数据的分析知识点总结与典型例题
数据的分析知识归纳、经典例题及答案
数据的分析知识点归纳、经典例题及答案【知识梳理】1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm ,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是____机床。
(完整word)初二数学八下数据的分析所有知识点总结和常考题型练习题,推荐文档
一、统计学中的几个基本概念 1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
二、平均数把一组数据的总和除以这组数据的个数所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
算术平均数x =1n (1x +2x +3x +…n x )。
加权平均数x =1122k k x f x f x f n +++K 。
三、众数、中位数1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差 1、极差极差是指一组数据中最大数据与最小数据的差。
极差=最大值-最小值。
反映这组数据的变化范围。
2、方差的概念 在一组数据,,,,21n x x x Λ中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
即:])()()[(1222212x x x x x x ns n -++-+-=Λ即:“先平均,再求差,然后平方,最后再平均”方差反映一组数据的波动大小,方差值越大,波动越大,也越不稳定或不整齐。
(2)计算公式(Ⅱ):]')'''[(12222212x n x x x ns n-+++=Λ 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++=Λ 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
2019人教版数学八年级下册第二十章 数据的分析《数据的分析》知识点归纳与经典例题
八年级数学《数据的分析》知识点归纳与经典例题1.理解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
数值分析例题和知识点总结
数值分析例题和知识点总结数值分析是一门研究如何用计算机求解数学问题数值解的学科,它在科学计算、工程技术、金融经济等领域都有着广泛的应用。
为了更好地理解和掌握数值分析的知识,下面将通过一些例题来对常见的知识点进行总结。
一、误差分析误差是数值分析中一个非常重要的概念。
误差分为绝对误差、相对误差和有效数字。
绝对误差:设某量的准确值为$x$,近似值为$x^$,则绝对误差为$|x x^|$。
相对误差:相对误差是绝对误差与准确值的比值,即$\frac{|xx^|}{|x|}$。
有效数字:若近似值$x^$的绝对误差限是某一位的半个单位,该位到$x^$的第一位非零数字共有$n$位,则称$x^$有$n$位有效数字。
例如,$\pi$的近似值为 314,准确值约为 31415926,绝对误差为$|31415926 314| = 00015926$,相对误差为$\frac{00015926}{31415926} \approx 0000507$,314 有 3 位有效数字。
二、插值法插值法是数值分析中的一种基本方法,用于通过已知的数据点来构造一个函数。
1、拉格朗日插值已知$n + 1$个互异节点$(x_0, y_0),(x_1, y_1),\cdots, (x_n, y_n)$,拉格朗日插值多项式为:$L_n(x) =\sum_{i = 0}^n y_i l_i(x)$其中,$l_i(x) =\frac{\prod_{j = 0, j \neq i}^n (x x_j)}{\prod_{j = 0, j \neq i}^n (x_i x_j)}$例如,已知点$(1, 2)$,$(2, 3)$,$(3, 5)$,求插值多项式。
设$L_2(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$$l_0(x) =\frac{(x 2)(x 3)}{(1 2)(1 3)}=\frac{1}{2}(x 2)(x 3)$$l_1(x) =\frac{(x 1)(x 3)}{(2 1)(2 3)}=(x 1)(x 3)$$l_2(x) =\frac{(x 1)(x 2)}{(3 1)(3 2)}=\frac{1}{2}(x 1)(x 2)$则$L_2(x) = 2 \times \frac{1}{2}(x 2)(x 3) + 3 \times (x1)(x 3) + 5 \times \frac{1}{2}(x 1)(x 2)$2、牛顿插值牛顿插值多项式为:$N_n(x) = fx_0 + fx_0, x_1(x x_0) + fx_0, x_1, x_2(x x_0)(xx_1) +\cdots + fx_0, x_1, \cdots, x_n(x x_0)(x x_1) \cdots (xx_{n 1})$其中,均差$fx_0, x_1, \cdots, x_k =\frac{fx_1, x_2, \cdots, x_k fx_0, x_1, \cdots, x_{k 1}}{x_k x_0}$三、数值积分数值积分用于计算定积分的近似值。
第二十章数据的分析知识点及典型例题8k.doc
一、知识点讲解:1.平均数:(1)算术平均数:一组数据中,有n 个数据,则它们的算术平均数为x x1 x2 x n .(2)加权平均数:n若在一组数字中,出现次,出现次,,出现次,那么叫做、、、的加权平均数。
其中,、、、分别是、、、的权.权的理解 : 反映了某个数据在整个数据中的重要程度。
权的表示方法:比、百分比、频数(人数、个数、次数等)。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.众数:一组数据中出现次数最多的数据就是这组数据的众数。
4.平均数中位数众数的区别与联系相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
不同点它们之间的区别,主要表现在以下方面。
1)、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2)、求法不同平均数:用所有数据相加的总和除以数据的个数, 需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3)、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4)、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
初二数学数据的分析所有知识点和常考题及提高练习难题(含解析)
初二数学数据的分析知识点常考题与提高练习与压轴难题(含解析)【知识点】1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:x1x2x nn使用:当所给数据x,x2,,,x n中各个数据的重要程度相同时,一般使用该公式计算平均数.12、加权平均数:若n个数x,x2,,,x n的权分别是w1,w2,,,w n,则1xwxwxw1,叫做这n个数的加权平均数.122nnwww12n使用:当所给数据x1,x2,,,x n中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。
【相似题练习】1.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.﹣3.5B.3C.0.5D.﹣32.8个数的平均数12,4个数的平均为18,则这12个数的平均数为()A.12B.13C.14D.153.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.aB.a+3C.aD.a+154.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2 天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆5.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.6.成成在满分为100分的期中、期末数学测试中,两次的平均分为90分,若按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,则成成的学期数学成绩可能是()A.85B.88C.95D.100第1页(共14页)4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.【相似题练习】1.某市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:最高气温(℃)38394041天数3214则这组数据的中位数和平均数分别为()A.39.5,39.6B.40,41C.41,40D.39,412.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定3.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6B.3.5C.2.5D.14.在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数133432这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,35.小王班的同学去年6﹣12月区孔子学堂听中国传统文化讲座的人数如下表:月6789101112份人46324232273242数则该班去年6﹣12月去孔子学堂听中国传统文化讲座的人数的众数是()56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【知识点】1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:2122 sxxxxx n12n x 2意义:方差(2s)越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a时,其平均数、中位数、众数也增加a,而其方差不变;②当一组数据扩大k倍时,其平均数、中位数和众数也扩大k倍,其方差扩大k2倍.【相似题练习】1.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()人数135701083金额(元)20000015000080000150001000080005000A.极差是195000B.中位数是15000C.众数是15000D.平均数是150002.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环3.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/01234周)人数(单位:人)14622A.中位数是2B.平均数是2C.众数是2D.极差是24.某赛季甲、乙两面运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()C .甲得分的方差大于乙得分的方差D .甲得分的最小值大于乙得分的最小值5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们2的成绩如表:甲乙丙丁平均分8.58.28.58.2 方差1.81.21.21.1 最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A .丁B .丙C .乙D .甲 2,则a+2,b+2,c+2的平均数和方差分别是() 6.若a ,b ,c 这三个数的平均数为2,方差为s A .2,s2B .4,s 2C .2,s 2+2D .4,s 2+42,第2组数据:52,54,56,58的方差为S 22,第3组数据: 7.已知第1组数据:1,3,5,7的方差为S 12,则S 2,S 2,S 2的大小关系是()2016,2015,2014,2013的方差为S 31232>S 22>S 12B .S 12=S 22<S 32C .S 12=S 22>S 32D .S 12=S 22=S32 A .S 3 【知识点】 统计量的选择平均数、众数、中位数都是用来描述数据集中趋势的量。
