电子测量技术 实验报告
电子测量实验报告
福建农林大学计算机与信息学院课程名称:姓名:系:专业:年级:学号:指导教师:职称:信息工程类实验报告电子测量技术电子信息工程系电子信息工程年月日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程系专业:电子信息工程年级:姓名:学号:实验课程:电子测量技术基础实验室号:_田406 实验设备号:10 实验时间:指导教师签字:成绩:实验一:示波器、信号发生器的使用1.实验目的和要求1)了解示波器的结构。
2)掌握波形显示的基本原理、扫描及同步的概念。
3)了解电子示波器的分类及主要技术性能指标。
4)掌握通用示波器的基本组成及各部分的作用。
5)了解各种信号发生器如正弦信号发生器、低频信号发生器、超低频信号发生器、函数信号发生器等的工作原理和性能指标以及信号选择。
2.实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。
它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。
我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。
电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的x偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。
若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。
因此,只有当x偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。
一般说来,y偏转板上所加的待观测信号的周期与x偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。
这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。
电子测试与实验技术实验报告
电子测试与实验技术实验报告1. 引言电子测试与实验技术是电子工程领域的基础实验课程之一,旨在培养学生熟悉常用电子测试仪器和实验技术,掌握电子电路的测试与调试方法。
本次实验报告旨在总结和分析所进行的电子测试与实验技术实验过程、结果和体会等相关内容。
2. 实验目的本次实验的目的是:•熟悉使用示波器、信号源、信号分析仪等基本电子测试仪器;•掌握调试电路的基本方法;•熟悉使用数字示波器进行信号的采集和分析;•学会使用多用途实验仪进行模拟与数字电路的测试。
3. 实验仪器和材料本次实验所使用的仪器和材料有:•示波器(型号:XYZ-123)•信号源(型号:ABC-456)•信号分析仪(型号:DEF-789)•多用途实验仪(型号:GHI-789)•电路板•电子元件等4. 实验内容4.1 基本电子测试仪器的使用在这一部分的实验中,我们熟悉了示波器的使用,包括调整示波器的触发方式、扫描速度和触发电平等参数,以及对信号源输出的波形进行观测和测量等操作。
4.2 电路调试方法的掌握在这一部分的实验中,我们学会了基本的电路调试方法,包括逐步接法、替代法、测电压法和测电流法等。
通过反复调试,我们找到了电路中出现问题的原因,并进行了相应的修正。
4.3 数字示波器的使用在这一部分的实验中,我们熟悉了数字示波器的使用方法,掌握了数据的采集和分析技巧。
通过对电路中的信号进行采集和观测,我们能够更清楚地了解信号的特性和变化规律。
4.4 模拟与数字电路的测试在这一部分的实验中,我们使用多用途实验仪对模拟和数字电路进行了测试。
通过连接适当的检测仪器和电路板,我们能够对电路中的信号进行测试和分析,验证电路的性能和正确性。
5. 实验结果与分析在本次实验中,我们成功完成了所有实验内容,并取得了以下结果和分析:•对基本电子测试仪器的使用具有一定的熟练度,能够准确地观测和测量电路中的信号;•掌握了基本的电路调试方法,能够准确地定位和解决电路中出现的问题;•熟悉了数字示波器的使用,能够对电路中的信号进行更详细的分析和观测;•使用多用途实验仪对模拟和数字电路进行了测试,能够准确判断电路的工作状态和性能。
电子测量实验报告
电子测量实验报告
本实验旨在通过使用多种电子仪器,对不同电路的电压、电流、电阻等参数进行测量。
下面是本实验的实验流程、实验仪器和实验结果的详细说明。
一、实验流程
本实验的实验流程如下:
1. 根据实验要求,选择合适的测量仪器和电路。
2. 连接电路,确保电路连接正确、无短路和开路。
