华杯赛中年级组初赛答案解析
第23届华杯赛中年级试卷【含答案】
第23届华杯赛中年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 在第23届华杯赛中,关于数学原理的应用,下列哪项是正确的?A. 函数的增长速度与其导数无关B. 微积分基本定理说明函数的原函数存在C. 线性方程组的解集总是非空D. 概率论中的大数定律与小数定律是相同的2. 在第23届华杯赛物理原理部分,下列哪项描述了牛顿第一定律?A. 力是改变物体运动状态的原因B. 力与物体的加速度成正比C. 物体在平衡力的作用下保持静止或匀速直线运动D. 力总是成对出现,大小相等方向相反3. 第23届华杯赛化学原理中,下列哪项关于酸碱中和反应的说法是正确的?A. 中和反应只发生在水溶液中B. 中和反应产生的盐一定是中性的C. 酸碱中和反应一定会放热D. 中和反应中,酸的质子会转移到碱上4. 在第23届华杯赛生物学原理中,下列哪项关于细胞结构的描述是正确的?A. 所有细胞都有细胞壁B. 细胞核是细胞内最大的细胞器C. 真核细胞和原核细胞的主要区别在于是否有细胞核D. 细胞膜是细胞内最不活跃的部分5. 在第23届华杯赛地理原理中,下列哪项关于板块构造理论的描述是正确的?A. 地球表层由几块不动的板块组成B. 板块内部相对稳定,板块交界处地壳活动频繁C. 海沟总是位于板块的张裂边界D. 火山活动只发生在板块的俯冲边界二、判断题(每题1分,共5分)1. 第23届华杯赛中的数学原理表明,任何连续函数在其定义域内必有最大值和最小值。
()2. 在第23届华杯赛物理原理中,能量守恒定律指出能量可以从一种形式转换为另一种形式,但总能量保持不变。
()3. 第23届华杯赛化学原理中,所有的氧化还原反应都涉及到电子的转移。
()4. 在第23届华杯赛生物学原理中,所有生物的遗传物质都是DNA。
()5. 第23届华杯赛地理原理中,地球上的气候是由纬度、海陆分布和地形共同决定的。
()三、填空题(每题1分,共5分)1. 在第23届华杯赛数学原理中,若函数f(x)在点x=a处可导,则f(x)在点x=a处的切线斜率是______。
华杯赛公开题答案解析
(初二组) 【 题 目 】 已 知 a, b, c 是 三 角 形 ABC 的 三 边 的 长 , 则 算 式
a b c
c a( ) C、 3b a c D、 3b a c
A、 a b c 【答案】 :A
B、 2b a c
第 22 届“华杯赛”初赛就要开始啦,按惯例,在 12 月 10 日正式比赛前, 我们将公开各年级组 1 道题,有兴趣的同学可做做看。 第二十二届华罗庚金杯少年数学邀请赛初赛公开题
(小学中年级组) 【题目】 《火星救援》中,马克不幸没有跟上其他 5 名航天员飞回地球,独自留在了火 星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的 5 天食品和 50 千 克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30 天后每平方米可以收获 2.5 千克,但是需要浇灌 4 千克的水马克每天需要吃 1.875 千克土豆,才可以维持生存,则 食品和土豆可供马克最多可以支撑多少天? 【答案】 :130 【解析】 : 食品总量: 5 6 30 天 50 6 300 千克 水总量: 可浇灌面积: 300 4 75 平方米 土豆总量: 75 2.5 187.5 千克 187.5 1.875 30 130 天 总天数: (小学高年级组) 【题目】小明从家出发,乘地铁到学校需要 30 分钟,乘公交车到学校需要 50 分钟.某 天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟, 那么这天小明乘坐公交车用了( )分钟. (A)6 (B)8 (C)10 (D)12 【答案】 :C 【解析】 :
【解析】 :根据三角形两边之和大于第三边, a<b c 则 a b c b c a ,同理,
华杯赛初赛备考讲义含解析(小学中年级组)
华杯赛初赛备考讲义含解析(小学中年级组)第一节几何精讲考点概述几何考点一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形)二、割补法计算面积;三、等积变换;四、周长的计算;(基本公式、平移法、标向法)五、角度的计算;(多边形内角和、外角和、角度的综合计算)六、勾股定理与弦图;七、立体几何认知.(展开图、三视图)真题精讲例题1. 如右图,一张长方形的纸片,长20 厘米,宽16 厘米.如果从这张纸上剪下一个长10 厘米,宽5 厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米(2010 年15 届)(A)72 (B)82 (C)92 (D)102【答案】C.【解答】因为要求剪下的这个长方形至少有一条边在原长方形的边上,所以可以分以下三种情况讨论:(1)小长方形的两条边都在原长方形的边上,如下图:此时,剩下纸片的周长为:(20+16) ×2 = 72(厘米).(2)只有小长方形的长边在原长方形的边上,如下图:此时,剩下纸片的周长为:(20+16)×2 + 5×2 = 82(厘米).(3)只有小长方形的短边在原长方形的边上,如下图:、此时,剩下纸片的周长为:(20+16) ×2 + 10×2 = 92(厘米).所以剩下图形的周长最大是92 厘米.故选C.例题2. 九个同样的直角三角形卡片,拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.(2013 年18 届)【答案】54.【解答】图中每个直角三角形,除直角外,还有两个锐角,一大一小,汇集在中心的是7 个小角和2 个大角.注意:大角+小角= 90︒,而在中心的9 个角之和为360︒,即7 个小角+2 个大角= 360︒,即:5 个小角+(2 个大角+2 个小角)= 360︒.所以:5 个小角+ 180︒= 360︒,即:5 个小角= 180︒,一个小角= 36︒,较大锐角= 90︒- 36︒= 54︒.练习1. 北京时间16 时,小龙从镜子里看到挂在身后墙上的4 个钟表(如下图),其中最接近16 时的是().(2012 年17 届)(A)(B)(C)(D)【答案】D.【解答】注意镜子里面和实际情况是左右对称的,因此A 实际是20 点5 分,B 实际是19 点50 分,C 实际是16 点10 分,D 实际是15 点55 分,因此选D.练习2. 把一块长90 厘米,宽42 厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片,最少能剪出块,这种剪法剪成的所有正方形纸片的周长之和是厘米.(2012 年17 届)【答案】105;2520.【解答】要想全部剪成正方形,那么正方形的边长必须满足:是90 和42 的公约数(中年级表述:90 和42 除以边长能够除尽).那么满足条件的边长有1、2、3、6,要让正方形尽量少,那么边长尽量大,为6,这个时候长被分成了90÷6=15 格,宽被分成了42÷6=7 格,所以最少能剪出15×7=105 块.每块正方形的周长是6×4=24 厘米,所以所有正方形周长和为24×105=2520 厘米.练习3. 如右图,一个正方形被分成了4 个相同的长方形,每个长方形的周长都是20 厘米.则这个正方形的面积是()平方厘米.(2013 年18 届)【答案】64.【解答】设每个长方形的宽为a,则长为4a,得到等式:(4a+a)⨯ 2 =20 .可知:a =2,4a = 8.所以,正方形的面积为8×8=64(平方厘米).练习4. 如下图,将长度为9 的线段AB 九等分,那么图中所有线段的长度的总和是.(2013 年18 届)【答案】165.【解答】以A 点为线段左端点的线段长之和为:S1=1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ;从A 点算起第二个点为线段左端点的线段长之和为:S2=1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 ;……从A 点算起第八个点为线段左端点的线段长之和为:S8=1+ 2 ;从A 点算起第九个点为线段左端点的线段长之和为S9=1 .于是:S =S1 +S2+S3+ +S9= 9 ⨯1 + 8 ⨯ 2 + 7 ⨯3 + 6 ⨯ 4 + 5 ⨯5 + 4 ⨯ 6 + 3 ⨯ 7 + 2 ⨯8+1⨯9 =165例题3. 现有一个正方形和一个长方形,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.(2014 年19 届)(A)2(B)8(C)12(D)4【答案】D.【解答】根据题意,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2 厘米,那么,就要求长方形的两条长总长增加8 厘米,也就是每一条长比正方形的边长多4 厘米.例题4. 右图中的正方形的边长为10,则阴影部分的面积为()(A)56 (B)44 (C)32 (D)78(2014 年19 届)【答案】A.