八年级数学《数据的分析》知识点归纳与经典例题
八年级数学《数据的分析》知识点归纳与经典例题1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm ,它们的方差依次为S 2甲=,S 2乙=,S 2丙=.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
3.一组数据:2,-2,0,4的方差是 。
八年级数学下册第二十章数据的分析重点知识归纳(带答案)
八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。
初中数学数据的分析知识点、课堂例题及课后练习
第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数1、算术平均数:把一组数据的总和除以这组数据的个数所得的商. 公式:nx x x n +⋅⋅⋅++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数.2、加权平均数:(若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则112212n n nx w x w x w w w w ++⋅⋅⋅+++⋅⋅⋅+,叫做这n 个数的加权平均数. 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等.20.1.2 中位数和众数1、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.2、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.3、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.20.2 数据的波动程度$1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦ 意义:方差(2s )越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加a ,而其方差不变;②当一组数据扩大k倍时,其平均数、中位数和众数也扩大k倍,其方差扩大2k倍.3、标准差:标准差是方差的算术平方根.s=典型例题:1、一组数据中有3个7,4个11和3个9,那么它们的平均数是______.:2、如果数据2,3,x,4的平均数是3,那么x等于( ).(A)2 (B)3 (C)3.5 (D)43、某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人4、某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为______分.5、学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______.6、资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它的中位数是______棵.7、已知数据1,2,x和5的平均数是2.5,则这组数据的众数是______.8、某公司33名职工的月工资(单位:元)如下:¥(1)求该公司职工月工资的平均数、中位数和众数;(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.9、一组数据100,97,99,103,101中,极差是______,方差是______.10、甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7;乙组:7 8 9 10 11 12 11 12.]分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.11、数据-1,0,3,5,x的极差为7,那么x等于( ).(A)6 (B)-2 (C)6或-2 (D)不能确定$课后作业1、如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).(A)-1 (B)3 (C)5 (D)92、对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).(A)4 4 6 (B)4 6 4.5 (C)4 4 4.5 (D)5 6 4.53、数据2,2,1,5,-1,1的众数和中位数之和是______.4、《5、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是______.5、已知数据x,5,0,3,-1的平均数是1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.56、为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 707、一组数据-1,0,3,5,x的极差是7,那么x的值可能有( ).(A)1个 (B)2个 (C)4个 (D)6个8、关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26(C)众数为2 (D)平均数为09、样本数据3,6,a,4,2的平均数是5,则这个样本的方差是______10、已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为______。
初中数学数据的分析知识点、课堂例题及课后练习
第二十章 数据的分析数据的集中趋势平均数1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:nx x x n+⋅⋅⋅++21使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数. 2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则112212n nnx w x w x w w w w ++⋅⋅⋅+++⋅⋅⋅+,叫做这n 个数的加权平均数.使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等.中位数和众数1、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半. 2、众数:一组数据中出现次数最多的数据就是这组数据的众数. 特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量. 3、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.数据的波动程度1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差. 2、方差:各个数据与平均数之差的平方的平均数,记作2s .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦意义:方差(2s )越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加a ,而其方差不变; ②当一组数据扩大k 倍时,其平均数、中位数和众数也扩大k 倍,其方差扩大2k 倍. 3、标准差:标准差是方差的算术平方根.s =典型例题:1、一组数据中有3个7,4个11和3个9,那么它们的平均数是______.2、如果数据2,3,x,4的平均数是3,那么x等于( ).(A)2 (B)3 (C) (D)43、某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人4、某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为______分.5、学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______.6、资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它的中位数是______棵.7、已知数据1,2,x和5的平均数是,则这组数据的众数是______.8、某公司33名职工的月工资(单位:元)如下:(1)求该公司职工月工资的平均数、中位数和众数;(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.9、一组数据100,97,99,103,101中,极差是______,方差是______.10、甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7;乙组:7 8 9 10 11 12 11 12.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.11、数据-1,0,3,5,x的极差为7,那么x等于( ).(A)6 (B)-2 (C)6或-2 (D)不能确定课后作业1、如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).(A)-1 (B)3 (C)5 (D)92、对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).(A)4 4 6 (B)4 6 (C)4 4 (D)5 63、数据2,2,1,5,-1,1的众数和中位数之和是______.4、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为环,则成绩为8环的人数是______.5、已知数据x,5,0,3,-1的平均数是1,那么它的中位数是( ).(A)0 (B) (C)1 (D)6、为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 707、一组数据-1,0,3,5,x的极差是7,那么x的值可能有( ).(A)1个 (B)2个 (C)4个 (D)6个8、关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26(C)众数为2 (D)平均数为09、样本数据3,6,a,4,2的平均数是5,则这个样本的方差是______10、已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为______。
