高二数学《函数的极值与导数》学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学《函数的极值与导数》学案

一、教学目标

知识与技能

〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条

〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值

过程与方法

结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。

情感与价值

感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。

二、重点:利用导数求函数的极值

难点:函数在某点取得极值的必要条件与充分条

三、教学基本流程

回忆函数的单调性与导数的关系,与已有知识的联系

提出问题,激发求知欲

组织学生自主探索,获得函数的极值定义

通过例题和练习,深化提高对函数的极值定义的理解

四、教学过程

〈一〉创设情景,导入新

通过上节课的学习,导数和函数单调性的关系是什么?

函数的极值与导数教案2、观察图1.3.8表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题

函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案

函数的极值与导数教案

函数的极值与导数教案函数的极值与导数教案

当t=a时,高台跳水运动员距水面的高度最大,那么函数函数的极值与导数教案在t=a处的导数是多少呢?

在点t=a附近的图象有什么特点?

点t=a附近的导数符号有什么变化规律?

共同归纳:函数h在a点处h/=0,在t=a的附近,当t<a 时,函数函数的极值与导数教案单调递增,函数的极值与导数教案>0;当t>a时,函数函数的极值与导数教案单调递减,函数的极值与导数教案<0,即当t在a的附近从小到大经过a时,函数的极值与导数教案先正后负,且函数的极值与导数教案连续变化,于是h/=0.

对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?

探索研讨

函数的极值与导数教案1、观察1.3.9图所表示的y=f 的图象,回答以下问题:

函数的极值与导数教案函数y=f在a.b点的函数值与这些点附近的函数值有什么关系?

函数y=f在a.b.点的导数值是多少?

在a.b点附近,y=f的导数的符号分别是什么,并且有什么关系呢?

极值的定义:

我们把点a叫做函数y=f的极小值点,f叫做函数y=f 的极小值;

点b叫做函数y=f的极大值点,f叫做函数y=f的极大值。

极大值点与极小值点称为极值点,极大值与极小值称为极值.

通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?

充要条件:f=0且点x0的左右附近的导数值符号要相反引导学生观察图1.3.11,回答以下问题:

找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?

极大值一定大于极小值吗?

随堂练习:

如图是函数y=f的函数,试找出函数y=f的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?

函数的极值与导数教案讲解例题

例4求函数函数的极值与导数教案的极值

教师分析:①求f/,解出f/=0,找函数极点;②由函数单调性确定在极点x0附近f/的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.

学生动手做,教师引导

解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=令函数的极值与导数教案=0,解得x=2,或x=-2.

函数的极值与导数教案

函数的极值与导数教案

下面分两种情况讨论:

当函数的极值与导数教案>0,即x>2,或x<-2时;

当函数的极值与导数教案<0,即-2<x<2时.

当x变化时,函数的极值与导数教案,f的变化情况如下表:

x

-2

函数的极值与导数教案

+

_

+

f

单调递增

函数的极值与导数教案

函数的极值与导数教案单调递减

函数的极值与导数教案

单调递增

函数的极值与导数教案因此,当x=-2时,f有极大值,且极大值为f=函数的极值与导数教案;当x=2时,f有极小值,且极小值为f=函数的极值与导数教案

函数函数的极值与导数教案的图象如:

函数的极值与导数教案归纳:求函数y=f极值的方法是: 函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:

如果在x0附近的左边函数的极值与导数教案>0,右边函数的极值与导数教案<0,那么f是极大值.

如果在x0附近的左边函数的极值与导数教案<0,右边

函数的极值与导数教案>0,那么f是极小值

课堂练习

求函数f=3x-x3的极值

思考:已知函数f=ax3+bx2-2x在x=-2,x=1处取得极值,

求函数f的解析式及单调区间。

C类学生做第1题,A,B类学生在第1,2题。

课后思考题

若函数f=x3-3bx+3b在内有极小值,求实数b的范围。

已知f=x3+ax2+x+1有极大值和极小值,求实数a的范围。

课堂小结

函数极值的定义

函数极值求解步骤

一个点为函数的极值点的充要条件。

作业P325①④

教学反思

本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,

相关文档
最新文档