3. 通过万用表或数字万能表测量电路中的电压、电流等参数。
4. 记录测量数据,并计算出电阻、电功率等参数。
5. 分析数据,检查实验结果的准确性和可靠性。
二、实验仪器
本实验使用的主要仪器如下:
1. 万用表/数字万用表:用于测量电路中的电量参数,如电压、电流等。
2. 示波器:用于显示电路中的变化趋势,如电流、电信号等。
3. 电源:提供电路所需的电能。
4. 电阻箱:用于产生不同的电阻值以调整电路。
三、实验结果
本实验通过测量不同电路中的电量参数,得出以下结果:
1. 测量直流电路中的电压、电流、电阻等参数。
2. 测量交流电路中的电压、电流、电容等参数。
3. 测量滤波电路中的电压、电流、电容等参数。
通过对以上数据的分析,可以得到每个电路的理论计算值和实验测量值的比较,从而评估实验结果的准确性和可靠性。
四、实验总结
本实验通过使用多种电子仪器,对不同电路的电量参数进行测量,加深了对电子学原理的理解。
在实验过程中,我们注意到仪器的使用方法和电路的连接方式对实验结果的影响,提高了我们的实验技能和注意力。
最终,我们得到了准确可靠的实验结果,为我们的学习和应用奠定了基础。
电子测量实验报告_电阻
一、实验目的1. 熟悉电子测量仪器的使用方法;2. 掌握电阻的测量原理和方法;3. 提高实验操作技能和数据处理能力。
二、实验原理电阻是电路中的一种基本元件,用于限制电流的流动。
电阻的测量可以通过多种方法实现,本实验采用伏安法测量电阻。
伏安法是通过测量电阻两端的电压和通过电阻的电流,根据欧姆定律(U=IR)计算电阻值。
三、实验仪器与设备1. 指针式万用表2. 可调直流电源3. 电阻箱4. 电阻5. 滑动变阻器6. 开关7. 导线若干四、实验步骤1. 将电阻、滑动变阻器、开关和导线按照电路图连接好;2. 将万用表选择到电压挡,调整直流电源的输出电压,使电阻两端的电压在合适的范围内;3. 闭合开关,读取电阻两端的电压值U;4. 将万用表选择到电流挡,调整滑动变阻器,使通过电阻的电流在合适的范围内;5. 读取通过电阻的电流值I;6. 重复步骤3和4,至少测量3次,记录数据;7. 根据欧姆定律,计算电阻的平均值。
五、实验数据及处理1. 电压U(V):1.23、1.25、1.272. 电流I(A):0.25、0.26、0.273. 电阻R(Ω)=U/I- 第一次测量:R1 = 1.23V / 0.25A = 4.92Ω- 第二次测量:R2 = 1.25V / 0.26A = 4.81Ω- 第三次测量:R3 = 1.27V / 0.27A = 4.71Ω4. 电阻平均值:R = (R1 + R2 + R3) / 3 = 4.83Ω六、实验结果与分析通过实验测量,得到电阻的平均值为4.83Ω。
实验结果表明,伏安法可以有效地测量电阻值。
在实验过程中,电压和电流的测量值存在一定的误差,这是由于测量仪器的精度和实验操作的不准确性所导致的。
为了提高测量精度,可以采取以下措施:1. 使用高精度的万用表和直流电源;2. 仔细操作,确保电路连接正确;3. 多次测量取平均值,以减小误差。
七、实验总结本次实验通过伏安法测量电阻,掌握了电阻的测量原理和方法,提高了实验操作技能和数据处理能力。
测量电子元件实验报告
一、实验目的本次实验旨在让学生掌握电子元件的测量方法,熟悉常用电子元件的特性,提高学生在电子电路设计、制作与调试中的实际操作能力。
二、实验原理电子元件的测量方法主要有直接测量和间接测量两种。
直接测量是指使用仪器直接测量元件的物理量,如电阻、电容、电感等;间接测量是指通过测量电路中的其他物理量,间接推算出元件的参数,如测量电路中的电流、电压等。
三、实验仪器与材料1. 仪器:数字万用表、稳压电源、信号发生器、示波器、电阻箱、电容箱、电感箱等。
2. 材料:电阻、电容、电感、二极管、三极管、集成电路等常用电子元件。
四、实验步骤1. 电阻的测量(1)使用数字万用表设置在电阻测量挡,将红表笔和黑表笔分别连接到电阻两端。
(2)观察万用表显示的电阻值,即为所测电阻的阻值。
2. 电容的测量(1)使用数字万用表设置在电容测量挡,将红表笔和黑表笔分别连接到电容两端。
(2)观察万用表显示的电容值,即为所测电容的电容值。
3. 电感的测量(1)使用数字万用表设置在电感测量挡,将红表笔和黑表笔分别连接到电感两端。
(2)观察万用表显示的电感值,即为所测电感的电感值。
4. 二极管的测量(1)使用数字万用表设置在二极管测量挡,将红表笔和黑表笔分别连接到二极管的两端。
(2)观察万用表显示的电压值,正值表示二极管导通,负值表示二极管截止。
5. 三极管的测量(1)使用数字万用表设置在二极管测量挡,将红表笔和黑表笔分别连接到三极管的基极和发射极。
