等腰三角形性质导学案
等腰三角形的判定导学案
___.
例 2、求证:如果三角形一个外角的平分线平行于三角形的一边,那么这 个三角形是等腰三角形 已知:∠CAE 是△ABC 的一个外角,∠1=∠2,AD//BC, 求证:AB=AC.
E A 1 2
D
B
C
例 3(自学课本例 3,小组交流) 思考:已知底边和底边上的高,你能用尺规作图方法作出这个等腰三角形 吗?
A
C
D
B
E
【当堂训练】
2
鸡西市第十九中学初三数学组
1、如图, ∠A=36°,∠DBC=36°, ∠C=72°.分别计算∠1,∠2 的度数, 并说明图中有哪些等腰三角形
A
D 1 2 B C
2、如图,AC 和 BD 相交于点 O,且 AB//DC,OA=OB.求证:OC=OD
D C
O
A
B
3. 如图,C 表示灯塔,轮船从 A 处出发以每小时 15 海里的速度向 正北(AN 方向)航行,2 时后到达 B 处,测得 C 在 A 的北偏西 40° 方向,并在 B 的北偏西 80°方向,求 B 处到灯塔 C 的距离.
八年级上
【复习检测】 1、等腰三角形的两边长分别为 6,8,则周长为 2、等腰三角形的周长为 14,其中一边长为 6,则另两边长分别为 3、等腰三角形的一个角为 70°,则另外两个角的度数是 4、等腰三角形的一个角为 120°,则另外两个角的度数是 5、如图,在⊿ABC 中,AB=AC (1) (2) (3) 若 AD 平分∠BAC,那么_________ 、____________
D
C
A
E
B
4鸡西市第十九中学初三来自学组鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
1.1等腰三角形的性质和判定导学案
CAB1.1 等腰三角形的性质和判定班级 姓名 学号 家长签字 完成时间45分钟 【学习目标】1.能证明等腰三角形的性质定理和判定定理.2.了解分析的思考方法.3.经历思考、猜想,并对操作活动的合理性进行证明过程,不断感受证明的必要性、感受合情推 理和演绎推理都是人们认识事物的重要途径.【重点、难点】了解分析的思考方法;合理添加辅助线. 【新知预习】1.以前,我们曾经学习过等腰三角形,你还记得等腰三角形的一些性质吗?不妨我们来回忆一下. 等腰三角形的性质:①等腰三角形的 角相等.(简称“ ”) ②等腰三角形的 、 、 互相重合.(简称“ ”) ③等腰三角形是 对称图形,它的对称轴是: .2.你能用刻度尺画一个等腰三角形,并用作垂线的方法画出它的顶角的平分线吗?若能,请画出并加以证明.【导学过程】活动一:证明:等腰三角形的两个底角相等. 已知:如图,在△ABC 中,AB=AC. 求证:∠B=∠C活动二:证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.思考:如何证明文字命题的正确性?活动三:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题: .(2)画出图形,写出已知、求证,并进行证明.例1.已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC,且AD∥BC . 求证:AB =AC2.拓展:在上图中,如果AB =AC ,AD∥BC,那么AD 平分∠EAC 吗?为什么?【反馈练习】1.完成第7页《练习》第1、2、3题.2.等腰三角形的一个角为50°,那么它的一个底角为______.3.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有______个.4.已知:如图,锐角△ABC 的两条高BE 、CD 相交于点O ,且OB=OC. 求证:△ABC 是等腰三角形.☆5.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.【作业布置】1.1习题 第2、3、4、题.AB C D E2011-2012学年度第二学期八年级数学校本作业(41)1.1 等腰三角形的性质和判定 编写:宋爱霞 审阅:张元国班级 姓名 学号 家长签字 完成时间40分钟 1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 . 2.若等腰三角形有两边长为2和5,那么周长 为 .3.若等腰三角形有一个外角等于50°,那么另两个角为 .4.若等腰三角形有一个角等于120°,那么另两个角为 . ★5.若等腰三角形一腰上的高与另一腰的夹角等于30°,那么这个等腰三角形的顶角为 . ★6.若等腰三角形的周长等于12cm ,那么腰长x 的取值范围是 .7.如图在△ABC 中,AB =AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_ ____°. 8.如图在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于 ( )A .30° B.36° C.45° D.72°9.已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).10.如图,在△ABC 中,点O 在AC 上,过点O 作MN ∥BC ,CE与MN 分别交于E 、F ,求证:OE=OF.11.已知△ABC 中,AB =AC ,过△ABC 的一个顶点的一条直线,把△ABC 分成两个小三角形,使得这两个小三角形也是等腰三角形.试画出所有符合条件的图形,并写出被分成的两个小等腰三角形中相等的线段及△ABC 各内角的度数.第9题图 第7题图 第8题图。
等腰三角形 导学案
1.4、等腰三角形
Xx市初中教师:
课型
学习
目标
1.经历探索等腰三角形性质的过程,掌握等腰三角形的轴对称性及其相关性质,进一步体验轴对称的特征,发展空间观念.
