点作倾斜角为60的直线交x 轴于2Q 点,交Γ于3P 点;过3P 点作倾斜角为120的直线,交x 轴于3Q 点,交Γ于4P 点;如此下去…….又设线段112231n n OQ QQ Q Q Q Q -,,,,,L L 的长分别为123,,,,,n a a a a L L,11122OPQ Q PQ ∆∆,,2331n n n Q PQ Q PQ -∆∆,,,L L 的面积分别为123,,,,,,n G G G G L L 数列{}n a 的前n 项的和为n S .(1)求12,a a ; (2)求n a ,limnn nG S →∞;(3)设(01)n an b a a a =>≠且,数列{}n b 的前n 项和为n T ,对于正整数,,,p q r s ,若p q r s <<<,且p s q +=+试比较p s T T ⋅与q r T T ⋅的大小.11.方程0cos =x x 在区间[]6,3-上解的个数为 .12.某人从标有1、2、3、4的四张卡片中任意抽取两张.约定如下:如果出现两个偶数或两个奇数,就将两数相加的和记为ξ;如果出现一奇一偶,则将它们的差的绝对值记为ξ,则随机变量ξ的数学期望为 .13.如果M 是函数)(x f y =图像上的点,N 是函数)(x g y =图像上的点,且N M ,两点之间的距离MN 能取到最小值d ,那么将d 称为函数)(x f y =与)(x g y =之间的距离.按这个定义,函数x x f =)(和34)(2-+-=x x x g 之间的距离是 .14.数列}{n a 满足1241+-=+n n n a a a (*∈N n ).①存在1a 可以生成的数列}{n a 是常数数列; ②“数列}{n a 中存在某一项6549=k a ”是“数列}{n a 为有穷数列”的充要条件; ③若{}n a 为单调递增数列,则1a 的取值范围是)2,1()1,( --∞;④只要k k k k a 232311--≠+,其中*∈N k ,则n n a ∞→lim 一定存在; 其中正确命题的序号为 .17.已知以4为周期的函数(](]⎪⎩⎪⎨⎧∈--∈-=3,1,2cos 1,1,1)(2x xx x m x f π,其中0>m 。
2013全国中学生高中数学竞赛二试模拟训练题(2)

加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值.2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 11213、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值. 解:令112123123412341,5,14,30,y x y x x y x x x y x x x x =-⎧⎪=+-⎪⎨=++-⎪⎪=+++-⎩ 则 0(1,2,3,4)i y i ≤=,112123234341,4,9,16,x y x y y x y y x y y =+⎧⎪=-++⎪⎨=-++⎪⎪=-++⎩ 于是 ()()()()112223411114916234U y y y y y y y =++-+++-+++-++ 123411*********10.y y y y =++++≤ 当 1121231234123410,50,140,300,y x y x x y x x x y x x x x =-=⎧⎪=+-=⎪⎨=++-=⎪⎪=+++-=⎩即12341,4,9,16x x x x ====时,max 10.U = 2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 1121 证明: 设a a ab b b n n ,,,,,,2121 是的从小到大的有序排列,即 b b b n ≤≤21,因为b i是互不相同的正整数.则n b b b n ≥≥≥,,2,121又因为n 222111132>>>>所以由排序不等式得:n a a a n 22212+++ (乱序) n bb b n22212+++≥ (倒序) n 1211+++≥即 ∑∑==≥n k n k k k k a 1121 成立. 3、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.【证】 将人看作平面上的点,得到一个有3n +1个点的图(假定任意三点都不在一直线上),当两个人玩网球或象棋或乒乓球时,我们就在相应的两点之间连一条红线或黄线或蓝线,需要证明的是,一定存在一个三条边的颜色互不相同的三角形.自一点引出的3n 条线段中,如果某两条线段的颜色不同,就称它们构成一个“异色角”.考虑异色角的个数.由于自每一点引出n 条红线,角形中有3个异色角.这个三角形的三条边颜色互不相同,即相应的三个人之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