【解答】用竖直线和水平线将正方形分割为如左图所示的多个长方形,中间长方形的面积是4 ⨯ 3 = 12 ,所以,阴影部分的面积为(10 ⨯10 -12) ÷ 2 +12 = 56 .所以,选A.练习5. 如图1 所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是.(2006 年11 届)DNA【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.1 AB C 2 D练习6. 正方形 ABCD 与正方形 CEFG 水平放置组成如图所示的组合图形,已知该组合图形的周长是 56厘米,DG 长 2 厘米,那么,图中阴影三角形的面积是平方厘米.AD GFBC E【答案】8.【解答一】如下图所示, AI = AH = BJ = DG = 2 厘米,而六条小正方形的边长之和是:32 - ( A I + AH + BJ + DG ) = 24 ,每条小正方形的边长是 24 ÷ 6 = 4 厘米,那么,小正方形的面积是4 ⨯ 4 = 16 平方厘米,根据三角形的等积变换可知,阴影三角形的面积是小正方形面积的一半,即 16 ÷ 2 = 8 平方厘米.A IDHGFBJ C E【解答二】将大正方形的一条边(▲)与小正方形的一条边(△)看成一组,那么,每组的长是(32 - 2) ÷ 3 = 10 厘米,而大小正方形的边长之差是 2 厘米,根据和差公式可得,大正方形的边长是 6厘米,小正方形的边长是 4 厘米,进而可求,阴影三角形的面积是 8 平方厘米.A▲DG△F▲△B▲ C △ E练习7. 如图,在一个正方体的表面上写着 1 至 6 这 6 个自然数,并且 13 对着 4,2 对着 5,3 对着 6.现在将正方体的一些棱剪开,使它的表面12展开图如下右图所示.如果只知道 1 和 2 所在的面,那么 6 写在字母的位置上.【答案】A .【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,展开图中的形状,黑色两个面在合上后也是相对的,所以1 和C 相对,C=4,B 和2 相对,B=5,那么A 要么是3 要么是6,现在观察1、A、B 这三个面,它们折叠时,如果把1 放正面,A 放上面,那么B 就在右侧,为2,矛盾,因此当1 放正面时,A 应该在下面,为6.练习8. 如图一个小正方形和4 个周长为32 cm 的相同的长方形拼成一个大正方形,那么大正方形的面积是cm2 .【答案】256.【解答】注意到,大正方形的边长刚好是长方形的长+宽,为16,所以面积等于16×16=256 平方厘米.第二节应用题精讲考点概述应用题考点一、常考应用题类型1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.小虎在19×19 的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上45 枚棋子,就正好摆成一边不变的较大的长方形的实心点阵.那么小虎最多用了()枚棋子.(2012 年17 届)(A)285 (B)171 (C)95 (D)57【答案】A【解析】加上45 枚棋子之后,还能摆成一边不变的较大的长方形的实心点阵,说明不变的这条边上的棋子数能整除45,要使总棋子数尽量多,则这条边要尽量大,最大为15,所以最多用了15 19=285 枚棋子.例2.幼儿园的老师给班里的小朋友送来55 个苹果,114 块饼干, 83 块巧克力.每样都平均分发完毕后,还剩3 个苹果,10 块饼干,5 块巧克力.这个班最多有位小朋友.(2013 年18 届)【答案】26【解析】可以列出除55 余3 的自然数:55÷4=13……3;55÷13=4……3;55÷26=2……3;55÷52=1……3;然后列出除114 余10 的自然数:114÷13=8……10;114÷26=4……10;114÷52=2……10;114÷104=1……10;再列出除83 余5 的自然数:83÷13=6……5;83÷26=3……5;83÷39=2……5;83÷78=1……5;其中,符合条件的最大的除数是26,所以,这个班最多有26 位小朋友.练习1.两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值().(2014 年19 届)(A)83 (B)99 (C)96 (D)98【答案】B【解析】由条件“其中一个是另一个的两倍”可知:所求的和是某个正整数的3 倍,要求小于100,故这两个正整数的和是99.练习2.三堆小球共有2012 颗,如果从每堆取走相同数目的小球以后,第二堆还剩下17 颗小球,并且第一堆剩下的小球数是第三堆剩下的2 倍,那么第三堆原有颗小球.(2012 年17 届)【答案】665【解析】设此时第三堆有1 份小球,则如果一开始就从第一堆放1 份小球到第三堆,并且从第二堆扔掉17 个小球,那么此时三堆小球的个数相同,都是(2012 -17)÷ 3=665 个,而在上述过程中,第三堆小球数目并未发生变化,所以第三堆原有665 个小球.例3.张老师每周的周一、周六和周日都跑步锻炼20 分钟,而其余日期每日都跳绳20 分钟.某月他总共跑步5 小时,那么这个月的第10 天是().(2013 年18 届)(A)周日(B)周六(C)周二(D)周一【答案】D【解析】每周张老师跑步1 小时,所以这个月的后28 天总共跑步了4 小时,说明这个月共有31 天,并且前3 天跑了1 个小时,所以前3 天只能是周六、周日、周一,所以这个月第10 天是周一,选D.例4.新生开学后去远郊步行拉练,到达A 地时比原计划时间10 点10 分晚了6 分钟,到达C 地时比原计划时间13 点10 分早了6 分钟,A、C 之间恰有一点B 是按照原计划时间到达的,那么到达B 点的时间是().(2014 年19 届)(A)11 点35 分(B)12 点5 分(C)11 点40 分(D)12 点20 分【答案】C【解析】从10 点10 分到13 点10 分共有3 个小时,误差时间共有12 分钟,即每小时要调整4 分钟,调整6 分钟的时候即是到达B 点的时间.调整6 分钟需要1 个半小时,即1 小时30 分钟,所以到达B 点的时间是11 点40 分.练习5.体育馆正在进行乒乓球单打、双打比赛,双打比赛的运动员比单打的运动员多4 名,比赛的乒乓球台共有13 张,那么双打比赛的运动员有名.(2012 年17 届)【答案】20【解析】因为一张球台可供2 名单打运动员、或4 名双打运动员进行比赛,所以由‘双打比赛的运动员比单打的运动员多4 名’可知,双打比赛用了1 份多一个1 个球台,单打比赛用了2 份球台,从而双打比赛用了5 个球台,单打比赛用了8 个球台,故双打比赛有20 名运动员.练习6.麦当劳的某种汉堡每个10 元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡.已知东东和朋友需要买9 个汉堡,那么他们至少需要花元钱.【答案】60【解析】20 元可以买3 个,买9 个需要花60 元.练习7.小张早晨8 点整从甲地出发去乙地,速度是每小时60 千米.早晨9 点整小王从乙地出发去甲地.小张到达乙地后立即沿原路返回,恰好在12 点整与小王同时到达甲地.那么两人相遇时距离甲地千米.【答案】96【解析】小张4 小时走了一个来回,所以单程需要2 小时,所以甲乙相距120 千米,这段路小王花了3 小时,所以小王的速度为40 千米/小时.9 点时,两人相距60 千米,在60 ÷(60+40)=0.6 小时后两人相遇,此时距离甲地1.6 ⨯ 60=96 千米.课后练习1. 魔法学校运来很多魔法球,总重量多达5 吨,一颗魔法球重4 千克,现在有10 名学员使用魔法给这些魔法球涂色,每人每6 分钟可以给5 颗魔法球涂色,那么他们涂完所有魔法球最少要用分钟.【答案】150【解析】总共有5000 ÷4=1250 个魔法球,所以总共需要1250 ⨯ 6 ÷ 5 ÷10=150 分钟.2. 某校三年级和四年级各有两个班.三年级一班比三年级二班多4 人,四年级一班比四年级二班少5 人,三年级比四年级少17 人,那么三年级一班比四年级二班少人.【答案】9【解析】让三年级二班增加4 人,四年级一班增加5 人,则相同的两个年级的两个班人数相同了,且此时三年级比四年级少17 + 5 - 4=18 人,平均每个班少9 人,而三年级一班和四年级二班人数均未发生变化,所以三年级一班比四年级二班少9 人.3. 2010 名学生从前往后排成一列,按下面的规则报数:如果某个同学报的数是一位数,后面的同学就要报出这个数与8 的和;如果某个同学报的数是两位数,后面的同学就要报出这个数的个位数与7 的和.现在让第一个同学报1,那么最后一个同学报的数是.【答案】13【解析】从第一名同学开始,依次报数为:1、9、17、14、11、8、16、13、10、7、15、12、9、17、……,从而从第二名同学开始,报数以11 为周期,而2009 ÷11=182 7 ,所以最后一个同学报的数为13.4. 骆驼有两种:背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼.单峰骆驼比较高大,四肢较长,在沙漠中能走能跑;双峰骆驼四肢粗短,更适合在沙砾和雪地上行走.有一群骆驼有23 个驼峰,60 只脚,那么双峰驼有匹.