2.经历探索等边三角形轴对称性和内角性质的过程,掌握这个性质。
学习过程
师生活动
学习笔记
一、复习回顾:
1、什么叫一条角平分线?
2、角平分线的性质是什么?
请你在下面写出等腰三角形的性质:
三、交流与发现:
任意画一个等边三角形ABC
(1)等边三角形是轴对称图形吗?找出它的对称轴.
(2)你能发现它的哪些性质?
学习笔记
师生活动
总结如下:
等边三角形是___对称图形.
等边三角形每个角的平分线和这个角的对边上的中线、高线重合(三线合一),它们所在的直线都是等边三角形的对称轴.等边三角形共有__条对称轴.
2、等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()
A. 9cmB. 12cm
C. 9cm或12cmD.在9cm与12cm之间
师生活动
学习笔记
3、如图,等腰△ABC中,AD⊥BC于D,已知DC=2cm,AB=3cm,则△ABC的周长为___________。
4、已知:等腰三角形的一个角是80°,则它的另外两个角是。
A. 36°B. 32°ቤተ መጻሕፍቲ ባይዱ. 64°D. 72°
3、等腰三角形的对称轴是___________。
4、有一角是60°的等腰三角形是_____________,它有_____________条对称轴。
分别找出如图所示中各个图形的对称轴。
练习二、
1、等腰三角形一腰上的高与底边所成的角等于()
初中数学最新版《等腰三角形的判定 》精品导学案(2022年版)
$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案五、课堂小测〔约5分钟〕:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .第4课时 “斜边、直角边〞DCAB1.理解并掌握三角形全等的判定方法——“斜边、直角边〞.(重点)2.经历探究“斜边、直角边〞判定方法的过程,能运用“斜边、直角边〞判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个方法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的〞,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边〞判定三角形全等如图,∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB=CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL 〞即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF与△DCE 都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD ,∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL 〞判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边〞判定三角形全等的运用 【类型一】 利用“HL 〞判定线段相等如图,AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL 〞证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL 〞证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL 〞公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角〞这个隐含的条件.【类型二】 利用“HL 〞判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL 〞解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:此题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于此题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL 〞外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边〞1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边〞或“HL〞.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL〞,除此之外,还可以选用“SAS〞“ASA〞“AAS〞以及“SSS〞.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边〞时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习稳固所学的新知识.。
等腰三角形的性质1-导学案