2013全国中学生高中数学竞赛二试模拟训练题(10)(附答案)

加试模拟训练题(10)1、已知凸四边形ABCD , ,AB DC 交于点P , ,AD BC 交于点Q ,O为四边形 ABCD 内一点,且有 BOP DOQ ∠=∠,证明180AOB COD ∠+∠=︒。
2、已知),0(,,∞+∈z y x ,且1=++z y x ,证明:274222≤++x z z y y x 成立的条件.3.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?4.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.加试模拟训练题(10)1、已知凸四边形ABCD , ,AB DC 交于点P , ,AD BC 交于点Q ,O为四边形 ABCD 内一点,且有 BOP DOQ ∠=∠,证明180AOB COD ∠+∠=︒。
证明 设 BOP DOQ α∠=∠=,则()sin sin,sin sin AOD QD AQOQD OD OQD OAαα+∠==∠∠,从而有()sin sin AOD AQ OD OA QDαα+∠=。
类似地,有()sin sin AOB AP OBOA BP αα+∠=,因此有()()sin sin AOD AQ OD BP AOB AP OB QD αα+∠=+∠。
同理,由()sin sin ,sin sin COD BOQ BQ QC OQB OB OQB OCα∠-∠==∠∠,可得()()sin sin ,sin sin COD BOC QC OB PC ODBOQ OC BQ DOP OC PDαα∠-∠-==∠∠,因此有()()sin sin COD QC OB PDBOC PC OD QBαα∠-=∠-。
设 AC 与 PQ 交于点L ,由梅涅劳斯定理,1,1AQ DP CL CQ BP ALQD PC LA QB PA LC==,于是有()()()()sin sin 1sin sin AOD COD AOB BOC αααα+∠∠-=+∠∠-。
2013年全国初中数学竞赛试题(附详细答案)

2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013全国数学联赛试题及答案2

AC sin ADC sin APE , CD sin CAD sin EPF BD BD sin BFD sin PFA AP , 由于 = EF BF sin BDF sin PAF PF
1= SPAE AP PE sin APE BD AC SPFE PF PE sin EPF EF CD
n 1
于任意正整数 n ,都有 S2n 1 bn 2
2
n(u v) 。
2 r 2 (u v )
取 n 2r (u v), r Z 时, S2n 1 2 平方数。 综上所述,结论成立。
r 2 (u v)2 2r
2
(u v )
r (u v) 都是完全
k
因此,我们取的 2k 个整数满足要求。 原题证明:对于任意正整数 2 n 2k ,都存在正整数 2 r k ,使得 2r 1 n 2r ,由引 理存在 2r 个整数它们都不是 n 的倍数,使得任意将它们分为两组都会有一组中有若干个数 之和是 n 的倍数。 再任意添加 2k 2r 个大于 n 的正整数,则得到满足题意的 2k 个整数。
蕴
秀
斋
2013 年全国高中数学联赛二试参考解答
1、 AB 是圆 的一条弦, P 是 AB 上一点, E , F 在线段 AB 上,满足 AE EF FB , 射线 PE, PF 分别与 交于 C , D 。求证: EF CD AC BD 。
P w A E F B
证明:由正弦定理
证明:令 bn S2n 1 ,则 b1 S1 a1 u v ,由已知
bn 1
2013年全国高中数学联赛一试二试试题整理详解汇编(一试二试为B卷)(含解答)

AB < BC
∠AP B = ∠BP C
7
AB BC
1
B
A
P
∠BP C = ∠CP D
P
BM BC
C2 =
M; = DM CD
C
D
A, B, C, D
3.
x, y, z
x2 + y2 + z2 = 10
u = 6 − x2 + 6 − y2 + 6 − z2
6 − x2 +
6 − y2 +
2
6 − z2
x = 0, y = 0 (P
x– )
a+c = 0
ac x−
2
+ y2 =
ac 2
a+c
a+c
x–
(0, 0), (2ac/(a + c), 0)
b) x–
A, B, C, D (−1, 0), (0, 0), (1, 0), (2, 0)
∠AP B = ∠BP C
P
y–
∠BP C = ∠CP D
1 16
(y1y2
+
8)2
=
0
y1y2 = −8 (−8)2
x1x2 = 16 = 4.