【答案】8【解析】共有60 ÷ 4=15 匹骆驼,23 个驼峰,而多出的驼峰都是双峰驼多的,所以有23 -15=8 匹双峰驼.6. 红星小学组织学生参加队列演练,一开始只有40 个男生参加,后来调整队伍,每次调整减少3 个男生,增加2 个女生,那么调整次后男生女生人数就相等了.【答案】8【解析】最开始男女人数相差40 个,每次调整可以让人数差减少5 个,所以8 次调整后,男女人数就相等了.7. 甲,乙,丙三人锯同样粗细的木棍,分别领取8 米、10 米、6 米长的木棍,要求都按2 米的规格锯开.劳动结束后,甲、乙、丙分别锯了24、25、27 段,那么锯木棍次数最多的比次数最少的多锯次.【答案】2【解析】8 米、10 米、6 米长的木棍分别可以被锯成4、5、3 段,并且分别需要锯3、4、2 次,甲、乙、丙分别锯了6、5、9 根木棍,所以分别锯了18、20、18 次,最多比最少的多锯2 次.8. 一堆糖果有50 块,小明和小亮玩游戏.小明每赢一次拿5 块糖,然后吃掉4 块,将剩下的1 块放到自己的口袋里;小亮每赢一次也拿5 块糖,然后吃掉3 块,将剩下的2 块放到自己的口袋里.游戏结束时,糖刚好被拿完,这时小亮口袋里的糖数恰好是小明口袋里的糖数的3 倍,那么两人一共吃掉了块糖.【答案】34【解析】两人都是一次拿5 块,所以总共进行了10 次游戏,而小亮的糖数是小明的3 倍,说明小明每赢2 次,小亮就要赢3 次,所以说明小明总共赢了4 次,小亮赢了6 次,总吃掉了4 ⨯ 4+6 ⨯ 3=34 块糖.第三节数字谜、计数、组合精讲考点概述数字谜考点:1. 填竖式问题的一些方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.2. 填横式问题:横式中的填空格和字母破译问题;熟练应用尾数分折、首位估算、分情况试算等方法;对于较复杂的题目,从约束条件较多、可能性较少的算式入手;某些横式问题,可以转化为竖式问题再求解.3. 幻方与数阵图、数独问题:掌握幻方的概念,了解三、四阶幻方的构造;解决具有与幻方类似性质的数阵图问题;进一步掌握重数的运用,填充较复杂的数阵图;利用重数计算处理数阵图中的最值问题.计数考点:1. 枚举法(分类、有序)2. 加乘原理(加法,分类;乘法,分步)组合考点:1. 各种与数字计算有关的最值问题.在枚举试算的过程中,注意寻找出大小变化的规律,并尝试分析其内在原因;学会用比较、调整的方法寻找最值情况.2. 逻辑推理:(1)一句话不是真话,就是假话.这在逻辑学中被称为排中律.(2)在应用假设法分析问题时,要考虑全面.既要考虑到所假设的条件成立的情况,还要考虑到条件不成立的情况.(3)对于条件复杂的逻辑推理问题,通常状况下都可以通过列表法分析.真题精讲例1.右图的计数器三个档上各有10 个算珠,将每档算珠分成上下两部分,按数位得到两个三位数,要求上面的三位数的数字不同,且是下面三位数的倍数,那么满足题意的上面的三位数是.(2012 年17 届)【答案】925【解析】由题意,知这两个三位数的和为1110,而上面是下面的倍数,可能为1 倍、2 倍、……,最多为9 倍,从而和为下面三位数的最少2 倍,最多10 倍,而1110 只有除以2、3、5、6、10 能除得尽,得到下面三位数可能为555、370、222、185、111,经过检验,可知只有185 满足要求,此时上面的三位数为925.练习1.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立时,贺+新+春=().(2012 年17 届)(A)24 (B)22 (C)20 (D)18【答案】D放鞭炮+ 迎龙年贺新春【解析】所填入的9 个数字为1、2、……、9,可知加数的数字和之和与和的数字和的总和为45,而最多进位两次(十位、个位),又两整数的和与差奇偶性相同,故加法恰好进位一次,所以可知,和的数字和为18.故选D.练习2.如图所示的两位数加法算式中,已知A +B +C +D = 22 ,则X +Y =().(2012 年17 届)(A)2 (B)4 (C)7 (D)13【答案】B【解析】由竖式可知,恰好进位一次(十位),故加数的数字和比和的数字和多9,从而X +Y = 22 - 9 - 9 = 4 ,故选B.例2.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.(2014 年19 届)(A)10 (B)8 (C)12 (D)16【答案】C【解析】甲坐好后,乙共有4 种坐法,其中紧邻甲有2 种坐法,坐定后丁有两种坐法;乙另有2 种坐法不紧邻甲,乙坐定后,丁仅有 1 种坐法,而丙和戊在剩余的 2 个座位中,只有两种选法,故共有(2⨯ 2 +2⨯1) ⨯ 2 =12 不同的围坐方法.例3.在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,右图是一示例.现在用20 根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有个单位边长的正方形.(2014 年19 届)【答案】7【解析】通过以下两步操作,总可以约定第1 行方格个数不大于第2 行方格个数.第一步:总可以左移第一行的方格,使其和第二行方格左端对齐,新的图形所用木棍数量不多于原图形所用木棍的数量,但是移动前后方格数相同,例如见下图.第二步:如果第一行的方格数比第二行的方格数多,可以将多的方格切下,移至第一行上面,增加一行,新的图形所用木棍数量不多于原图形所用木棍的数量,但是方格数相同,如此操作,直到第一行的方格数不大于第二行的方格数.例如见右图.因此,从题目条件可知,图形至少有 2 行方格.由前面的讨论,总可以约定第 1 行方格个数不大于第 2 行方格个数.(1)假设图形有 2 行方格第 1 行有 1 个方格,第 2 行有 6 个方格,所用木棍总数是 22; 第 1 行有 1 个方格,第 2 行有 5 个方格,所用木棍总数是 19; 第 1 行有 2 个方格,第 2 行有 5 个方格,所用木棍总数是 21; 第 1 行有 2 个方格,第 2 行有 4 个方格,所用木棍总数是 18; 第 1 行有 3 个方格,第 2 行有 4 个方格,所用木棍总数是 21; 第 1 行有 3 个方格,第 2 行有 4 个方格,所用木棍总数是 20; 第 1 行有 4 个方格,第 2 行有 4 个方格,所用木棍总数是 22. (2)假设图形有 3 行方格第 1 行有 1 个方格,第 2 行、第 3 行都各有 3 个方格,所用木棍总数是 20; 第 1 行有 2 个方格,第 2 行、第 3 行都各有 2 个方格,所用木棍总数是 17. (3)假设图形有 4 行方格第 1 行有 1 个方格,第 2 行、第 3 行、第 4 行都各有 2 个方格,所用 木棍总数是 20.根据以上判断,图形不可能有 5 行、6 行、7 行、8 行. 所用木棍总数 20,方格总数是 7.右图是摆出的图形.练习3. 用 8 个 3 和 1 个 0 组成的九位数有若干个,其中除以 4 余 1 的有()个.(2014 年 19 届)(A )5 (B )6 (C )7 (D )8 【答案】B【解析】用 8 个 3 排成一行,中间有 7 个间隔,加上最右边的一个位置,每个位置都可以放置 0,共 有 8 种放法.因为 100 能被 4 整除,故除以 4 余 1 的数的最右边的两位数只能是 33.所以,只有 6 个 位置可以放 0,共有 6 种放法.例4. 牧羊人用 15 段每段长 2 米的篱笆,一面靠墙围成一个正方形或长方形羊圈,则羊圈的最大面积是()平方米.(2012 年 17 届)(A )100 (B )108 (C )112 (D )122 【答案】C【解析】假设长有 a 段篱笆,宽有 b 段篱笆,由条件可知 a + 2b = 15 ,而希望面积越大,即 a ⨯ b 越大, 也就是 a ⨯ 2b 越大,由于两数和一定差小积大,那么可知 a = 7 , 2b = 8 时,面积最大,此时面积为 (7 ⨯ 2) ⨯ (4 ⨯ 2) = 112 .练习4. 小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对.他们之中只有一个人说对了,这个人是().(2013 年18 届)(A)小东(B)小西(C)小南(D)小北【答案】C【解析】若小东说的对,则其他三人都有不对,此时小北说小南说的不对,则是对的,矛盾.若小西说的对,则捡到红领巾的是小南,那么小东也就说对了,与只有一人说对矛盾.若小南说的对,则根据小东的话可以判断捡到红领巾的是小西,此时符合题意.若小北说的对,则小南说的不对,也就意味着小东说的对,矛盾.故选C.练习5.平面上有四个点,任意三个点都不在一条直线上.以这四个点为端点连接六条线段,在所组成的图形中,最少可以形成()个三角形.(2012 年17 届)(A)3 (B)4 (C)6 (D)8【答案】B【解析】(1)有一点在其他三点构成的三角形内,可以形成4 个三角形;(2)任意一点都在另三点构成的三角形外,那么可以形成8 个三角形.故最少可以形成4 个三角形,故选B.练习6.在10□10□10□10□10 的四个□中填入“+”、“-”、“×”、“÷”运算符号各一个,所成的算式的最大值是().