数据的分析知识点总结与典型例题
目录一、数据的代表.......................... 错误!未定义书签。
考向1:算数平均数...................... 错误!未定义书签。
考向2:加权平均数...................... 错误!未定义书签。
考向3:中位数...................... 错误! 未定义书签。
考向4:众数........................ 错误! 未定义书签。
二、数据的波动.......................... 错误!未定义书签。
考向5:极差........................ 错误! 未定义书签。
考向6:方差........................ 错误! 未定义书签。
三、统计量的选择......................... 错误!未定义书签。
考向7:统计量的选择.................... 错误! 未定义书签。
公式: X i X2 X nX1W1X2W2w i w2X n W叫做这n个数的加权平均数数据的分析知识点总结与典型例题「、数据的代表1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.使用:当所给数据X i, X2,…,X n中各个数据的重要程度相同时,一般使用该公式计算平均数•2、加权平均数:若n个数X i, X2,…,X n的权分别是W i , W2,…,W n,则使用:当所给数据X i, X2,…,X n中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数•权的意义:权就是权重即数据的重要程度•常见的权:I)数值、2)百分数、3)比值、4)频数等。
3、组中值:(课本PI28)数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据•4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数•意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半•5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个•用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量•6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义※典型例题:考向I:算数平均数I 、数据-I , 0, I, 2, 3的平均数是(C )A . -iB . 0 C. i D. 52、样本数据3、6、X、4、2的平均数是5,则这个样本中X的值是(B )A. 5 B . I0 C. I3 D . I53、一组数据3, 5, 7, m n的平均数是6,则m n的平均数是(C )A. 6 B . 7 C. D. 154、若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2,则q的值为(A )A. p-2n+2B. 2p-n C . 2p-n+2 D . p-n+2思路点拨:n个数的总和为np,去掉q后的总和为(n-1 )(p+2),贝Uq=np- (n-1 )(p+2)=p-2n+2 .故选A.5、已知两组数据x i, X2,…,x n和y i, y2,…,y的平均数分别为2和-2,贝U x i+3y i,X2+3y2,…,x n+3y n的平均数为(A )A. -4 B . -2 C . 0 D . 2考向2:加权平均数6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是( C )A.元B .元C .元 D .元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C )A B . C . D思路点拨:参加体育测试的人数是:12十30%=40(人),成绩是3分的人数是:40X %=17 (人),成绩是2分的人数是:40-3-17-12=8 (人),则平均分是:31 8 2 17 3 12 4 2.95 (分)408 、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为( C )A . 146 B. 150 C . 153 D. 16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为( B )A.小时 B .小时C .小时D .小时10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分•甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的:1: 1 :的比例计分,则综合成绩的第一名是( A )A.甲B .乙C .丙 D .不确定11、某班四个学习兴趣小组的学生分布如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图③,根据统计图中的信息: 这四个小组平均每人读书的本数是( C )A. 4 B . 5 C . 6 D . 712、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为环,则成绩为9环的人数是(D )A. 1人B . 2人C . 3人D . 4人思路点拨:设成绩为9环的人数为x,则有7+8X 3+9X+10X 2=X(1+3+X+2),解得x=4.故选D.13、下表中若平均数为2,则x等于(B )A. 0 B . 1 C . 2D.3考向143:中位数、在数据1、3、5、5、7中,中位数是( C )A . 3B . 4 C.5 D . 715、六个数6、2、3、3、5、10的中位数为(B )A . 3B . 4C . 5 D. 616、已知一组数据:-1 , x, 1 , 2, 0的平均数是1,则这组数据的中位数是( A )A . 1B . 0C . -1D . 2思路点拨:••• -1 , x, 1, 2, 0的平均数是1,.•.(-1+X+1+2+0 )+ 5=1,解得:x=3,将数据从小到大重新排列:-1 , 0, 1, 2, 3最中间的那个数数是:1, •••中位数是:1.17、若四个数2, X, 3, 5的中位数为4,则有(C )A . x=4B . x=6C . x > 5 D. x< 5思路点拨:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求。
第20章 《数据的分析》知识点及考点典例
第二十章 《数据的分析》知识点及考点典例知识结构图数据的分析一、平均数(1)平均数: )(121n x x x n x +++=Λ叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数: nf x f x f x x kk Λ++=2211,(n f f f k =++Λ21)。
二、众数、中位数 1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
(注意:众数不是指它的次数) 2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
三、方差与标准差在一组数据,,,,21n x x x Λ中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即])()()[(1222212x x x x x x ns n -++-+-=Λ (平方单位)方差的算数平方根叫做这组数据的标准差,用“s ”表示,即])()()[(1222212x x x x x x n s s n -++-+-==Λ四、极差:最大值-最小值 五、“三数一差”的实质平均数、众数、中位数都反映一组数据的集中趋势。
方差、标准差反映一组数据的波动大小。
方差越大,数据波动越大;方差越小,数据波动越小。
考点一、选择合适的调查方式【例1】下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生的视力情况C. 调查厦门市初中学生每天锻炼所用的时间情况D. 调查厦门市初中学生利用网络媒体自主学习的情况【举一反三】1.以下问题,不适合用全面调查的是【】A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命考点二、平均数、众数、中位数的计算【例2】某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高成绩的中位数和众数分别是()成绩(m) 1.80 1.50 1.60 1.65 1.70 1.75人数 1 2 4 3 3 2 A.1.70m,1.65m B.1.70m,1.70m C.1.65m,1.60m D.3,4【举一反三】1.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元B.50元,40元C.50元,50元D.55元,50元2.某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是( ).A.100元,100元B.100元,200元C.200元,100元D.200元,200元考点三、方差的计算【例4】在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为.【举一反三】1.)有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .2.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg /亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:( )A 、甲、乙均可B 、甲C 、乙D 、无法确定 考点四、利用统计量,解决实际问题【例5】李华根据演讲比赛中九位评委所给的分数制作了如下表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) A .平均数 B . 众数 C . 方差 D .中位数 【举一反三】1、某班45名同学某天每人的生活费用统计如表:对于这45名同学这天每人的生活费用,下列说法错误的是( )A .平均数是20B .众数是20 C .中位数是20 D .极差是202.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②. 请根据相关信息,解答下列问题:/万元图②(Ⅰ)该商场服装部营业员人数为_________图①中m 的值为_________; (Ⅱ)求统计的这组销售额数据的平均数、众数和中位数.