F (1, 0)
−→ −−→ √ x1 − x2 = (x1 + 1) − (x2 + 1) = |F A| − |F B| = 4 3.
4
y2 = 4x
x1, x2
√2 x1 + x2 = (x1 − x2)2 + 4x1x2 = 4 3 + 4 × 4 = 8.
Tn
n=3
2013二模理科数学答案.doc

永州市2013年高考第二次模拟考试 数学(理科)参考答案及评分标准一、选择题(每小题5分,共40分)D ADC BAAC二、填空题(每小题5分,共35分)(一)选做题(9-11题,考生只能从中选做2题,如果多做则按前两题计分)9. 2cos 0ρθ+= 10.1(1,)3-- 11. (二)必做题(12-16题)12. 90 13. i 14. -10 15. <16. (1)15(2)7 三、解答题(本大题共6小题,共75分,解答须写出文字说明、证明过程或演算步骤) 17.(本题满分12分)解:(1)20人只有2人过关,过关率为110,估计100名学员中有11001010⨯=人一次过关; …………3分(2)设“过科目一、二、三”分别为事件A 、B 、C ,过科目一的12人中有2人过了科目二却没过科目三,故P =21(|)126P BC A ==;…6分 (3)设这个学员一次过关的科目数为η,则η的分布列为: …………………8分E η=22119012355101010⨯+⨯+⨯+⨯=, ………………10分 ξ=100η,E (ξ)=E (100η)=100 ×E (η)=100×910=90. ………………12分18.(本小题满分12分)解法一(1)证明:连接OE ,OF ,由图1知:OE //AC ,OF //AD ,而OE ,OF 不在平面ACD 上,且OE 交OF 于O ,故平面OEF //平面ACD ,所以EF //平面ACD . ………………5分(2)取AD 的中点G ,连接OG ,则∠CGO 就是二面角C -AD -O 的平面角, OGCO =2,………………9分90oCOG ∠=,tan CO CGO OG∠===, ………………11分故二面角C -AD -O.……………12分解法二:证明(1)如图建立空间直角坐标系,A (0,-2,0),C (0,0,2),D,-1,0), E(0,),,1,0),(0,2,2),AC =(3,1,0)AD =, (3,1EF =设平面ACD 的法向量(,,)m x y z =,依题意有:m AC m AD ⊥⊥⎧⎪⎨⎪⎩(,,)(0,2,2)220(,,)0)0m AC x y z y z m AD x y z y ⋅=⋅=+=⇒⊥=⋅=+=⎧⎪⎨⎪⎩,令x =-1,则y,z =,则(m =-,………………3分因为(m EF ⋅=-⋅-0==,所以m EF ⊥,又EF 不在平面ACD 上,故EF//平面ACD . ………………6分 (2)易求得平面OAD 的一个法向量(0,0,1)n =,设二面角C -AD -O 的大小为θ,由图知θ为锐角,(1,cos ||||||mn m n θ⋅-===,………………9分tan cos 3θθ===………………11分故二面角C -AD -O的正切值为3. ………………12分19.(本小题满分12分) 解:(1) 由|f (x )|=|2sin(3πx +6π)|=2得sin(3πx +6π)=±1, 即3πx +6π=k π+2π,∴ x =3k +1,k ∈N ,∴ {a n }是首项为1,公差为3的等差数列,∴ a n =3n -2,n ∈N *, …………4分3222n a n n b -==,{n b }是首项是2,公比是8的等比数列,其前n 项和2(18)2(81)187n nn S -==--; ………………6分 (2) 12231tan tan tan tan tan tan n n n T a a a a a a +=+++tan1tan 4tan 4tan 7tan(32)tan(31)n n =⋅+⋅++-⋅+, ………………8分由tan(31)tan(32)tan 3tan[(31)(32)]1tan(31)tan(32)n n n n n n +--=+--=++⋅-, ………………9分有tan(31)tan(32)tan(32)tan(31)1tan 3n n n n +---⋅+=-, ………………10分14473231n T n n =⋅+⋅++-⋅+tan tan tan tan tan()tan()4174107111333---=-+-+-+tan tan tan tan tan tan ()()()tan tan tan313213n n +--+-tan()tan()[]tan 3113n n +-=-tan()tan tan . ……………12分20.