(2012 年17 届)(A)104 (B)109 (C)114 (D)119【答案】B【解析】由于没有括号,故10 ⨯10 = 100 ,10 ÷10 =1,可以认为将100、10、1 由“+”、“-”连接,希望算式结果最大,最大为100 +10 -1 = 109 .原式为10 ⨯10 +10 -10 ÷10 = 109 .故选B.练习7.五个小朋友A、B、C、D 和E 参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5 个编号之和等于35.已知站在E、D、A、C 右边的选手的编号的和分别为13、31、21 和7.那么A、C、E 三名选手编号之和是.(2014 年19 届)【答案】24【解析】由于31>21>13>7,说明A 在D 的右边,E 在A 的右边,C 在E 的右边.由于,站在C 右边的选手的编号和为7,推出B 站在C 的右边.所以,B、C、E、D、A 分别是7、6、8、4、10.A、C、E 三名选手编号之和是24.练习8.用右图的四张含有4 个方格的纸板拼成了右图所示的图形.若在右下图的16 个方格分别填入1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A、B、C、D四个方格中数的平均数是.(2014 年19 届)【答案】4【解析】如图,用M,N,P,Q 标记16 个方格图最下面4 个方格,从而有A +B +M +N =C +D +P +Q =1+3+ 5 + 7 =16 ,又M+N+P+Q=16,所以A+B+C+D=16.右上图是一种满足要求的填法,且A, B,C, D 四个方格中数的平均数是4.课后练习1. 四位数中,数码0 出现次.【答案】2700【解析】分类,出现三个0 的四位数,有9 个,共9⨯3 = 27 个0;出现两个0 的四位数,0 可能出现在百、十;百、个和十个上,其他两位有9⨯9 =81种填法,有3⨯9⨯9 = 243 个,共243⨯ 2 = 486 个0;出现1 个0 的四位数,0 可能出现在百、十、个位上,有3⨯9⨯9⨯9 = 2187 个,共2187 个0;故共27 + 486 + 2187 = 2700 个.2. 从1,2,3,4,5,6,7 中选择若干个不同的数(所选数不计顺序),使得其中偶数之和等于奇数之和,则符合条件的选法共有种.【答案】7【解析】本题中,“和”必为偶数.按和的不同,分类枚举如下:(1)4 =1+ 3 ,1 组;(2)6 = 2 + 4 =1+ 5 ,2 组;(3)8 = 2 + 6 =1+ 7 = 3 + 5 ,2 组;(4)10 = 4 + 6 = 3 + 7 ,1 组;(5)12 = 2 + 4 + 6 = 5 + 7 ,1 组.共有:1+ 2 + 2 +1+1= 7 组.3. 将10,15,20,30,40 和60 填入右图的圆圈中,使A、B、C 三个小三角形顶点上的3 个数的积都相等.相等的积最大为.【答案】18000【解析】10 = 2 ⨯ 5 ,15 =3⨯ 5 ,20 = 2 ⨯ 2 ⨯ 5 ,30 = 2 ⨯3⨯ 5 ,40 = 2 ⨯ 2 ⨯ 2 ⨯ 5 ,60 = 2 ⨯ 2 ⨯ 3⨯ 5 ,这三个相等的乘积再相乘,等于原来6 个数的乘积再乘上中间三个数,结果是一个立方数,即2、3、5 在乘积中出现的次数是3 的倍数,这6 个数的乘积有9 个2、3 个3、6 个5 相乘,而多乘的三个数,5 一定出现3 次,3 最多出现3 次,只能为15、30、60,此时2 出现也为3 次,此时乘积最大,可以得到这3 个相等的积为3 个5、2 个3、4 个2 相乘,等于18000.而此时第一层、第二层、第三层依次填入40;15、30;20、60、10,满足要求.4. 用3、5、6、18、23 这五个数组成一个四则运算式,得到的非零自然数最小是.【答案】12 41433 2 2 2 2 3 2 1 1 2 3 24 1 4 3 2 4 1 4 33444前句 后句A 对 错B 错 错 C对对【解析】最小的非零自然数为 1,而 6 ÷ 3 - 5 ÷ (23 -18) = 1 ,可以取到 1,故所求最小值为 1.5. 小明在正方形的边上标出若干个点,每条边上恰有 3 个,那么所标出的点最少有()个.(A )12 (B )10 (C )8 (D )6【答案】C【解析】希望所标出的点最少,也就是所标的点被重复计数,那么 4 个顶点上都标上,然后每条边再 标 1 个即可,故最少标 8 个点.3126. 如图, 5 ⨯ 5 的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了 1,2,3,4 各两个,那么,表格中所有数的和是.【答案】66【解析】如图所示,本题只有唯一填法,相加可得和为 66.7. 甲、乙、丙、丁获得了学校创意大赛的前 4 名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次和丙相邻”; 丙:“我既不是第二,也不是第三”;丁:“我的名次和乙相邻”. 现在知道,甲、乙、丙、丁分别获得第 A 、B 、C 、D 名,并且他们都是不说慌的好学生,那么四位数 ABCD = .【答案】4213【解析】甲是第 3、4 名之一;丙是第 1 名或 4 名.如果丙是第 4 名,则乙是第 3 名。
华杯赛初赛试题及答案
华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 华南数学竞赛B. 华北数学竞赛C. 华罗庚数学邀请赛D. 华中数学竞赛答案:C2. 华杯赛初赛通常在每年的哪个月份举行?A. 1月B. 4月C. 7月D. 10月答案:B3. 参加华杯赛初赛的选手年龄限制是多少?A. 8-12岁B. 12-15岁C. 15-18岁D. 18-22岁答案:B4. 华杯赛的主办单位是?A. 中国数学会B. 中国科学技术协会C. 中国教育学会D. 中国数学奥林匹克委员会答案:A二、填空题(每题5分,共20分)1. 华杯赛的全称是______。
答案:华罗庚数学邀请赛2. 华杯赛初赛的题型包括______、______和______。
答案:选择题、填空题、解答题3. 华杯赛的初赛一般分为______个等级。
答案:两4. 华杯赛的决赛通常在初赛结束后的______个月内举行。
答案:3三、解答题(每题10分,共60分)1. 请简述华杯赛的历史背景。
答案:华杯赛,即华罗庚数学邀请赛,是为了纪念中国著名数学家华罗庚而设立的。
它始于1986年,旨在激发青少年对数学的兴趣,培养数学人才,促进数学教育的发展。
2. 参加华杯赛初赛需要做哪些准备工作?答案:参加华杯赛初赛的准备工作包括:熟悉竞赛规则,复习相关数学知识,进行模拟练习,保持良好的心态,以及合理安排时间。
3. 华杯赛初赛的评分标准是什么?答案:华杯赛初赛的评分标准通常包括:选择题和填空题根据正确答案给分,解答题则根据解题过程和最终答案的准确性进行评分。
4. 华杯赛对参赛者有哪些影响?答案:华杯赛对参赛者的影响主要体现在:提高数学素养,锻炼逻辑思维能力,增强解决问题的能力,以及为未来的学术和职业生涯打下坚实的基础。
5. 请列举华杯赛初赛中常见的题型。
答案:华杯赛初赛中常见的题型包括:数列问题、几何问题、代数问题、组合问题、概率问题等。
6. 华杯赛初赛的获奖标准是什么?答案:华杯赛初赛的获奖标准通常是根据参赛者的总分进行排名,达到一定分数线以上的参赛者可以获得相应的奖项。
历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
华杯赛初赛试题及答案
华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。
答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。
答案:803. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-54. 一个数除以2的结果是3,那么这个数是______。
答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。
答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。
根据题意,2x=10,解得x=5。
答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。
证明:设直角三角形的两直角边分别为a和b,斜边为c。
根据勾股定理,有a^2 + b^2 = c^2。
答案:证明完毕。
2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。
证明:设这个数为x,那么x^2 = -x。
将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。
【数学】第十八届华杯赛初赛试卷_小学中年级组和高年级组试题各一套(带解析)