( )( )( )( )CBA等腰三角形的性质1 导学案班别:____________ 姓名:_____________ 课前准备:1.有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 两腰的夹角叫 ,腰和底边的夹角叫 如图,在△ABC 中,AB=AC ,标出各部分名称.2. 等腰三角形的一边长为6,周长为20,则其他两边长分别是_________________3. △ABC 中,∠B=∠C=2∠A ,求∠A 的度数.【教学过程】 探究一:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?结论:等腰三角形是_______________图形, 折痕所在的直线是它的_________________。
探究二:把剪出的等腰△ABC 沿折痕对折,找出其中重合的线段和角。
重合的线段:_____________________重合的角:_______________________归纳:等腰三角形性质1 :等腰三角形的两个相等(简写“”)几何语言:∵ AB=AC∴()等腰三角形性质1的证明:已知:___________求证:___________证明:思考:你觉得还可以作什么辅助线来证明?【性质应用】练习1(ppt).下列各图中,已知AB=AC,求图中的x.x=___________ x=___________ x=___________ x=___________ x=___________ x=___________DCA BDCAB例1:等腰三角形的一个角是80°,它的另外两个角是_________________变式练习:等腰三角形的一个角是110°,它的另外两个角是______________例2:如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠C=35°,求∠BAD 的度数.分析:图中的等腰三角形有:___________________ 相等的角有:_______________________ 解:变式:如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,CB=CA ,求∠C 的度数. 分析:图中的等腰三角形有:___________________ 相等的角有:_______________________题中没有任何角的度数,每一个角都不能直接求出,由此考虑用___________思想。
等腰三角形的性质和判定复习导学案
&skuId=71581181941&areaId=411300&cat_id=52040006&rn=30 39940159ea95cf571551ada99046e3&user_id=741444129&is_b=1等腰三角形的性质与判定导学案学习目标:1、进一步掌握证明的基本步骤和书写格式。
2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。
3、在掌握了等腰三角形的性质定理和判定定理的基础上,探索等边三角形和其它相关知识的证明方法。
重点、难点:1、等腰三角形的性质及其证明。
2、应用性质解题。
[学习过程]一、知识回顾:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。
1、用_____的过程,叫做证明。
经过____称为定理。
2、证明与图形有关的命题,一般步骤有哪些?(1)_______;(2)______;(3)________.3、推理和证明的依据有哪几类?_______、________、_______。
4、我们初中数学中,选用了哪些真命题作为基本事实:(1)_____;(2)_____;(3)_____;(4)_____;(5)_____。
此外,还有____和_____也都看作是基本事实。
5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?________________。
二、情景创设:以前,我们曾经学习过等腰三角形,你还记得吗?不妨我们来回忆一下下列几个问题:1、什么叫做等腰三角形?(等腰三角形的定义)________________________2、等腰三角形有哪些性质?_________________________。
3、上述性质你是怎么得到的?(不妨动手操作做一做)________________________________4、这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?___________________________。
等腰三角形 第二课时 导学案
1.1 等腰三角形(二)
一、学习准备:
1. 请同学们作一个等腰三角形,在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?
(2)相等的线段有
(3) 你能证明你的结论吗?
二、学习目标:
1、掌握等腰三角形两腰上的三条重要线段之间的关系并能证明。
2、了解等边三角形的性质。
三、学习提示:阅读P5~6完成下列任务: 1,自主探究:
证明:等腰三角形两底角的平分线相等。
(图如右,) (1) 提问:你能结合图形写出已知、求证吗?并证明.
(2).上述过程证明等腰三角形两底角的平分线相等,等腰三角形两条腰上的中线相等吗?高呢?请你证明其中一种,并与同伴交流。
2,合作探究:
等边三角形是等腰三角形吗? 。
那么等边三角形三个内角有有什么特征呢? 定理:等边三角形的三个内角都 ,并且每个内角都等于 。
自己画图、写出已知、求证并证明。
C
3、练习
1.课本P6随堂练习1、2
四、学习小结:你有哪些收获?
