快乐足球——比例尺的意义(青岛版)教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比例尺的意义

教学内容:青岛版课程标准实验教科书《数学》六年级(下册)教科书52-55页

教学目标:

(1)理解比例尺的含义,知道比例尺的种类,能读懂不同种类的比例尺。

(2)根据比例尺的含义,会正确的求出一幅图的比例尺;

(3)正确进行线段比例尺和数值比例尺的互化;

(4)培养学生发现问题、分析问题、解决问题能力;

教学重点:比例尺意义的理解、能看懂线段比例尺和会求一幅图的比例尺;教学难点:比例尺意义的理解和会求一幅图的比例尺;

教学过程:

一、情境导入

1.脑筋急转弯引出地图;

2.师问:中国960万平方公里的广阔土地为什么可以画在这么一张小小的图纸上呢?(缩小以后画出来的)

3.那你还能举出一些生活中像这样余姚将实际尺寸缩小以后画在图纸上的例子吗?(学生举例)

4.师根据学生回答总结:是的,像这样的例子有很多。工程师在设计桥梁或房屋时,都要将原物体缩小以后画在设计图上;其实生活中还有需要将原物体扩大以后画在图纸上的例子,比如手表零件图,电脑芯片图等。那么今天老师也想请大家当一回小小设计师。

二、探究新知

(一)课件出示信息窗中的情景图

情况预设:

1.我想知道,怎样画出足球场的平面图?

2.小组内交流自己时怎么设计的?重点交流你是怎么确定图上距离的。

3.请几个有代表性的同学回报自己的设计方案(最低3个同学,各代表一

类),老师根据学生的回答情况板书:

(1)9.5cm:95m=8cm:9500cm=1:1000 6cm:60m=6cm:6000cm=1:1000

(2)4.75cm:95m=4.75cm:9500cm=1:2000 3cm:60m=3cm:6000cm=1:2000

(3)9.5cm:95m=8cm:9500cm=1:1000 3cm:60m=3cm:6000cm=1:2000

4.比较以上3副图,有什么不同?

(3)和(1)(2)的形状不相同,显得长而窄,改变了原来的形状。

(1)和(2)形状相同,但大小不同,不过它们的形状和教室的原形状相同,只不过大小不同。

5.接着问:为什么一幅图画出来有想与不想的区别?(学生试说)

6.引导学生发现:第(3)副图是因为长和宽缩小的倍数不同,所以改变了形状,(2)和(3)的长和宽都是同时缩小的相同的倍数,只是第(1)副图上的长和宽同时缩小的是1000倍,而第(2)图上的长和宽同时缩小的是2000倍,所以大小不同,但形状相同,而且没有改变原来的形状。

7.师随即说明:通过刚才的活动,我们可以发现“图上距离”和“实际距离”有着一定的倍数关系,在数学中我们就约定用一个“比”来表示它们之间的倍数关系,像这里的“1:1000和1:2000”这些比都是表示一副图中“图上距离”和“实际距离”之间的倍数关系,我们把它叫做“比例尺”。

(二)参照提纲阅读教材53------54页

(1)什么叫比例尺?

(2)怎样求比例尺?

(3)球比例尺注意什么?

(4)比例尺有几种?

(5)比例尺怎么写?

1.强调比的前项是“土上距离”,后项是“实际距离”,不可以调换,并解释“叫做这副图的比例尺”的含义。同时板书:

2.图上距离:实际距离=比例尺(并强调分数比的形式)

学习比例尺的种类

3.你在那里见过比例尺?(学生说)

4.出示中国地图,学生找出比例尺并读一读;加深比例尺的认识。

5.当学生不知道线段比例尺所表示的含义时,老师顺势解释它所表示的含义,再让学生说一说它的含义。

(三)数值比例尺和线段比例尺之间的转换。

1.可以将这个“线段比例尺”改写成“数值比例尺”吗?怎么改写呢?(学生试着说说)

2.那就在草稿纸上用你们的方法试一试。(学生试做)

3.交流你的改写方法。老师根据学生说的过程板书改写过程。

4.数值比例尺可以改成线段比例尺吗?怎么改?(学生试着说说)

三、课堂小结

1.回忆一下,刚才我们学习了关于“比例尺”的一些什么知识?学生回忆后说一说;

2.小结

图上距离:实际距离=比例尺

分类:数值比例尺和线段比例尺

相关文档
最新文档