第十八届华罗庚金杯少年数学邀请赛初赛试卷C (小学高年级组) 第十八届华罗庚金杯少年数学邀请赛 初赛试卷C (小学高年级组) ( 时间: 2013 年3月23日8:00 ~ 9:00) 一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内. ) 1. 如果m n =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029 2. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情: 最终,( )得到的糖水最甜. (A )甲 (B )乙 (C )丙 (D )乙和丙 3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )16 4. 已知正整数A 分解质因数可以写成235A αβγ=⨯⨯, 其中α、β、γ 是自然数. 如果A 的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么++αβγ的最小值是( ).(A )10 (B )17 (C )23 (D )31装订线总分第十八届华罗庚金杯少年数学邀请赛初赛试卷C(小学高年级组)5.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题 10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书.8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 如果小明上学与放学回家所用的时间比是n(其中m与m n是互质的自然数),那么m+n的值是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
华赛杯初赛试题及答案
华赛杯初赛试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项不是华赛杯的参赛条件?A. 年龄在14-18岁之间B. 必须为在校中学生C. 可以是个人参赛D. 必须参加所有比赛项目2. 华赛杯的初赛通常在每年的哪个月份举行?A. 1月B. 3月C. 6月D. 9月3. 华赛杯的决赛通常在哪个国家举行?A. 中国B. 美国C. 英国D. 澳大利亚4. 下列哪个科目不属于华赛杯的竞赛科目?A. 数学B. 物理C. 化学D. 历史5. 华赛杯的参赛者需要提交哪些材料?A. 个人简历B. 学校成绩单C. 竞赛报名表D. 所有以上选项6. 华赛杯的初赛试题通常由哪些专家命题?A. 中学教师B. 大学教授C. 行业专家D. 所有以上选项7. 华赛杯的奖项设置通常包括哪些?A. 一等奖、二等奖、三等奖B. 金银铜奖C. 荣誉证书D. 所有以上选项8. 华赛杯的参赛者在初赛中获得多少分才能进入决赛?A. 60分以上B. 70分以上C. 80分以上D. 90分以上9. 华赛杯的参赛者可以参加几次初赛?A. 1次B. 2次C. 3次D. 无限制10. 华赛杯的参赛者在决赛中获得什么奖项可以被保送至大学?A. 一等奖B. 金银铜奖C. 荣誉证书D. 所有以上选项二、简答题(每题5分,共10分)11. 请简述华赛杯的宗旨是什么?12. 请列举华赛杯对参赛者有哪些要求?三、论述题(每题15分,共30分)13. 论述华赛杯对中学生的学术发展有哪些积极影响?14. 论述参加华赛杯对个人综合素质提升的作用。
四、案例分析题(每题15分,共15分)15. 假设你是华赛杯的组织者,请分析如何提高华赛杯的知名度和影响力?五、答案1-5:D, B, A, D, D6-10:D, A, C, C, A11. 华赛杯的宗旨是激发中学生的学术兴趣,培养他们的创新能力和团队合作精神,同时提供一个展示自己才华的平台。
12. 参赛者要求包括年龄在14-18岁之间,为在校中学生,可以个人或团队参赛,需提交竞赛报名表和学校成绩单。
华杯赛小中组初赛试题及答案
华杯赛小中组初赛试题及答案华杯赛小中组初赛试题及答案初赛试卷(小学中年级组)一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.19届华杯赛小中组初赛试题:两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值是().(A)83(B)99(C)96(D)982.现有一个正方形和一个长方形,长方形的周长比正方形的周长多4厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.(A)2(B)8(C)12(D)43.用8个3和1个0组成的九位数有若干个,其中除以4余1的有()个.(A)5(B)6(C)7(D)84.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.(A)10(B)8(C)12(D)165.新生开学后去远郊步行拉练,到达A地时比原计划时间10点10分晚了6分钟,到达C地时比原计划时间13点10分早了6分钟,A,C之间恰有一点B是按照原计划时间到达的,那么到达B点的时间是().(A)11点35分(B)12点5分(C)11点40分(D)12点20分6.右图中的正方形的边长为10,则阴影部分的面积为().(A)56(B)44(C)32(D)78二、填空题(每小题10分,满分40分)7.爷爷的年龄的个位数字和十位数字交换后正好是爸爸的年龄,爷爷与爸爸的年龄差是小林年龄的5倍.那么小林的年龄是岁.8.五个小朋友A,B,C,D和E参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5个编号之和等于35.已知站在E,D,A,C右边的选手的编号的和分别为13,31,21和7.那么A,C,E三名选手编号之和是________.9.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形.若在右下图的.16个方格分别填入1,3,5,7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A,B,C,D四个方格中数的平均数是________.10.在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,右图是一示例.现在用20根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有________个单位边长的正方形.初赛试题答案(小学中年级组)一、选择题(每小题10分,满分60分)题号123456答案BDBCCA二、填空题(每小题10分,满分40分)题号78910答案92447。
第十九届“华杯赛”决赛小学中年级组试题与答案
第 1 页
共 1 页
8. 将 1~6 这六个自然数分成甲、乙两组, 则甲组数的和与乙组数的和的乘积最 大是________.
第 1 页
共 2 页
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 如下图, 将一个大三角形纸板剪成四个小三角形纸板(第一次操作), 再将 每个小三角形纸板剪成四个更小的三角形纸板(第二次操作). 这样继续操 作下去, 完成第 5 次操作后得到若干个小三角形纸板. 甲和乙在这些小三角 形纸板上涂色, 每人每次可以在 1 至 10 个小三角形纸板上涂色, 谁最后涂完 谁赢. 在甲先涂的情况下, 请设置一个方案使得甲赢.
10. 如右图所示, 网格中每个小正方格的面积都为 1 平方厘 米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮 廓由小线段组成 , 小线段的端点在格子点上或在格线 上), 则这个剪影的面积为多少平方厘米?
11. 从一块正方形土地上, 划出一块宽为 10 米的长方形土 地(如右图), 剩下的长方形土地面积是 1575 平方米. 那么, 划出的长方形土地的面积是多少?
12. 三位数190 19 (1 9 0) , 请 写出所有这样的三位数.
第 2 页
共 2 页
第十九届华罗庚金杯少年数学邀请赛
决赛试题参考答案 (小学中年级组) 一、填空(每题 10 分, 共 80 分)
题号 答案 1 56 2 132 3 60 4 36 5 15 6 16 7 114 8 110
3. 将学生分成 35 组, 每组 3 人. 其中只有 1 个男生的有 10 组, 不少于 2 个男生 的有 19 组 , 有 3 个男生的组数是有 3 个女生的组数的 2 倍 . 则男生有 ________人. 4. 从 1~8 这八个自然数中取三个数, 其中有连续自然数的取法有________种. 5. 如右图, 三个圆交出七个部分. 将整数 0~6 分别填到七个部 分中, 使得每个圆内的四个数字的和都相等, 那么和的最大 值是________. 6. 若干自然数的乘积为 324, 则这些自然数的和最小为________. 7. 在嫦娥三号着月过程中, 从距离月面 2.4 千米到距离月面 100 米这一段称为 接近段. 下面左图和右图分别是它到距月面 2.4 千米和月面 100 米处时, 录 像画面截图. 则嫦娥三号在接近段内行驶的时间是________秒(录像时间的 表示方法:30 : 28 / 2 : 10 : 48 表示整个录像时间长为 2 小时 10 分钟 48 秒, 当 前恰好播放到第 30 分钟 28 秒处).