五、夯实基础:
1,等腰三角形顶角的度数是底角度数的4倍,那么,它的底角的 度数是 。
2、如图,已知△ABC 和△BDE 都是等边三角形,
求证:AE=CD
六、能力提升 1、如图,已知:在等边△ABC 中,D 是AC 的中点,E 为BC 延长线上一点,CE=CD ,DM ⊥BC 于M 。
求证:M 是BE 的中点。
作业:P4习题1.2---1、2、3 【评价反思】 :
C M E。
13.3 等腰三角形导学案
第六课时 13.3.1等腰三角形(1)【学习目标】1、了解等腰三角形的概念,掌握等腰三角形的性质; 2、会运用等腰三角形的概念及性质解决相关问题。
【学习重点】等腰三角形性质的探索及应用【学习难点】等腰三角形性质的应用 一、学前准备1、下列图形不一定是轴对称图形的是( ) A 、圆 B 、长方形 C 、线段D 、三角形2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 ; 两腰的夹角叫,腰和底边的夹角叫 4、如图,在△ABC 中,AB=AC ,标出各部分名称 5、用一张长方形的纸剪一个等腰三角形。
二、探索思考 (一)1、操作、实践: 将你剪得等腰三角形,照图折叠,找出其中重合的线段和角,填入右表:2、根据上表你能得出哪些结论?并将你的结论与同学交流。
3、请用学过的知识证明以上结论。
(二)归纳:等腰三角形的性质:(1)等腰三角形的 。
(简写成“ ”) 符号语言:如图1∵ ∴(2)等腰三角形的 、 、 相互重合(简写成“ ”)符号语言①:如图2∵ , ∴ 符号语言②:如图2∵ , ∴ 符号语言③:如图2∵ , ∴ 练习1、填空:(1)等腰三角形一个底角为70°,它的顶角为 . (2)等腰三角形一个角为70°,它的另外两个角为三、典例分析例2:如图所示,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.例2:如图3,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.,求证:BD=CE四、当堂反馈1、(1) 等腰三角形的一边长为3cm ,另一边长为4cm,则它的周长是 ; (2) 等腰三角形的一边长为3cm ,另一边长为8cm,则它的周长是 。
2、在△ABC 中,AB =AC ,(1)如果∠A =70°,则∠C =_______,∠B =_______ (2)如果∠A =90°,则∠B =_______,∠C =________ (3)如果有一个角等于120°,则其余两个角分别是 度 (4)如果有一个角等于55°,则其余两个角分别是 度3、如图(3)所示,△ABC 是等腰直角三角形(AB =AC ,∠BAC =90°),AD 是底边BC 上的高, 标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?4、如图,在△ABC 中,AB =AD =DC ,∠BAD =26°,求∠B 和∠C 的度数.五、学习反思(请你对照学习目标,谈一下这节课的收获及困惑。
等腰三角形的性质导学案
等腰三角形的性质班级________姓名__________学号_____________学习目标:1.经历“探索—发现—猜想—归纳”的过程,能用语言表述等腰三角形的性质。
2、掌握等腰三角形的性质,能灵活地运用它们进行论证。
提高数学思维能力和解决问题能力。
活动一,情景引入1、下列图形不一定是轴对称图形的是() A.圆 B.长方形 C.线段 D.三角形2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫,相等的两边叫,另一边叫4、如图,在△ABC中,AB=AC,标出各部分名称活动二、探究新知(一)猜想等腰三角形的性质(1).按要求取一张长方形纸片,动手裁剪出一等腰三角形素填入下表:(二)证明等腰三角形的性质. 你能验证折纸得到的结论吗?试试看.如图,已知△ABC中,AB=AC,(1)求证:∠B=∠C;(2)由(1)的思路请你证明(BD=DC,AD平分∠A,AD⊥BC.)中其中的两个成立。