第二十章 《数据的分析》检测题一、选择题1.某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.32.如果一组数据2,4,x ,3,5的众数是4,那么该组数据的平均数是( ). A. 5.2 B. 4.6. C. 4 D. 3.63..下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( )A .4:00气温最低B .6:00气温为24℃C .14:00气温最高D .气温30℃的为16:004.我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是( ) A .平均数是15 B .众数是10C .中位数是17D .方差是3445.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )图①尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 4 6 6 10 2 1 1A.平均数B.中位数C.众数D.方差6.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6..A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分7.小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是().A. 255分B. 84分C. 84.5分D.86分8.某校10名学生参加“心理健康”知识测试,他们得分情况如下表:人数 2 3 4 1分数80 85 90 95那么这10名学生所得分数的众数和中位数分别是()A. 95和 85B. 90和85C. 90和87.5D. 85和87.59.下列各统计量中,表示一组数据波动程度的量是………………………………().A、平均数;B、众数;C、方差;D、频率.二、填空题10.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是.(填“甲”或“乙”).11.在2019年的体育考试中某校6名学生的体育成绩统计如右图所示,这组数据的中位数是________.12.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有人。
八年级数学《数据分析》知识点归纳与经典例题
八年级数学《数据的剖析》知识点概括与经典例题【课标要求】知与技术目考点要求认识理解灵巧掌握用体、个体、认识体、个体、本、本容量等观点∨本、本容量的意理解均匀数、加均匀数的意,会求一∨均匀数、众数、数据的均匀数中位数认识众数、中位数的作用∨会求一数据的众数与中位数∨极差、方差、认识极差、方差和准差的观点∨认识极差、方差和准差的作用∨准差会求一数据的极差、方差、准差∨【知识梳理】1.解学的几个基本观点体、个体、本、本容量是学中独有的定,正确掌握教材,明确所考的象是解决相关体、个体、本、本容量的关。
2.均匀数当出的一数据,都在某一常数 a 上下波,一般用化均匀数公式x x' a ,此中 a 是取靠近于数据均匀数中比“整”的数 ;? 当所一数据中有重复多次出的数据,常用加均匀数公式。
3.众数与中位数均匀数、众数、中位数都是用来描绘数据集中的量。
均匀数的大小与每一个数据都相关,任何一个数的波都会惹起均匀数的波,当一数据中有个数据太高或太低,用平均数来描绘整体不适合,用中位数或众数适合。
中位数与数据摆列相关,个数据的波中位数没影响;当一数据中许多量据多次重复出,可用众数来描绘。
4.极差用一数据中的最大减去最小所得的差来反应数据的化范,用种方法得到的差称极差,极差=最大-最小。
5.方差与准差用“先均匀,再求差,而后平方,最后再均匀”获得的果表示一数据偏离均匀的状况,个果叫方差,算公式是1s2 =[(x 1- x )2 +(x 2- x )2+⋯ +(x n- x )2] ;n准差=方差方差和准差都是反应一数据的波大小的一个量,其越大,波越大,也越不定或不整。
【能力训练】一、填空:1.甲、乙、丙三台包装机同时分装质量为400 克的茶叶 .从它们各自分装的茶叶中分别随机抽取了 10盒,测得它们的实质质量的方差以下表所示:甲包装机乙包装机丙包装机依据表中数据,能够以为三台包装机方差31. 967.9616. 32中,包装机包装的茶叶质量最稳(克2)定。
数据的分析知识点与常见题型总结
数据的分析知识点与练习1. 平均数与加权平均数:当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
(1)2、4、7、9、11、15.这几个数的平均数是_______(2)一组数据同时减去80,所得新的一组数据的平均数为2.3,•那么原数据的平均数___; (3)8个数的平均数是12,4个数的平均为18,则这12个数的平均数为 ;2. 中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
(1)某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是( )A .85B .86C .92D .87.9(2) 将9个数据从小到大排列后,第 个数是这组数据的中位数3.众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )(1)一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A .8,9B .8,8C .8.5,8D .8.5,9(2)数据按从小到大排列为1,2,4,x ,6,9,这组数据的中位数为5,那么这组数据的众数是( ) A :4 B :5 C :5.5 D :64.方差:各个数据与平均数之差的平方的平均数,记作s 2 .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=[(x 1-)2+(x 2-)2+…+(x n -)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
(1)若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则对于样本x 1+2,x 2+2,…,x n +2,下列结论正确的是( )A :平均数为10,方差为2B :平均数为11,方差为3C :平均数为11,方差为2D :平均数为12,方差为4(2)方差为2的是( )A .1,2,3,4,5B .0,1,2,3,5C .2,2,2,2,2D .2,2,2,3,35.极差 :一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)(1)某班数学学习小组某次测验成绩分别是63,72,49,66,81,53,92,69,则这组 数据的极差是( )A .47B .43C .34D .29(2)若一组数据-1,0,2,4,x 的极差为7,则x 的值是( )A .-3B .6C .7D .6或-3练习题一、选择题1. 一次考试考生约2万名,从中抽取500名考生的成绩进行分析,这个问题的样本是( )A .500B .500名C .500名考生D .500名考生的成绩2.一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下: 请你帮采购小组出谋划策,应选购( ) A .甲苗圃的树苗 B .乙苗圃的树苗C .丙苗圃的树苗D .丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是( )A .50B .52C .48D .24.七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设 这组数据的平均数是a ,中位数是b ,众数是c ,则有( )A .c >b >aB .b >c >aC .c >a >bD .a >b >c5.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t ) ( )A .1.5tB .1.20tC .1.15tD .1t6.已知一组数据-2,-2,3,-2,-x ,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是( )A .-2和3B .-2和0.5C .-2和-1 D .-2和-1.57.已知一组数据为:4、5、5、5、6.其中平均数、中位数和众数的大小关系是( )A.平均数>中位数>众数B. 中位数<众数<平均数C. 众数=中位数=平均数D. 平均数<中位数<众数8.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同; (2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小 上述结论中正确的是( )A .(1)(2)(3)B .(1)(2)C .(1)(3)D .(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )A.甲 B.乙丙 C.甲乙 D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_______.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题21.某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量; (2)如果该小区有500户家庭,根据上面的结果,估计该小区居民每月共用水多少吨?23.某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?。
数值分析应用例题和知识点总结
数值分析应用例题和知识点总结数值分析是数学的一个重要分支,它主要研究如何用数值方法求解数学问题,包括数值逼近、数值微分和积分、线性方程组的求解、非线性方程的求解、插值与拟合等。
以下将通过一些具体的例题来展示数值分析的应用,并对相关知识点进行总结。
一、数值逼近数值逼近是用简单的函数(如多项式、分段多项式等)来近似地表示复杂的函数。
例题:给定函数$f(x) =\sin(x)$,在区间$0, \pi$ 上,用一次多项式(直线)来逼近它。
解:设逼近的一次多项式为$p(x) = ax + b$。
在区间两端点,即$x = 0$ 时,$p(0) = b$,且$f(0) = 0$;$x =\pi$ 时,$p(\pi) = a\pi + b$,$f(\pi) = 0$。
由此可得到方程组:\\begin{cases}b = 0 \\a\pi + b = 0\end{cases}\解得$a = 0$,$b = 0$,所以逼近的一次多项式为$p(x) = 0$,显然这个结果不太理想。
知识点总结:1、数值逼近的方法有很多,如泰勒展开、拉格朗日插值、牛顿插值等。
2、误差是衡量逼近效果的重要指标,包括截断误差和舍入误差。
二、数值微分数值微分是通过已知的函数值来近似计算函数的导数。
例题:已知函数$f(x) = x^2$ 在$x = 1$ 附近的三个点$x_0 =09$,$x_1 = 1$,$x_2 = 11$ 处的函数值分别为$081$,$1$,$121$,用中心差分公式求$f'(1)$的近似值。