华赛杯初赛试题及答案
华赛杯初赛试题及答案华赛杯(Hua Sai Cup)是一项面向全国高中生的知识竞赛活动,以激发学生学习兴趣、提升学科素养为目标。
本文将为读者介绍华赛杯初赛试题及答案。
希望通过这些例题,读者能够更好地了解华赛杯的内容和形式,为参与或者备战华赛杯做好准备。
以下是华赛杯初赛的部分试题及答案,供读者参考:1. 英语知识题Which of the following words is spelled correctly?A) AcummulateB) AccomodateC) AccumulateD) Accomodate答案:C) Accumulate2. 数学计算题If x = 4 and y = 2, what is the value of (x + y) * (x - y)?A) 6B) 8C) 10D) 12答案:A) 63. 语文阅读理解题从下面的选项中选择正确的答案来完成这段短文的阅读:根据短文,最可能的标题是:A) 如何做好家务B) 如何保持健康饮食C) 如何有效管理时间D) 如何提高学习效率答案:C) 如何有效管理时间4. 物理应用题一个物体以10m/s的速度水平抛出,以仰角30°抛出的情况下,物体的最大下落深度是多少?(不计空气阻力,重力加速度为10m/s²)A) 0.25mB) 0.5mC) 1mD) 2m答案:B) 0.5m以上只是华赛杯初赛试题的一小部分,参赛者在比赛中还会遇到更多不同学科的题目。
希望以上例题能够帮助读者了解华赛杯的形式和难度,为参赛做好充分准备。
参与华赛杯不仅可以提高个人知识水平,还能够培养思维能力和解决问题的能力。
总之,华赛杯初赛试题涵盖了英语、数学、语文、物理等多个学科领域,题目的形式和难度都具有一定的挑战性。
希望广大学生能够积极参与华赛杯,充分发挥自己的学科能力,提高自身素质。
通过参与华赛杯竞赛,学生不仅能够获取知识,还能够培养团队协作精神和竞争意识,为自己的未来发展打下坚实的基础。
第二十一届华杯赛小学中、高年级组试题及答案
8. 某年, 端午节距离儿童节和父亲节的天数相同 , 在 月历中与六月最后一天同列, 父亲节是六月的第三 个星期日, 则该年的父亲节是六月 图是某个月的月历示意图) 日. (右
9. 在一个六位数中, 任何 3 个连续排列的数字都构成能被 6 或 7 整除的三位数, 则这个六位数最小是 .
10. 小虎用 6 个边长均为 1 的等边三角形在桌面上无重叠地拼接图 形, 每个三角形都至少有一条边与另一个三角形的一条边完全 重合, 右图是拼接出的两个图形 . 那么, 在所有拼接出的图形 中, 最小的周长是 .
5. 如右图, 木板上有 10 根钉子, 任意相邻的两根钉子距离都相等. 以这些钉子 为顶点, 用橡皮筋可套出( (A)6 (C)13 (B)10 (D)15 )个正三角形.
6. 在桌面上, 将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片 拼接, 要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为 ( (A)8 (B)7 (C)6 (D)5 ) .
4. 甲、乙、丙、丁四支足球队进行比赛.
懒羊羊说: 甲第一, 丁第四; 喜羊羊说: 丁
第二, 丙第三; 沸羊羊说: 丙第二, 乙第一. 每个的预测都只对了一半 , 那么, 实 际的第一名至第四名的球队依次是( (A)甲乙丁丙 (B)甲丁乙丙 ). (C)乙甲丙丁 (D)丙甲乙丁
5. 如右图, 在 5 5 的空格内填入数字, 使每行、 每列及每个粗线 框中的数字为 1, 2, 3, 4, 5, 且不重复. 那么五角星所在的空格 内的数字是( (A)1 (C)3 ). (B)2 (D)4 ) 个.
二、填空题(每小题 10 分, 共 40 分)
7. 计算: 1987 2015 1986 2016 .
华杯赛试题及答案初三
华杯赛试题及答案初三一、选择题(每小题5分,共20分)1. 下列哪个选项是正确的?A. 质数是只能被1和它本身整除的数B. 质数是只能被1和它本身整除的数,且它本身不是1C. 质数是只能被1和它本身整除的数,且它本身是1D. 质数是只能被1和它本身整除的数,且它本身不是2 答案:B2. 一个数的立方根是它本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项答案:D3. 以下哪个函数的图像是一条直线?A. y = x^2B. y = xC. y = 1/xD. y = x^3答案:B4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题(每小题5分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个三角形的两边长分别为3和4,第三边长是奇数,那么第三边长可能是______。
答案:5或73. 一个数的绝对值是5,那么这个数可能是______。
答案:5或-54. 一个数的平方是36,那么这个数可能是______。
答案:6或-6三、解答题(每小题10分,共40分)1. 已知一个等腰三角形的两边长分别为5和8,求这个三角形的周长。
答案:首先确定三角形的腰长。
由于等腰三角形的两边相等,所以腰长可以是5或8。
如果腰长为5,则三角形的三边长为5, 5, 8,周长为18。
如果腰长为8,则三角形的三边长为5, 8, 8,周长为21。
因此,这个三角形的周长可能是18或21。
2. 一个数乘以它的倒数等于1,求这个数。
答案:设这个数为x,则x乘以它的倒数1/x等于1,即x * (1/x) = 1。
这意味着x的平方等于1,所以x可能是1或-1。
3. 一个数列的前三项为2, 4, 6,且每一项都是前一项加上一个固定的数。
求这个数列的第四项。
答案:由于每一项都是前一项加上一个固定的数,我们可以设这个固定的数为d。
那么数列可以表示为2, 2+d, 2+2d, 2+3d。
华杯赛题目全解析--每一道都经典
好像还是没有思路!从问题入手吧——a、b 和 c 的平均数是:(a + b + c) ÷ 3,然后呢? 线索 2 好像不容易直接用到,就先根据线索 1 来试试运气吧! 我们可以得到:a = 21 + c,b = 9 + c,代入结果得到:(21 + c + 9 + c + c) ÷ 3 = (30 + 3c) ÷ 3 = 10 + c,好像摸到破局的门槛了! 如果选 A:10 + c = 11,则:c = 1,所以:a = 22、b = 10,a 和 b 的值出现 矛盾! 如果选 B:10 + c = 12,则:c = 2,所以:a = 23、b = 11,a 和 b 的值符合 条件!正确答案就是 B 了! 如果选 C:10 + c = 39,则:c = 29,所以:a = 50、b = 38,a 和 b 的值出 现矛盾! 如果选 D:10 + c = 40,则:c = 30,c 的取值出现矛盾!
所以,本题的正确答案就是 B!
3. 连接正方形 ABCD 的对角线,并将四个顶点分别染成红色或黄色,将顶点颜 色全相同的三角形称为同色三角形,则图中有同色三角形的染色方案共有( ) (A)12 (B)17 (C)22 (D)10 【求解】 做图形题最出现同色三角形,则至少有三个顶点是同一种颜色,接下来我们就一个 不漏地枚举出每一种情况: 1. 一个顶点是某种颜色(红色或黄色),其余顶点是另一种颜色,共 8 种方 案: 1)1 红 3 黄:A、B、C、D 依次染成红色,其余顶点染成黄色 2)3 红 1 黄:A、B、C、D 依次染成黄色,其余顶点染成红色 2. 四个顶点都是同一种颜色(红色或黄色),共 2 种方案: 1)4 红 2)4 黄 所以,共有:8 + 2 = 10(种)方案,正确答案是 D。
第22届华杯赛小学中年级组初赛试题及答案解析
第22届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1、两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成。
A、两个锐角三角形B、两个直角三角形C、两个钝角三角形D、一个锐角三角形和一个钝角三角形2、从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10。
A、4B、5C、6D、73、小明行李箱锁的密码是由两个数字8与5构成的三位数。
某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子。
A、9B、8C、7D、64、猎豹跑一步长为2米,狐狸跑一步长为1米,猎豹跑2步的时间狐狸跑3步,猎豹距离狐狸30米,则猎豹跑()米可追上狐狸。
A、90B、105C、120D、1355、图1中的八边形是将大长方形纸片剪去一个小长方形得到的,则至少需要知道()条线段的长度,才可以算出这个八边形的周长。
A、4B、3C、5D、106、一个数串219……,从第4个数字开始,每个数字都是前面3个数字和的个位数字,下面有4个四位数:1113,2226,2125,2215。
其中共有()个不出现在该数串中。
A、1B、2C、3D、4二、填空题(每小题10分,满分40分)7、计算:1000—257—84—43—16=。