归纳:等腰三角形的性质:性质1 等腰三角形的两个相等(简写成“”)性质2 等腰三角形、、互相重合性质3等腰三角形是______图形,底边上的_______(或_____ 和______)所在的直线都是它的_______.用符号语言表示两个性质并做分析性质1:在△ABC中∵AB=AC∴ = (等边对)性质2:(简称:)①在△ABC中∵AB=AC,AD是BC边上的中线,∴∠ =∠,⊥。
②在△ABC中∵AB=AC,AD是∠BAC的平分线,∴⊥, = 。
③在△ABC中∵AB=AC,AD⊥BC,∴∠ =∠, =活动三,运用新知1、 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD. 求△ABC 各角的度数。
2:已知 在△ABC 中,AB=AC ,D 、E 在BC 边上,且AD=AE ,求证:BD=CE活动四,巩固练习1、(1)等腰三角形的一个角是110°,它的另外两个角的度数是(2)等腰三角形的一个角是80°,它的另外两个角的度数是(3)等腰三角形一腰上的高与另一腰的夹角为60°,则这 个等腰三角形的顶角为______2.如图5:房屋的顶角∠BAC=100°,过屋顶A 的立柱AD ⊥BC ,屋椽AB=AC ,求顶架上∠B 、∠C 、∠BAD 、∠CAD 的度数。
《等腰三角形的性质》导学案精选全文
精选全文完整版(可编辑修改)13.3.1 等腰三角形的性质一,学习目标:1 了解等腰三角形的有关概念;2 通过操作,观察、分析、归纳得出等腰三角形性质;3 理解并运用等腰三角形性质。
二,教学过程(1)学习目标,了解等腰三角形的有关概念第一次自学,时间2min,要求:1, 看课本78页,找到等腰三角形的有关概念。
2动手在练习本上画出一个等腰三角形。
第一次自学检测,时间3min。
(1)有______相等的三角形叫做等腰三角形。
(2)在等腰三角形中,相等的两边都叫做_____,另一边叫做_____ ,两腰的夹角叫做_____ ,腰和底边的夹角叫做_____。
(3)等腰三角形一腰为3cm,底为4cm,则它的周长是_____cm。
(4)等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是_____cm。
(5)等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是_____cm。
(2)学习目标,通过动手操作,观察、分析、归纳得出等腰三角形性质1第二次自学,时间5min,要求:1, 看课本78页,完成做一做2,熟悉定理,等边对等角。
3,看例1的解题过程。
第二次自学检测,时间5min。
1,等腰三角形一个底角为75°,它的另一个底角为____。
2,等腰三角形一个底角为70°,它的另外两个角为_________3,等腰三角形一个角为100°, 它的另外两个角为____________ 4,等腰三角形有一个角是80°,它的顶角是____________________(3)学习目标,理解并运用“三线合一”第三次自学,时间5min,要求:1, 看课本80页,熟悉“三线合一”2,理解例2的解题过程3,简单认识等边三角形。
第三次自学检测,时间5min。
(1)等腰三角形的顶角的______、底边上的____、底边上的____互相重合。
(三线合一)《1》∵AB=AC,BD=CD(已知)∴《2》∵AB=AC,∠BAD=∠CAD (已知)∴《3》∵AB=AC,AD⊥BC (已知)∴当堂训练(10min)一,判断下列语句是否正确(1)等腰三角形的角平分线、中线和高互相重合。
2.6等腰三角形导学案 2022—2023学年青岛版数学八年级上册
2.6 等腰三角形导学案一、知识回顾在前期的学习中,我们已经了解了三角形的基本概念和性质。
本节课我们将学习等腰三角形的性质和判定方法。
1. 等腰三角形的定义等腰三角形是指有两条边相等的三角形。