解:中心差分公式为$f'(x) \approx \frac{f(x + h) f(x h)}{2h}$,取$h = 01$,则:\f'(1) \approx \frac{f(11) f(09)}{02} =\frac{121 081}{02}= 2\而$f'(x) = 2x$,$f'(1) = 2$,可见近似效果较好。
初二数据的分析所有知识点总结和常考题练习含答案
])()()[(1222212x x x x x x n S n -++-+-= 初二数据的分析所有知识点总结和常考题知识点:1.加权平均数:权的理解:反映了某个数据在整个数据中的重要程度;学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法;2.中位数:将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;3.众数:一组数据中出现次数最多的数据就是这组数据的众数;4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差;5.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定;6.方差规律: x 1,x 2,x 3,…,x n 的方差为m,则ax 1,ax 2,…,ax n 的方差是a 2 m; x 1+b, x 2+b,x 3+b,…,x n +b 的方差是m7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺序有关,计算很少不受极端值的影响;8.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流常考题:一.选择题共14小题1.我市某一周的最高气温统计如下表:最高气温℃ 25 26 27 28天 数 1 1 2 3则这组数据的中位数与众数分别是A .27,28B .27.5,28C .28,27D .26.5,272.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.53.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁6.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.7.2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,358.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁9.为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差10.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是5411.某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分12.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是2013.一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,14.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁二.填空题共14小题15.数据﹣2,﹣1,0,3,5的方差是.16.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.18.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.19.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.单位:m这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差填“变大”、“不变”或“变小”.20.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工57000木工46000瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差填“变小”、“不变”或“变大”.21.一组数据:2015,2015,2015,2015,2015,2015的方差是.22.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.23.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.注:计算方差的公式是S2=x1﹣2+x2﹣2+…+xn﹣224.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是.25.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第组.组别时间小时频数人第1组0≤t<0.512第2组0.5≤t<124第3组1≤t<1.518第4组 1.5≤t<210第5组2≤t<2.5626.一组数据1,4,6,x的中位数和平均数相等,则x的值是.27.统计学规定:某次测量得到n个结果x1,x2,…,xn.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.28.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是.三.解答题共12小题29.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率没有弃权票,每位职工只能推荐1人如图所示,每得一票记作1分.1请算出三人的民主评议得分;2如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;精确到0.013根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用30.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.1已求得甲的平均成绩为8环,求乙的平均成绩;2,2观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙3如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.31.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.1分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;2试通过计算说明,哪个山上的杨梅产量较稳定32.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识平均数、中位数、方差和极差回答下列问题:1两段台阶路有哪些相同点和不同点2哪段台阶路走起来更舒服,为什么3为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度单位:cm.并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=.33.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次王军68807879817778848392张成86807583857779808075利用表中提供的数据,解答下列问题:1张老师从测验成绩记录表中,求得王军10次测验成绩的方差S王2=33.2,请你帮助张老师计算张成10次测验成绩的方差S张2;平均成绩中位数众数王军8079.5张成80802请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由.34.苍洱中学九年级学生进行了五次体育模拟测试,甲同学的测试成绩如表一,乙同学的测试成绩折线统计图如图一所示:表一次数一二三四五分数46474849501请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲 48 2乙 48 482甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定请说明理由.35.如图是甲,乙两人在一次射击比赛中靶的情况击中靶中心的圆面为10环,靶中数字表示该数所在圆环被击中所得的环数,每人射击了6次.1请用列表法将他俩的射击成绩统计出来;2请你用学过的统计知识,对他俩的这次射击情况进行比较.36.甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.1请你根据图中的数据填写下表:姓名平均数环众数环方差甲乙 2.82从平均数和方差相结合看,分析谁的成绩好些.37.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:命中环数10987命中次数321根据统计表图中提供的信息,补全统计表及扇形统计图;2已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去并说明理由.参考资料:38.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩单位:环相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差见小宇的作业.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a71a= ,= ;2请完成图中表示乙成绩变化情况的折线;3①观察图,可看出的成绩比较稳定填“甲”或“乙”.参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.39.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示其中男生收看3次的人数没有标出.根据上述信息,解答下列各题:1该班级女生人数是,女生收看“两会”新闻次数的中位数是;2对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;3为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量如表.统计量平均数次中位数次众数次方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.40.有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况单位:元:甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23小强用如图所示的方法表示甲城市16台自动售货机的销售情况.1请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;2用不等号填空:甲乙;S甲2S乙2;3请说出此种表示方法的优点.