8、已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速。
高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快的时速分别是千米小/时和千米//小时。
9、《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待求援。
马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要灌溉4千克的水。
华赛杯初赛试题及答案
华赛杯初赛试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是华赛杯初赛的特点?A. 题目难度适中B. 覆盖面广C. 只允许高中生参加D. 强调创新思维答案:C2. 华赛杯初赛的举办频率是多久一次?A. 每年一次B. 每两年一次C. 每三年一次D. 每年两次答案:A3. 华赛杯初赛的参赛者需要具备哪些条件?A. 必须有教师推荐B. 必须通过预选赛C. 必须是在校学生D. 必须有竞赛经验答案:C4. 华赛杯初赛的题目类型包括哪些?A. 单选题B. 多选题C. 判断题D. 所有以上答案:D5. 华赛杯初赛的评分标准是什么?A. 正确答案得分,错误答案扣分B. 正确答案得分,错误答案不扣分C. 只有完全答对才得分D. 根据答案的创新程度给分答案:B二、填空题(每题2分,共10分)1. 华赛杯初赛的全称是_______。
答案:华赛杯数学竞赛初赛2. 华赛杯初赛的参赛者年龄一般在_______岁到_______岁之间。
答案:14-183. 华赛杯初赛的题目设计旨在考察参赛者的_______能力。
答案:逻辑思维和数学解题4. 华赛杯初赛的获奖者将有机会参加_______。
答案:华赛杯决赛5. 华赛杯初赛的报名通常在比赛前_______个月开始。
答案:3三、简答题(每题5分,共20分)1. 请简述华赛杯初赛的举办目的。
答案:华赛杯初赛旨在激发学生的数学学习兴趣,提高他们的数学素养,同时选拔具有数学天赋的学生参加更高级别的竞赛。
2. 华赛杯初赛的评分机制是怎样的?答案:华赛杯初赛的评分机制是客观题按正确答案给分,主观题则根据答案的完整性、创新性和逻辑性进行评分。
3. 参赛者在华赛杯初赛中应注意哪些事项?答案:参赛者应注意遵守比赛规则,保持诚信,合理安排答题时间,确保答案的准确性和完整性。
4. 华赛杯初赛对于参赛者未来的学术发展有何影响?答案:华赛杯初赛不仅能够提升参赛者的数学能力,还能增强他们的自信心和解决问题的能力,对于未来的学术发展具有积极的推动作用。
第二十三届华杯赛初赛中年级组模拟试题含答案
第二十三届华罗庚金杯少年数学邀请赛初赛模拟卷(小学中年级组)总分:100分时间:60分钟一、选择题.(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.灰太狼告诉喜羊羊:“2017年共有53个星期日.”聪明的喜羊羊立刻告诉灰太狼:2018年的元旦一定是星期( ).(A)星期一 (B)星期二 (C)星期四 (D)星期日2、2017个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河( )次.(A)672 (B)673 (C)1343 (D)13453、如图,在标有*的方格中所填上适当的数( ),可以使得每一行、每一列及每条对角线上的三个数之和都相等.(A)37 (B)26 (C)19 (D)274、如图所示,用长短相同的火柴棍摆成3×2017的方格网,其中每个小方格的边都由一根火柴棍组成,一共需用( )根火柴棍.(A)8071 (B)8068 (C)14122 (D)141195、在2017年的公路越野比赛中,2017名志愿者均匀地分散在一条笔直参赛公路上义务服务,比赛公路的起点、终点及途中的各个服务点都安排了一名志愿者.比赛结束后,他们应该在公路的( )服务点集合,就可以使他们从各自的岗位沿公路走到集合地点的路程总和最短.(A)第1007与1008个服务点之间 (B)第1008个服务点(C)第1009个服务点 (D)第1008与1009个服务点之间6、熊大和熊二两人一共带了80 元钱去商店买东西,熊大用自己的一半的钱买了一副眼镜,熊二花了10 元钱买了一块巧克力。
这时熊大剩下的钱恰好是熊二剩下的钱的3 倍。
那么熊二带了( )元.(A)10 (B)20 (C)30 (D)60二、填空题(每小题 10 分,共40分)7.第23届华杯赛初赛将于2017年12月9日举行,如果我们用一种六位数表示日期的方法,如:171209表示的是17年12月09日,也就是从左往右的第一、二位数表示年代、第三、四位数表示月份、第五、六位数则表示日期.若采用这种方法表示2017年的日期,那么全年中六个数字都不相同的日期共有天.8. 2017年上半年,魔法师有一次连续出差几天的日期数加起来恰好是60.韩老师出差日期有种可能(注:日期数指a月b日中的b,如4月16日的日期数是16).9. 连续写出从1开始的自然数,写到2017时停止,得到一个多位数:1234567891011…20162017.这个多位数除以9的余数是.10、已知数列2、3、4、6、6、9、8、12、…,这个数列中216出现在第项.参考答案解析版一、选择题.(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.灰太狼告诉喜羊羊:“2017年共有53个星期日.”聪明的喜羊羊立刻告诉灰太狼:2018年的元旦一定是星期( ).(A)星期一 (B)星期二 (C)星期四 (D)星期日【解析】选A. 周期问题,最后一天也是周日,2018年1月1日是星期一. 2、2017个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河( )次.(A)672 (B)673 (C)1343 (D)1345【解析】每次过河的人数只有3人,最后一次最多过4人,因为2017=3×672+1,所以前面3人一次过了12次,来回一共划了672×2=1344(次),最后一次是4人过河,还要用1次.所以最终需要渡河的次数是1344-1=1343(次).选C4、如图,在标有*的方格中所填上适当的数( ),可以使得每一行、每一列及每条对角线上的三个数之和都相等.(A )37 (B )26 (C )19 (D )27【解析】选D.幻方问题,利用黄金三角得最后一行中间的数为29,再次利用黄金三角即知*=27.4、如图所示,用长短相同的火柴棍摆成3×2017的方格网,其中每个小方格的边都由一根火柴棍组成,一共需用( )根火柴棍.(A)8071 (B)8068 (C)14122 (D)14119【解析】选C. 找规律,2017×7+3=14122。
“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!
“华杯赛”初赛试题(附详细答案),能做全对的直接上重点
中学!
一、什么是华杯赛?
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
华杯赛”是以教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学为宗旨的活动。
二、为什么报名参加各大数学杯赛的考试?
1、检验学习效果
通过奥数的学习,能培养良好的思维习惯,有利于智力的开发,且对以后数理化各科的学习也都非常有帮助。
杯赛考试是检测学习效果最好的方式。
2、锻炼思维能力
各大奥数杯赛不仅仅是一种考试,其举办宗旨更多的是致力于学生独立思考、科学探索、创造性地解决问题和创新思维能力的培养。
3、助升学一臂之力
通过杯赛证书增加升学砝码,突出简历亮点,进而拿到参加重点中学升学选拔的机会。
三、华杯赛作用
华杯赛作为目前全国最权威的初中数学比赛,备受北京市各重点中学的认可。
2007年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐。
甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。
今天的分享就到这儿了。
您有什么问题或建议可以在评论栏留言或给小编发私信,小编一定会在看到留言后第一时间给您回复。
第二届“华杯赛”全套试题及答案解析
第二届“华杯赛”全套试题及答案解析第二届华杯赛初赛试题及答案解析1.“华罗庚金杯”少年数学邀请赛每隔一年举行一次.今年(1988年)是第二届.问2000年是第几届?1.【解】“每隔一年举行一次”的意思是每两年举行1次。
1988年到2000年还有2000-1988=12年,因此还要举行12÷2=6届。
1988年是第二届,所以2000年是1+6=8届。