在等腰三角形中,两边的长度相等,我们称这两边为腰,另外一条边称为底。
2. 等腰三角形的性质等腰三角形有一些特殊性质,我们来回顾一下:•等腰三角形的底角(底边对应的角)是两腰角(两腰对应的角)的夹角,而两腰角相等。
•等腰三角形的顶角(顶点对应的角)等于90°减去底角的一半。
二、新知学习1. 判定等腰三角形的方法要判定一个三角形是否是等腰三角形,有三种方法:•方法一:如果已知三个角中有两个角相等,则这个三角形是等腰三角形。
•方法二:如果已知三个边中有两个边相等,则这个三角形是等腰三角形。
•方法三:如果已知三个边的长度符合以下关系之一,则这个三角形是等腰三角形:–a = b–a = c–b = c2. 求等腰三角形的性质已知一个等腰三角形的一些条件,我们可以利用等腰三角形的性质来求解其他的性质。
例题1在等腰三角形ABC中,已知∠ABC = 60°,AB = AC = 5cm,求解∠BAC和BC的长度。
解析:根据等腰三角形的性质,我们知道∠ABC = ∠ACB,由于∠ABC = 60°,所以∠ACB = 60°。
又因为等腰三角形的底角是两腰角的夹角,所以∠BAC = 180° - 2∠ACB = 60°。
另外,由于AB = AC,所以BC = 2 × AB × sin(∠BAC/2) = 10 ×sin(30°) = 5cm。
例题2在等腰三角形PQR中,已知QR = PQ,角PQR的度数是x°,求解∠PQR的度数。
解析:根据等腰三角形的性质,我们知道∠PQR = ∠PRQ。
又因为角PQR的度数是x°,所以∠PRQ = x°。
等腰三角形及其性质导学案
数学
新课
八年级上
【复习检测】 1、下列图形不一定是轴对称图形的是( A、圆 B、长方形 C、线段 ) D、三角形
2、怎样的三角形是轴对称图形? 答: 3、有两边相等的三角形叫 另一边叫 ,两腰的夹角叫 ,相等的两边叫 ,腰和底边的夹角叫 ,
4、如图,在△ABC 中,AB=AC,标出各部分名称
【自学探究】 (一)等腰三角形的性质 1、探究:教材 P22 把活动中剪出的△ABC 沿折痕 AD 对折,找出其中重合的线段和角,填入下 表
2
鸡西市第十九中学初三数学组
【当堂训练】 1、根据等腰三角形性质定理在△ABC 中, AB=AC 时, (1) ∵AD⊥BC,∴∠_____ = ∠_____,____= ____. (2) ∵AD 是中线,∴____⊥____ ,∠_____ =∠_____. (3) ∵AD 是角平分线,∴____ ⊥____ ,_____ =_____. 2、等腰三角形一个底角为 70°,它的顶角为______. 3、等腰三角形一个角为 70°,它的另外两个角为 4、教材 24 练习第 1 题,第 2 题(完成于书上)
3、如图,在△ABC 中,AB=AD=DC,∠BAD=26°,求∠B 和∠C 的度数.
A
B
D
C
第2题
第3题
4、如图,点 D,E 在△ABC 的边 BC 上,AB=AC,AD=AE,求证 BD=CE
4
【小结】 等腰三角形的性质;在等腰三角形中, ① 顶角+2×底角 =180° ② ② 顶角=180°-2×底角
180 o 顶角 ③ 底角= 2
④0°<顶角<180° ⑤0°<底角<90°
3
鸡西市第十 110°,它的另外两个角的度数是 (2)等腰三角形的一个角是 80°,它的另外两个角的度数是 2、如图,AB=AC,∠A=40°,AB 的垂直平分线 MN 交 AC 于点 D, ∠DBC 的度数= 。
华师大版《等腰三角形的判定》导学案及教案
《等腰三角形的判定》导学案第一课时学习目标知识与技能通过动手操作探索并掌握判定一个三角形是等腰三角形的方法。
过程与方法理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的判定方法去解决问题。
情感、态度与价值观提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。