初二数据的分析所有知识点总结和常考题提高难题压轴题练习含答案解析参考答案与试题解析一.选择题共14小题1.2011•安顺我市某一周的最高气温统计如下表:最高气温℃25262728天数1123则这组数据的中位数与众数分别是A.27,28 B.27.5,28 C.28,27 D.26.5,27分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28.故选:A.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.2015•大庆某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.5分析中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数或最中间的两个数即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.解答解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7环;因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,故中位数是7.5环.故选C.点评本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.3.2013•北京某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时分析根据加权平均数的计算公式列出算式5×10+6×15+7×20+8×5÷50,再进行计算即可.解答解:根据题意得:5×10+6×15+7×20+8×5÷50=50+90+140+40÷50=320÷50=6.4小时.故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.点评此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.4.2014•滨州有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差分析因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.解答解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.点评中位数是将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.5.2014•常州甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁分析根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.2015•内江有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.分析先由平均数的公式计算出a的值,再根据方差的公式计算.解答解:由题意得:3+a+4+6+7=5,解得a=5,S2=3﹣52+5﹣52+4﹣52+6﹣52+7﹣52=2.故选C.点评本题考查方差的定义与意义:一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.2007•韶关2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,35分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答解:从小到大排列此数据为:30、31、31、31、32、34、35,数据31出现了三次最多为众数,31处在第4位为中位数.所以本题这组数据的中位数是31,众数是31.故选C.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.2014•咸宁甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁分析此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.解答解:由于乙的方差较小、平均数较大,故选乙.故选:B.差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.2006•广安为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差分析根据平均数、中位数、众数、方差的意义进行分析选择.解答解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.点评此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.2014•孝感为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是54分析根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.解答解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.点评考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.11.2015•安徽某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分分析结合表格根据众数、平均数、中位数的概念求解.解答解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.点评本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.12.2013•黄石为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是20分析根据极差、众数、中位数及平均数的定义,结合表格即可得出答案.解答解:A、众数是20,故本选项错误;B、平均数为26.67,故本选项错误;C、极差是95,故本选项错误;D、中位数是20,故本选项正确;故选D.点评本题考查了中位数、极差、平均数及众数的知识,掌握各部分的定义是关键.13.2013•衢州一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,分析根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.解答解:根据题意得:80×5﹣81+79+80+82=78,方差=81﹣802+79﹣802+78﹣802+80﹣802+82﹣802=2.故选C.点评本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.2014•天津某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁分析根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答解:甲的平均成绩为:86×6+90×4÷10=87.6分,乙的平均成绩为:92×6+83×4÷10=88.4分,丙的平均成绩为:90×6+83×4÷10=87.2分,丁的平均成绩为:83×6+92×4÷10=86.6分,因为乙的平均分数最高,所以乙将被录取.故选:B.点评此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.二.填空题共14小题15.2013•宁波数据﹣2,﹣1,0,3,5的方差是.分析先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答解:这组数据﹣2,﹣1,0,3,5的平均数是﹣2﹣1+0+3+5÷5=1,则这组数据的方差是:﹣2﹣12+﹣1﹣12+0﹣12+3﹣12+5﹣12=;故答案为:.点评本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2.16.2014•宿迁某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.分析按3:3:4的比例算出本学期数学学期综合成绩即可.解答解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88分.。
中考数学-数据的分析知识点与常见题型总结
中考试题数据的分析知识点: 总体、个体、样本、样本容量、平均数、众数、中位数、方差总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象 是解决有关总体、个体、样本、样本容量冋题的关键。
例题C . 20名运动员是所抽取的一个样本D .样本容量是201. 加权平均数:当给出的一组数据,都在 某一常数a 上下波动时,一般选用简化 平均数 公式--■ 「,其中a 是取接近于这组数据平均数中比较“整”的数 ;?当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
例题(1 ) 2、4、7、9、11、13.这几个数的平均数是 __________ (2 ) 一组数据同时减去 80,所得新的一组数据的平均数为2.3,?那么原数据的平均数 ____________ ;(3 ) 8个数的平均数是12, 4个数的平均为18,则这12个数的平均数为 ______________ ;2. 中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇 数,则处于中间位置的数就是这组数据的中位数 (median);如果数据的个数是偶数,则中间 两个数据的平均数就是这组数据的中位数。
例题(1 )某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是( ) A . 85B. 86C. 92D. 87.9(2)将9个数据从小到大排列后,第 ____________ 个数是这组数据的中位数3. 众数:一组数据中出现次数最多的数据就是这组数据的众数( mode例题(1) 一个射手连续射靶 22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A . 8,9B . 8,8C . 8. 5,8D . 8. 5,9(2)数据按从小到大排列为 1,2,4,X ,6,9,这组数据的中位数为 5,那么这组数据的众数是( )A : 4B : 5C : 5.5D: 61为了了解参加某运动会的说,下面说法正确的是(200名运动员的年龄情况,从中抽查了 )20名运动员的年龄,就这个问题来A . 200名运动员是总体B .每个运动员是总体24.方差:各个数据与平均数之差的平方的平均数,记作 S .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式 是S 2=ll [(X 1-)2+(X 2- )2+…+(X n -・-)];方差是反映一组数据的波动大小的一个量,其值越 大,波动越大,也越不稳定或不整齐。