(本小题满分13分)解:(1) 设B (x 1,y 1),C (x 2,y 2),直线BC 过焦点F (0,1), 故设BC 的直线方程为y =kx +1,由 ⎩⎨⎧=+=yx kx y 412 得x 2-4kx -4=0,故x 1+x 2=4k ,x 1x 2=-4, ……………3分 ∴ |x 1-x 2|=212214)(x x x x -+=16162+k ∴ S △EBC =S △EBF +S △CEF =21|x 1| |EF |+21|x 2| |EF | =|x 1-x 2|=142+k =5,求得k =34±,此时,BC 方程为314y x =±+, 点 B 的坐标为(±4,4),故l 的方程为514y x =±-; ………………6分 (2)设B (x 1,y 1),A (x 3,y 3),l 方程:y =kx -1,由⎩⎨⎧=-=yx kx y 412, 得x 2-4kx +4=0,△=16k 2-16>0,k 2>1,故x 1+x 3=4k ,x 1x 3=4,又A 在E 与B 之间, ∴0<∣x 3∣<∣x 1∣, ∴0<|x 3|2<∣x 1 x 3∣=4, ∴0<∣x 3∣<2,x 1=34x ,直线BC 的方程为1111y y x x -=+, ………………9分 设M (3x ,y o ),点M 在直线BC 上,有13111o y y x x -=+,即2131141o x y x x -=+,整理得y o =2-234x ,M (3x ,2-234x ), (-2<3x <2且3x ≠0)|EM|==,令234x =t ,则(0,1)t ∈,|EM|==. ………………12分 线段EM长的取值范围为. ………………13分 21.(本题满分13分)解:(1)连结 OP ,因30o BAP ∠=,120o ABP ∠=30oAPB ∴∠=.在三角形PBO 中,222102021020cos120700OP =+-⨯⨯=22(1012)OP >+ 即22OP >故该外轮未进入我领海主权范围内. ………………5分 (2)作PQ AN ⊥于Q ,PS AB ⊥于S,则AQ SP ==30PQ =,因60oNAP ∠=,NMP θ∠=,首先应有60oθ>, 30sin PM θ=,30cos sin AM θθ=,设MP 方向的船速为V ,则我救助船全速到达P 点共所需时间为130cos 13030cos ()]sin sin sin T VV VVθλθθλθθλθ-=+⋅=⨯, ……………7分221cos 301cos 30()sin sin T VVθλθλθλθθ--'=⨯=⨯,令()0T θ'=得1cos θλ=.设使1cos θλ=的那个锐角为λθ,则当(60,)oλθθ∈时,()0T θ'<,当(,90)o λθθ∈时,()0T θ'>,()T θ在(60,)oλθ位减函数,在(,90)o λθ位增函数,(注:将(60,)o λθ写成 (0,)oλθ 不扣分)所以当1cos θλ=时()T θ能取得最小值. ………………9分另一方面,延长PC 与AN 交于0M ,须0QM QM ≥(即0QM P θ≥∠)救助船才能沿直线MP 航行.0cos cos QM P θ∠===≤,由1λ≤解得λ≥.此时0Q M P λθ≥∠,而当λ<时,0Q M P λθ<∠,由()T θ的单调性知θ取0QM P ∠时()T θ最小. ………………11分综上知,为使到达P 点的时间最短,当λ≥时,救助船选择的拐角θ应满足1cos θλ=;当λ<时,救助船应在0M 处拐头直朝P 点航行,此时cosθ=. ………………13分22.(本题满分13分)解:(1)∵()2ln()f x a x b =+,∴2()af x x b'=+,则()f x 在切点(0,2ln )A a b 处切线的 斜率2(0)a k f b '==,则()f x 在点(0,2ln )A a b 处切线方程为22ln a y x a b b =+.又由2()1x g x e =-,得2()2x g x e '=,则()g x 在切点B(0,0)处切线的斜率(0)2k g '==, 则()g x 在点B 处切线方程为2y x =. 