预习学案1、等腰三角形的性质:(1)从边看:等腰三角形的相等.(2)从角看:等腰三角形的相等.简写成“”。
(3)从重要线段看:等腰三角形底边上的、与顶角的互相重合.简称“”。
2、如果一个三角形有相等,那么它就是等腰三角形。
3、如果一个三角形有相等,那么这两个角所对的边也相等,简写成“”。
一、情景激疑我们知道,由等腰三角形的性质可知等腰三角形的两个底角相等;反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?探究1:为了回答这个问题,请同学们拿出一张半透明纸,做一个实验,按以下方法进行操作:1、在半透明纸上画一条线段BC。
2、以BC为始边,分别以点B和点C为顶点,在BC的同侧用量角器画两个相等的角,两角终边的交点为A3、用刻度尺找出BC的中点D,连接AD,然后沿AD对折。
问题1:AB与AC是否重合?问题2:本实验的条件与结论如何用文字语言加以叙述?二、知识点归纳等腰三角形的判定方法:(1)如果一个三角形有相等,那么它就是等腰三角形。
(2)如果一个三角形有相等,那么这两个角所对的边也相等,简写成“等角对等边”。
探究2:对于等腰三角形的两种判定方法,请同学们画图并说出已知、求证。
目的是让同学们进一步熟悉将文字转化为数学语言的方法。
三、典型例题例1: 在△ABC中,已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么?解:∵∠A+∠B+∠C=180°∠A=40°,∠B=70∴∠C=180°-∠A-∠B=180°-40°-70°=70°∴∠C=∠B∴△ABC为等腰三角形四、变式练习1、如图,AC 和BD 相交于点O ,且AB ∥DC ,OA=OB ,试说明:OC=OD2、如图示,∠CAE 是ΔABC 的外角,∠EAD =∠DAC ,AD ∥BC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形性质导学案
学习目标:
1、理解等腰三角形概念,能够判断等腰三角形。
2、通过小组合作探究,发现并理解等腰三角形的性质。
3、能够利用等腰三角形的性质解决相关题目。
重点难点:探索并发现等腰三角形的性质
课前准备:准备一个等腰三角形图片
学习过程
一.知识回顾
(1)等腰三角形是轴对称图形吗
(2)有两边相等的三角形叫,相等的两边叫
另一边叫,两腰的夹角叫,腰和底边的夹
角叫。
(3)如图,在△ABC中 AB=AC (请在右图中标出各部分名称.)
二、探究新知:等腰三角形的性质
1.把你准备的等腰△ABC 对折,折痕为AD,它是轴对图形吗?
2.重合的线段有:
重合的角有:
3.你发现了等腰三角形的那些结论?把你的发现用文字叙述出来:
4.合作与讨论
(1)证明:等腰三角形的两个底角相等。
已知:如图,
求证:
证明:
等边对等角的数学符号语言:三线合一的符号语言:
三、牛刀小试。
1.填空。
D
A
C A
B
D
2.判断对错,并改正.
(1)、等腰三角形的角平分线、高线和中线重合. ( )
(2)、等腰三角形的底角只能是锐角. ( )
(3)、等腰三角形是轴对称图形,对称轴是底边上的高.( )
(4)、如果等腰三角形有一个角是100°,那么其余两个角一定是40.( ) 例1:已知:房屋的顶角∠BAC=100度,过屋顶A的立柱AD⊥BC,屋檐AB=AC,求:顶架上∠B, ∠C, ∠BAD, ∠CAD的度数。
例2
四、当堂达标
1.在△ABC中,AB=AC.
若∠A=50°,则∠C= °,∠B = °;
若∠C =60°,则∠A = °,∠B= °;
若∠A =∠B,则∠A = °,∠C= °.
2.等腰三角形的一个角是30°,则它的底角是.
3.等腰三角形的周长是24 cm,一边长是6 cm,则其他两边的长分别是.
4. 如图: 在△ABC中,AB=AC, BC的中点为点E,
BD⊥AC,垂足为D,若∠EAD=20°,求∠ABD的度数.
五.自我小结
我的收获是:
六.学后反思: B A
D
B A
C D
A
D
C。