数据分析知识点总结及例题(绝对经典)
第十六讲数据的分析知识要点:一、算术平均数和加权平均数一般地,对于n个数,我们把叫做这n个数的算术平均数,简称平均数,记作 .计算公式为 .平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势。
(1)当一组数据较大时,并且这些数据都在某一常数a附近上、下波动时,一般选用简化计算公式=’+a其中又为新数据的平均数,a为取定的接近这组数据的平均数的较“整”的数。
(2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动,所以平均数容易受到个别特殊值的影响。
若n个数X1,X2 (X)n的权分别是W1,W2,.....Wn,则n...21...2211WWWXnWnWXWX++++++叫做这n个数的加权平均数.(1)相同数据Xi 的个数Wi,叫做权,Wi越大,表示Xi的个数越多,“权”就越重。
数据的权能够反映数据的相对“重要程度”、(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算.二、中位数和众数1.中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数. (1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半.2.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个;如果所有数据出现的次数都一样,那么这组数据就没有众数.(2)众数是一组数据中出现次数最多的数据而不是数据出现的次数.三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要.区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述.四、极差、方差和标准差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定.方差是反映一组数据的整体波动大小的特征的量.方差2s的计算公式是:(1)方差反映的是一组数据偏离平均值的情况,方差越大,数据的波动越大;方差越小,数据的波动越小,(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变,(3)一组数据的每一个数据都变为原来的k倍,则所得的一组新数据的方差变为原来的k²倍,方差的算术平方根件做这组数据的标准差,用符号S表小,即:标准差的数量单位与原数据一致.五、极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差.六、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差.(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.例题分析:1.已知一组数据2,l,x,7,3,5,3,2的众数是2,则这组数据的中位数是( ).A.2 B.2.5 C.3 D.52.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x的值为( ).A.76 B.75 C.74 D.733.有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是( ).A.11.6 B.232 C.23.2 D.11.54. 某班体育委员记录了第一小组七位同学定点投篮(每人投10次) 的情况,投进篮筐的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是( ).A.4,7 B.7,5 C.5,7 D.3,75. 一组数据的方差为s2,将这组数据中的每个数都除以2,所得新数据的方差是( ).7.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为________.8.若数据3.2,3.4,3.2,x,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.9.甲、乙两人比赛射飞镖,两人所得的平均环数相同,其中甲所得环数的方差为13,乙所得环数如下: 2,5,6,9,8,则成绩比较稳定的是________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、数据的代表.......................... 错误!未定义书签。
考向1:算数平均数...................... 错误!未定义书签。
考向2:加权平均数...................... 错误!未定义书签。
考向3:中位数...................... 错误! 未定义书签。
考向4:众数........................ 错误! 未定义书签。
二、数据的波动.......................... 错误!未定义书签。
考向5:极差........................ 错误! 未定义书签。
考向6:方差........................ 错误! 未定义书签。
三、统计量的选择......................... 错误!未定义书签。
考向7:统计量的选择.................... 错误! 未定义书签。
数据的分析知识点总结与典型例题「、数据的代表 1、算术平均数:把一组数据的 总和除以这组数据的 个数所得的商.使用:当所给数据X i , X 2,…,X n 中各个数据的重要程度相同 时,一般使用该公式计 算平均数• 2、加权平均数:若n 个数X i , X 2,…,X n 的权分别是W i , W 2,…,W n ,则使用:当所给数据 X i , X 2,…,X n 中各个数据的重要程度(权)不同时,一般选用加 权平均数计算平均数•权的意义:权就是权重即数据的重要程度 •常见的权:I )数值、2)百分数、3)比值、4)频数等。
3、 组中值:(课本PI28)数据分组后,一个小组的 组中值是指这个小组的 两个端点的数的平均数,统计中常用各 组的组中值代表各组的实际数据 • 4、 中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的 个数是奇数,则处于 中间位置的数就是这组数据的 中位数;如果数据的 个数是偶数,则中间两个数据 的平均 数就是这组数据的 中位数•意义:在一组 互不相等的数据中,小于和大于它们的中位数的数据各占一半• 5、 众数:一组数据中出现次数最多 的数据就是这组数据的 众数. 特点:可以是一个也可以是多个 •用途:当一组数据中有较多的 重复数据时,众数往往是人们所关心的一个量• 6、 平均数、中位数、众数的区别:平均数能充分利用所有数据, 但容易受极端值的影响; 中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据; 当数据中某些数据重复出现时, 人们往往关心 众数,但当各个数据的重复次数大致相等时,众数往往没有意义※典型例题: 考向I :算数平均数I 、数据-I , 0, I , 2, 3的平均数是( C ) A . -i B . 0 C. i D. 52、样本数据3、6、X 、4、2的平均数是5,则这个样本中X 的值是( B )A. 5 B . I0 C . I3 D . I53、 一组数据3, 5, 7, m n 的平均数是6,则m n 的平均数是( C )A. 6 B . 7C.D. 15公式:X i X 2 X nX 1W 1 X 2W 2w i w 2X n W叫做这n 个数的加权平均数4、若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2, 则q的值为(A )A. p-2n+2B. 2p-n C . 2p-n+2 D . p-n+2思路点拨:n个数的总和为np,去掉q后的总和为(n-1 )(p+2),贝Uq=np- (n-1 )(p+2)=p-2n+2 .故选A.5、已知两组数据x i, X2,…,x n和y i, y2,…,y的平均数分别为2和-2,贝U x i+3y i,X2+3y2,…,x n+3y n的平均数为(A )A. -4 B . -2 C . 0 D . 2考向2:加权平均数6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是( C )A.元 B .元C .元 D .元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C )A B . C . D .思路点拨:参加体育测试的人数是:12十30%=40(人),成绩是3分的人数是:40X %=17 (人),成绩是2分的人数是:40-3-17-12=8 (人),3 1 8 2 17 3 12 4则平均分是: 2.95 (分)408 、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为( C )A . 146 B. 150 C . 153 D . 16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为( B )A .小时B .小时C .小时D .小时10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的:1: 1 :的比例计分,则综合成绩的第一名是( A )A.甲B .乙C .丙D.不确定11、某班四个学习兴趣小组的学生分布如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图③,根据统计图中的信息:这四个小组平均每人读书的本数是( C )A. 4 B . 5 C . 6 D . 712、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为环,则成绩为9 环的人数是(D )A 1人思路点拨:B 2人C 3人D 4人设成绩为9 环的人数为x,则有7+8X 3+9x+10X 2=X( 1+3+x+2), 解得x=4 故选D13 、下表中若平均数为2,则x 等于(B )A.0B.1 C .2 D.3考向3:中位数14 、在数据1、3、5、5、7 中,中位数是( C )A.3B.4C.5 D.715 、六个数6、2、3、3、5、10 的中位数为(B )A .3B.4C.5 D.616 、已知一组数据:-1 ,x,1,2,0 的平均数是1,则这组数据的中位数是( A )A .1B .0C .-1D .2思路点拨:••• -1 , x, 1, 2, 0的平均数是1,.•.(-1+X+1+2+0 )+ 5=1,解得:x=3 ,将数据从小到大重新排列:-1 , 0, 1, 2, 3最中间的那个数数是:1, .中位数是: 1 .17 、若四个数2, x, 3, 5 的中位数为4,则有(C )A . x=4B . x=6C . x > 5 D. x< 5思路点拨:找中位数的时候一定要先排好顺序, 然后再根据奇数和偶数个来确定中位数, 如果数据有奇数个,则正中间的数字即为所求。
如果是偶数个则找中间两位数的平均数。