由22ab= 和2ln 0a b =解得1a =,1b =. ()2ln(1)(1)f x x x =+>-,2()1xg x e =-. ………………4分(2)由002[1g(x x m ->+202x m x e <-, 令2()2h x x e =-要使22m x e <-[0,)+∞上有解,只需max [()]m h x <. ………………5分 ①当0x =时,(0)0h =,所以0m <; ………………6分②当0x >时,2()2x h x e '=-,∵0x >,有2≥,e 1x >,∴2()20x h x e '=-<函数2()2h x x e =-[0,)+∞上单调递减,所以max ()(0)0h x h ==, 所以0m <综合①②得实数m 的取值范围是(,0)-∞ ……………8分(3)令2()()()12ln(1)(1)x u x g x f x e x x =-=--+>-,则2222(1)2()211xx e x u x e x x +-'=-=++.∴当0x ≥时,由于21,11xex ≥+≥,所以 22(1)2x e x +≥∴()0u x '≥在0x ≥上恒成立, 函数()u x 在区间(0,)+∞上单调递增, ∴当0x >时,()(0)0u x u >=恒成立,故对于任意210x x >>,有2121()()g x x f x x ->-. ………………10分 又∵212121111()1011x x x x x x x x +--+-=>++,∴2212111ln(1)ln ln(1)ln(1)1x x x x x x +-+>=+-++. ∴2121()()()f x x f x f x ->-, ………………12分 从而2121()()()g x x f x f x ->-. ………………13分方法2:也可按下面思路:先证明212()2112()x x e x x -->- [构造2()12x u x e x =--,求导再分析单调性] 再证明2121ln(1)ln(1)x x x x ->+-+ [通过构造()ln(x 1)v x x =-+,求导后分析单调性](详略)。
2013年全国高中数学联赛模拟试题

等 于 . 3 . 设 数列 n 1 , a 2 , …, a , …, 满足 a l —a 2 —1 , a 3
、
( 本题满分 4 0分 ) 如图。 锐 角 △ ABC 内 接 于
—2 , 且 对 任 何 自 然 数 , 都有 a n a 卅 a + 。 ≠1 , 又
a n + 1 口 2 n H 十 3 : = = a +n + l +a ” + 2 +n + 3 , 则 a 1 +a 2
( ∈ N) .
7 . 在平 面 直角坐 标 系 x O y中 , 抛物 线 Y 。 一2 x的
焦点 为 F, 设 M 是 抛 物线 上 的动 点 , 则
为 .
三、 ( 本题 满分 5 O分 ) 设 S是一 些 互不 相 同的 四 元数 组 ( 口 , a 。 , a 。 , a ) 的 集合 , 其中a 一 0或 1 , i =1 , 2 , 3 , 4 . 已知 S的元 素个 数 不超 过 1 5 , 且满足 : 若( a ,
二、 ( 本题 满分 4 O分 ) 设 P
×5 0 2 , 则 N 除以 2 0 1 2的余 数 是 . 6 . 已知 函数 厂 ( z ) 满 足对 于一切 z∈R都有 - 厂 ( z ) +f( 2 0 1 2一 z)一 2 0 1 3成 立 , 且方 程 2 0 1 2 f( z) 一2 0 1 3 x 有 7个 不 同的实 数 根 , 则 这 7个 实 数 根 的 和
} —一 … 一 — ~ ~ r … … ~ … ~ … … … …… … ~ … ' - … … … … … 一 … ~ 一 撕 W 1 n … 0 船 勰 s 轧 j { 《 轴 让 《 ㈣ ¨ . _ … ~ … 一 … ~ . … ~ … … … … … … … … … ~ ” 一 稿 , 矗 宽时 | | I 簟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加试模拟训练题(54)(附详细答案)
1.AD,BE,CF是△ABC的三条中线,P是任意一点.证明:在△P AD,△PBE,△PCF中,其中一个面积等于另外两个面积的和.