这题目因为数字不大,直接数也能很快数出来:1988、1990、1992、1994、1996、1998、2000年分别是第二、三、四、五、六、七、八届.答:2000年举行第八届.【注】实际上,第三届在1991年举行的,所以2001年是第八届.2.一个充气的救生圈(如右图).虚线所示的大圆,半径是33厘米.实线所示的小圆,半径是9厘米.有两只蚂蚁同时从A点出发,以同样的速度分别沿大圆和小圆爬行.问:小圆上的蚂蚁爬了几圈后,第一次碰上大圆上的蚂蚁?2.【解】由于两只蚂蚁的速度相同,所以大、小圆上的蚂蚁爬一圈的时间的比应该等于圈长的比.而圈长的比又等于半径的比,即:33∶9.要问两只蚂蚁第一次相遇时小圆上的蚂蚁爬了几圈,就是要找一个最小的时间它是大、小圆上蚂蚁各自爬行一圈所需时间的整数倍.适当地选取时间单位,使小圆上的蚂蚁爬一圈用9个单位的时间,而大圆上的蚂蚁爬一圈用33个单位的时间.这样一来,问题就化为求9和33的最小公倍数的问题了.不难算出9和33的最小公倍数是99,所以答案为99÷9=11.答:小圆上的蚂蚁爬了11圈后,再次碰到大圆上的蚂蚁.3.如右图是一个跳棋棋盘,请你算算棋盘上共有多少个棋孔?3. 【解】把棋盘分割成一个平行四边形和四个小三角形,如下图。
平行四边形中棋孔数为9×9=81,每个小三角形中有10个棋孔。
所以棋孔的总数是81+10×4=121(个)答:共有121个棋孔4.有一个四位整数.在它的某位数字前面加上一个小数点,再和这个四位数相加,得数是2000.81.求这个四位数.4.【解】由于得数有两位小数,小数点不可能加在个位数之前.如果小数点加在十位数之前,所得的数是原来四位数的百分之一,再加上原来的四位数,得数2000.81应该是原来四位数的1.01倍,原来的四位数是2000.81÷1.01=1981.类似地,如果小数点加在百位数之前,得数2000.81应是原来四位数的1.001倍,小数点加在千位数之前,得数2000.81应是原来四位数的1.0001倍.但是(2000.81÷1.001)和(2000.81÷1.0001)都不是整数,所以只有1981是唯一可能的答案.答:这个四位数是1981.【又解】注意到在原来的四位数中,一定会按顺序出现8,1两个数字.小数点不可能加在个位数之前;也不可能加在千位数之前,否则原四位数只能是8100,大于2000.81了.无论小数点加在十位数还是百位数之前,所得的数都大于1而小于100.这个数加上原来的四位数等于2000.81,所以原来的四位数一定比2000小,但比1900大,这说明它的前两个数字必然是1,9.由于它还有8,1两个连续的数字,所以只能是1981.5.如图是一块黑白格子布.白色大正方形的边长是14厘米,白色小正方形的边长是6 厘米.问:这块布中白色的面积占总面积的百分之几?5.【解】格子布的面积是下图面积的9倍,格子布白色部分的面积也是图上白色面积的9倍,下图中白色部分所占面积的百分比是:=0.58=58%答:格子布中白色部分的面积是总面积的58%.6.如下图是两个三位数相减的算式,每个方框代表一个数字.问:这六个方框中的数字的连乘积等于多少?6.【解】因为差的首位是8,所以被减数首位是9,减数的首位是1。
【必考题】第22届“华杯赛”初赛公开题及答案!(附考试安排)
【必考题】第22届“华杯赛”初赛公开题及答案!(附考试安排)第22届“华杯赛”马上就要开始了,按照惯例,在每年的12月10日正式比赛前,“华杯赛”组委会将公开各年级组的1道题。
今年的公开题来了,我们拓维·天问培优的老师们也给大家做出了详细解析,必考题,大家一定要看啊!第22届“华杯赛”公开题题目公开题答案罗康华老师罗康华老师,毕业于山东大学,现拓维·天问培优小学数学骨干教师,善于抓住学生的知识漏洞,查缺补漏;了解学生思维,帮助学生建立思维体系,掌握学习方法与养成良好的学习习惯;爱生活,爱学习,爱运动,学习充实生活,运动让生活更加有活力。
张纪伟老师张纪伟老师,毕业于中南大学,现拓维·天问培优小学数学骨干教师。
曾获得全国高中物理竞赛二等奖,初中联赛老师,具有丰富竞赛经验。
教学风格严谨沉稳又不失幽默,善于引导学生思考,授课思路清晰,深受学生喜爱。
何义松老师何义松老师,毕业于武汉大学,现拓维·天问培优初中数学骨干教师。
高考数学满分,授课经验丰富,教学风趣幽默,逻辑清楚,善于引导学生思考,重点突出,体系性强。
第22届“华杯赛”考试安排准考证领取:即日起到报名点校区前台领取(在拓维教育报名考生)考试地点:长郡郡维中学(在拓维教育报名考生)考试时间:2016年12月10日(星期六)10:00—11:00准考证如下图所示:祝所有参赛同学都考出好成绩!欢迎随手点赞并分享到朋友圈你可能错过的精彩活动:拓维·天问培优第一届“春蚕杯”教师风采大赛A组教师精彩赛况!班主任揭秘:学生之间的真正比拼,是家长的6点配合!你在孩子身上偷的懒,明天他会变着法让你偿还!欢迎加入各qq群和我们交流长沙小学二三年级群号:82141259长沙小学四年级群号:152294279长沙小学五年级群号:3438259112017长沙小升初群号:4549761032016新初一年级群号:254950316。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、在右面的加法算式中, 每个汉字代表一个非零数字, 不同的汉字代表不同的数字. 当算式成立时, 贺+新+春=( ).
(A )24 (B )22 (C )20 (D )18
解析:就是一道数字谜的题目,根据规律我们试得,173+286=459,那么贺新春相加为18.
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
2、北京时间16时, 小龙从镜子里看到挂在身后墙上的4个钟表(如下图), 其中最接近16时的是().
(A)(B)(C)(D)
解析:公开题,果冻老师已经分享过啦。
3、平面上有四个点, 任意三个点都不在一条直线上. 以这四个点为端点连接六条线段, 在所组成的图形中, 最少可以形成()个三角形.
(A)3 (B)4 (C)6 (D)8
解析:一个三角形中三个顶点,里面有一点,分别和三角形的三个顶点相连,又出现3条线段,一共4个三角形,此时最少。
4、在10□10□10□10□10的四个□中填入“+”“-”“×”“÷”运算符号各一个, 所成的算式的最大值是().
(A)104 (B)109 (C)114 (D)110
解析:1010101010109⨯+-÷=
在这个题目中,要想最大的话,少做除法,减法,多做加法,乘法,那么既然不能使(10+10)×2,那么只能10×10+10那么减去10最小吗,其实10÷10=1最小。
5、牧羊人用15段每段长2米的篱笆, 一面靠墙围成一个正方形或长方形羊圈, 则羊圈的最大面积是( )平方米.
(A )100 (B )108 (C )112 (D )122
解析:一定要注意每条篱笆是横着放的,这时设和墙相邻的两边都有n 根篱笆,和墙相对的还有15—2n 根篱笆,每根篱笆长度为2,所以长方形的周长, 2(152)2n n ⨯-⨯最大时,2n 和15-2n 和同差小积大。
当2n 与15-2n 越接近时,面积越大,n=4. 此时长方形2n=8,另一边长(15-2n )×2=14,面积是112.
6、小虎在19×19的围棋盘的格点上摆棋子, 先摆成了一个长方形的实心点阵. 然后再加上45枚棋子, 就正好摆成一边不变的较大的长方形的实心点阵. 那么小虎最多用了( )枚棋子.
(A )285 (B )171 (C )95 (D )57
解析:新摆成的的实点矩阵,它行列必然都是45的约数,他的约数是1,3,5,9,15,45,因为在19×19的方格中,约数必然小于19,只可能是3,15,5,9,那么经验证当横着摆时,45个棋子列成3排,每一排15个,那么补足以后,不变的那条边就是15,那么怎样使长方形较大,原来的实心矩阵,另一边是16,故用了1519285⨯= 7、三堆小球共有2012颗, 如果从每堆取走相同数目的小球以后, 第二堆还剩下17颗小球, 并且第一堆剩下的小球数是第三堆剩下的2倍, 那么第三堆原有 颗小球. 解析:
共计2012=3a+3b+17,(a+b)=665
8、右图的计数器三个档上各有10个算珠,将每档算
珠分成上下两部分,得到两个三位数。
要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是。
解析:
上面这个数是下面三位数的倍数,假设下面的三位数为:abc,上面的数是下面数的倍数,
⋅。
所以上面的数可以写成:k abc
计数器三个档上各有10个算珠,所以上下两数之和为:
();
⋅⨯⨯⨯
k+1abc=10010+1010+110=1110
⨯⨯⨯。
把1110分解质因数:1110=23537
⨯;上面的数是:
因为上面的三位各位数字均不同,所以下面的数可以是:537=185
(23-1)=925。
185⨯⨯
9.把一块长 90 厘米, 宽42厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片, 最少能剪出块, 这种剪法剪成的所有正方形纸片的周长之和是厘米.
解析:
剪成1平方厘米的小正方形个数最多,求最小的个数则是求正方形的边长最大为多少呢?就是90和42的最大公约数——6,90这条边剪成15个6,42剪成7个6,一共105个面积为36的正方形,周长为6×4×105=2520.
10、体育馆正在进行乒乓球单打、双打比赛, 双打比赛的运动员比单打的运动员多4名, 比赛的乒乓球台共有13张, 那么双打比赛的运动员有名.
单打双打
人数42x 4(x+1)
用的桌子2x x+1 13
关于这道题,先假设单打,双打人数一样时,双打4人一桌,单打两人一桌,双打x桌时,单打2x桌,但是双打比单打多4人,故多一桌,一共13桌,也就是3x+1=13,双打一共用5桌,一共20人。
这样就做出来啦。