故分情况讨论x与其他三个数的大小.18 、某市一周每天最高气温(单位:C)情况如图所示,则这组表示最高气温数据的中位数( B )A .22B .24C .25D .27思路点拨:把这组数据从小到大排列为:20, 22, 22, 24, 25, 26, 27,最中间的数是24,则中位数是24;故选B.19 、为了解九年级学生的视力情况,某校随机抽取50 名学生进行视力检查,结果如下:这组数据的中位数是( B )A. B .C .D .思路点拨:•••共有50名学生,.中位数是第25和26个数的平均数,.这组数据的中位数是(+)* 2=;故选B.20 、已知某校女子田径队23 人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为 b 岁,则下列结论中正确的是( A )A . a v 13, b=13B . a v 13, b v 13C . a> 13, b v 13D . a> 13,b=13思路点拨:•••原来的平均数是13岁,••• 13X 23=299 (岁),299-1•正确的平均数 a= 1 v 13,23•••人数为23人,是奇数。
原来的中位数 13岁, 将14岁写成15岁,最中间的数还是 13岁,则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是( D )A . 6, 7B . 7, 7C . 7, 6D . 6, 6思路点拨: •••共有15个数,最中间的数是第 8个数,•••这15名同学一周在校参加体育锻炼时间的中位数是 6, •/ 6出现的次数最多,出现了 6次,•众数是6;故选D.24、 七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是 a ,中位数是b ,众数是c ,则有(D ) A . c > b > aB . b > c > a C. c >a > b D . a > b > c25、 学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是(D )A . 12 岁B . 13 岁C . 14 岁D. 15 岁1、 数据的波动 1 、极差:一组数据中的 最大数据与最小数据的差叫做这组数据的 极差. 2、 方差:各个数据与平均数之差的平方的平均数,记作s 2.用“先平均,再求差,然后平方, 最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公 式是:1 —2 - 2 x 1x x 2xn2意义:方差(s )越大,数据的波动性越大,方差越小,数据的波动性越小 结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加 a ,而其方差不变; ②当一组数据扩大 k 倍时,其平均数、中位数和众数也扩大 k 倍,其方差扩大k 2• b=13;故选 考向4:众数21 、 A22 、A .A 23 、 有一组数据: .1 B 若一组数据 1, 3, 3, .3 8, 9, .8 C . 10, C . 5,这组数据的众数为(B )D . 56的众数是8,则这组数据的中位数是(B )D . 9某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间, 列表如下:-2X n x3 、标准差:(课本P146)标准差是方差的算术平方根•则50个数据的极差和众数分别是( C ) A . 15, 20 B . 3, 20 C . 3, 7 D . 3, 55、王明同学随机抽某市 10个小区所得到的绿化率情况,结果如下表: 则关于这10个小区的绿化率情况,下列说法错误的是( C )A .中位数是25%B .众数是25%C .极差是13%D .平均数是 %6、某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图, 则这组数据的众数和极差分别是( D ) A. 10、6 B . 10、5C. 7、6 D . 7、57、在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A .众数是90B .中位数是90C .平均数是90D .极差是15思路点拨: •/ 90出现了 5次,出现的次数最多,•众数是 90;故A 正确;•••共有10个数,•中位数是第 5、6个数的平均数, •中位数是(90+90)- 2=90 ;故B 正确;•••平均数是(80X 1+85 X 2+90 X 5+95 X 2)- 10=89;故 C 错误; 极差是:95-80=15 ;故D 正确.综上所述,C 选项错误.8、某企业1〜5月份利润的变化情况图所示,以下说法与图中反映的信息相符的2x 1 Xx 2 X_ 2X n X※典型例题: 考向5:极差1 、某班数学学习小组某次测验成绩分别是数据的极差是( A . 47 B2 、若一组数据 A. -3 B 思路点拨:63, 72, 49, 66, 81, 53, 92, 69,则这组B .43-1, 0, .6)C . 2, 4, C . •••数据-1 , 0, •••当X 是最大值时, 解得x=6,当x 是最小值时,4-x=7 , 解得x=-3,故选D.3、一次英语测试后,随机抽取九年级某班于这组数据说法正确的是( A ) A .中位数是91 B.平均数是91思路点拨:A 、将数据从小到大排列为:34 D . 29x 的极差为7,贝U x 的值是( D7 D . 6 或-32, 4, x 的极差为7, X- (-1 ) =7,5名学生的成绩如下: 91, 78, 98, 85,98.关C .众数是 78, 85, 91, 项正确;B 、平均数是(91+78+98+85+98) D.极差是789198, 98,中位数是91,故本选 十5=90,故本选项错误;C 数是98,故本选项错误;D 极差是98-78=20 ,故本选项错误;故选:4、某中学随机地调查了 50名学生,了解他们一周在校的体育锻炼时间,结果如表:众A.是(C )A . 1〜2月份利润的增长快于2〜3月份利润的增长B. 1〜4月份利润的极差于1〜5月份利润的极差不同C.1〜-5月份利润的众数是130力兀D.1〜-5月份利润的中位数为120力兀思路点拨:A、1〜2月份利润的增长为10万元,2〜3月份利润的增长为20万元,慢于2〜3月,故选项错误;B 1〜4月份利润的极差为130-100=30万元,1〜5月份利润的极差为130-100=30万元,极差相同,故选项错误; C 1〜5 月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1〜5月份利润,数据按从小到大排列为100, 110, 115, 130,130,中位数为115万元,故选项错误.9、如图是H市2013年3月上旬一周的天气情况,右图是根据这一周每天的最高气温绘制的折线统计图,下列说法正确的是( B )A •这周中温差最大的是星期一B. 这周中最高气温的众数是25CC. 这周中最高气温的中位数是25CD. 折线统计图可以清楚地告诉我们这一周每天气温的总体情况思路点拨:A:•星期三温差是7 这一周中温差最大的一天是星期三,故本选项错误;B T在这组数据中25C出现的次数最多,出现了3次•••这周中最高气温的众数是25C,故本选项正确;C将这组数据按大小排列:25, 25, 25, 26, 26, 27, 28,处于最中间的是26,则中位数是:26C, 故本选项错误;D、折线统计图可以清楚地告诉我们这一周每天气温的变化情况,故本选项错误•考向6:方差10、一组数据:-2 , -1 , 0, 1, 2的方差是(B )12 13 14 15 16A 1思路点拨:B . 2C .3 D. 411、数据0,--1 , 6,1 , x的众数为-1,则这组数据的方差是( B )A . 2B. 34C「2 D . 2655思路点拨: 因为众数为-1,所以x=-1.12 、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是,乙的成绩的方差是•根据以上数据,下列说法正确的是(A )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定13、四名运动员参加了射击预选赛,他们成绩的平均环数 X 及其方差s 2如表所示.如 果选出一个成绩较好且状态稳定的人去参赛,那么应选(B )A .甲B .乙C .丙 D. 丁思路点拨:由于乙的方差较小、平均数较大,故选乙•答案为选项B.14、甲、乙两名同学进行了 6轮投篮比赛,两人的得分情况统计如下: 下列说法不正确的是(D )A. 甲得分的极差小于乙得分的极差B. 甲得分的中位数大于乙得分的中位数C. 甲得分的平均数大于乙得分的平均数D. 乙的成绩比甲的成绩稳定15、如图是某选手10次射击成绩条形统计图,根据图中信息,下列说法错误的是(B ) A .平均数为7B.中位数为7C .众数为8D .方差为416、在2014年的体育中考中,某校6名学生的体育成绩统计如图, 则这组数据的众数、中位数、方差依次是( A )被遮盖的两个数据依次是( A . 2C, 2 B. 3C,—5三、统计量的选择 ※典型例题: 考向7:统计量的选择1 、有19位同学参加歌咏比赛, 所得的分数互不相同,取得前 10位同学进入决赛. 某同学知道自己的分数后,要判断自己能否进入决赛, 他只需知道这19位同学的(B )A .平均数B .中位数C .众数D .方差 2、歌唱比赛有二十位评委给选手打分, 统计每位选手得分时, 会去掉一个最高分和一 个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响( C )A .平均分B .众数C .中位数D .极差A 18, 18, 1B. 18, , 3丄20C )B 17、样本方差的计算式 s2X 1 3018A 1918, 18, 3 D . 18, , 1 X 2 3022X n 30 中,数字20和30分别表示样本中的( ( A .众数、中位数 C.样本中数据的个数、平均数 、如果一组数据a 1, a 2,…,a 方差是(C ) .2 B . 4 C . 8、某气象小组测得连续五天的日最低气温并计算出平均气温与方差后,整理得出下 表(有两个数据被遮盖). D的方差是 .方差、标准差 .样本中数据的个数、中位数2,那么一组新数据 2a 1, 2a 2,…,2a n 的D . 168C . 3C, 2D . 2C,—53 、某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识( D )A .平均数B .方差C .中位数D .众数4 、体育课上,两名同学分别进行了5 次立定跳远测试,要判断这5 次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的( D )A .平均数B .中位数C .众数D .方差5 、期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多” ,小英说:“我们组的7位同学成绩排在最中间的恰好也是86 分”,上面两位同学的话能反映处的统计量是( D )A .众数和平均数B .平均数和中位数C.众数和方差 D .众数和中位数6 、下列选项中,能够反映一组数据离散程度的统计量是( D )A .平均数 B.中位数C .众数D .方差。