2. 若0≤a,b,c≤1,证明:
A
A'
F
F'
G E
E'
D'
C'
P
C B
D
3. 在黑板上写下从1到1988的所有自然数.对这些数依次反复施行运算A 和B :先是A 后是B ,接着再是A ,然后再是B ,如此继续下去.运算A 是从每个写在黑板上的数减去同一个自然数(对不同次的运算A ,减数可以不相同).运算B 是抹去黑板上写着的两个数,然后写下它们的和数.运算A 和B 如此顺次施行,直至某次运算B 后,黑板上只留下一个数,并且它是非负的,问这个数是多少?
4.设a ,b ,c 是正整数,且 )()1(),1(22b a c c c c ab +++- 证明:a ,b 中有一个数等
于c ,另一个数等于12+-c c 。
加试模拟训练题(54)
1.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,
△PCF 中,其中一个面积等于另外两个面积的和. 分析:设G 为△ABC 重心,直线PG 与AB
,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′,
D ′,
E ′,
F ′.
易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,
∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .
两边各扩大3倍,有S △PBE =S △P AD +S △PCF .
2. 若0≤a ,b ,c ≤1,证明:
【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n 个数的情形. 【证】令
因为 (1-b )(1-c )(1+b+c )≤(1-b )(1-c )(1+b )(1+c ) =(1-b 2)(1-c 2)≤1(当a 、b 、c 轮换时均成立)因此δ≥0.
3. 在黑板上写下从1到1988的所有自然数.对这些数依次反复施行运算A 和B :先是A 后是B ,接着再是A ,然后再是B ,如此继续下去.运算A 是从每个写在黑板上的数减去同一个自然数(对不同次的运算A ,减数可以不相同).运算B 是抹去黑板上写着的两个数,然后写下它们的和数.运算A 和B 如此顺次施行,直至某次运算B 后,黑板上只留下一个数,并且它是非负的,问这个数是多少?
【题说】第十四届(1988年)全俄数学奥林匹克十年级题3.
【解】施行运算A 和B 各一次后,黑板上的数就少了一个.所以运算A 和B 各施行1987次后,黑板上就留下一个数.
设施行第k 次运算A 时,减数为自然数d k ,k =1,2,…,1987.经第k 次的运算A 后,写在黑板上的数的和少了(1989-k)d k ;而经运算B 后,这个和数是不变的.所以运算A 和B 各施行1987次后,黑板上写的数是
A A 'F F 'G E
E '
D '
C '
P
C
B D
x =(1+2+…+1988)-1988d 1-1987d 2-…-2d 1987 =1988(1-d 1)+1987(1-d 2)+…+ (1989-k)(1-d k )+…+2(1-d 1987)+1
显然(1989-k)(1-d k )≤0,并且若对某个k ,有d k ≥2,则 (1989-k)(d k -1)≥2
故 x ≤(1989-k)(1-d k )+1≤-1
与题设矛盾.因此,对一切k =1,2,…,1987,d k =1.所以x =1,即黑板上最后留下的数是1.
4.设a ,b ,c 是正整数,且 )()1(),1(22b a c c c c ab +++- 证明:a ,b 中有一个数等
于c ,另一个数等于12+-c c 。
证明:∵b a c ++12
∴设+∈+=+N k c k b a ),1(2
则b c k a -+=)1(2
∴[
]
)1()1(22
+--+c c c b
c k b
∴[
]
)()1(22
b b k k
c kc c b
c k b -++--+ ∴)()1(2b kc c b c k +--+
∵)1(2
+-c c c ab ∴若a ,b 均大于c 。
则1)1(2
2+=+-+<+c c c c b a 与b a c ++12
矛盾。
∴不妨设b ≤c. ∴0)(≤+-b kc c 等号成立当且仅当1=k 且c b = 若等号不成立,则[
]
b c k b kc c -+-≤+-)1()(2
∴b k kc bc kc +--≤+-22 ∴k b bc -≤ 矛盾。
∴一定有.0)(=+-b kc c 从而1=k 且c b = ∴1)1(2
2
+-=-+=c c b c k a ∴命题成立。