(2)观察万用表显示的电压值,正值表示三极管导通,负值表示三极管截止。
6. 集成电路的测量(1)使用数字万用表设置在二极管测量挡,将红表笔和黑表笔分别连接到集成电路的相应引脚。
(2)观察万用表显示的电压值,根据集成电路的规格书,判断集成电路是否正常工作。
五、实验结果与分析1. 电阻的测量结果与分析实验中测量了不同阻值的电阻,测量值与标称值基本一致,说明测量方法正确。
2. 电容的测量结果与分析实验中测量了不同电容值的电容,测量值与标称值基本一致,说明测量方法正确。
电子测量实验报告
电子测量实验报告电子测量实验报告实验目的:本实验旨在学习和掌握基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。
实验仪器:数字电压表(DMM)、示波器(OSC)和信号发生器(SG)。
实验原理:1. 数字电压表:用于测量电路中的电压值,采用数码显示,具有较高的精度和稳定性。
在电路中需要将表针式电压表或模拟电压表替换为数字电压表,以便更准确地测量电路中的电压。
2. 示波器:用于显示电压随时间的变化情况,具有测量信号幅度、频率、相位等特性的功能。
示波器内置了扫描信号发生器和偏移电压源,可以在显示屏上显示出电压随时间的波形图。
3. 信号发生器:用于产生各种稳定的信号源,包括正弦波、方波、脉冲等。
可以通过调节信号发生器的频率和幅度来产生所需的信号。
实验步骤:1. 将数字电压表连接到待测电路的电压接线点,将测量量程调整到合适的范围,读取并记录测量结果。
2. 将示波器连接到待测电路的电压接线点,调整示波器的时间和电压量程,观察并记录电压随时间的波形图。
3. 将信号发生器连接到待测电路的输入端,调节信号发生器的频率和幅度,观察并记录输出信号的波形和频率。
实验结果:1. 使用数字电压表测量待测电路的电压,记录并比较了不同量程下的测量结果。
2. 使用示波器观察了待测电路在不同时间段内电压的波形变化,分析并记录了示波器上显示的波形图。
3. 使用信号发生器产生了不同频率和幅度的信号,并观察了待测电路对信号的响应情况,记录并分析了输出信号的波形和频率。
实验结论:通过本实验的操作,我们学习并掌握了基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。
通过实验观察和测量,我们能够准确地测量电路中的电压,并通过示波器显示电压随时间的波形图,以及通过信号发生器产生各种信号源,验证待测电路对信号的响应情况。
实训电子测量仪器实验报告
#### 一、实验目的本次实训旨在通过实际操作,加深对电子测量仪器的基本原理、操作方法和应用范围的理解。
通过本次实验,我们希望能够:1. 掌握电子测量仪器的基本操作步骤。
2. 熟悉不同类型电子测量仪器的使用方法。
3. 了解电子测量仪器在工程实践中的应用。
4. 提高实验技能和数据分析能力。
#### 二、实验原理电子测量仪器是用于测量电子电路参数的设备,主要包括示波器、万用表、信号发生器等。
以下是几种常用电子测量仪器的原理概述:1. 示波器:利用电子束扫描荧光屏上的亮点,以显示信号的波形。
示波器可以测量电压、频率、相位等参数。
2. 万用表:用于测量电压、电流、电阻等基本电学参数。
万用表分为模拟和数字两种,数字万用表具有更高的精度和便捷性。
3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等,以便于进行电路测试和调试。
#### 三、实验仪器与设备1. 示波器2. 万用表3. 信号发生器4. 电阻、电容、电感等电子元件5. 电路板、连接线等实验器材#### 四、实验内容与步骤1. 示波器使用- 连接示波器与电路板,观察信号波形。
- 测量信号的电压、频率、相位等参数。
- 比较不同信号波形的特点。
2. 万用表使用- 使用万用表测量电阻、电容、电压、电流等参数。
- 比较模拟和数字万用表的测量结果。
- 分析测量误差。
3. 信号发生器使用- 使用信号发生器产生不同类型的信号。
- 将信号输入电路,观察电路响应。
- 分析信号对电路的影响。
4. 综合实验- 设计一个简单的电子电路,使用示波器、万用表、信号发生器等仪器进行测试和调试。
- 分析实验结果,优化电路设计。
#### 五、实验数据与结果分析1. 示波器测量结果- 信号A:频率为1kHz,电压峰峰值为5V。
- 信号B:频率为2kHz,电压峰峰值为10V。
2. 万用表测量结果- 电阻R1:100Ω,测量误差为±5%。
- 电容C1:1000μF,测量误差为±10%。
电子测量 实验报告
电子测量实验报告实验报告:电子测量引言:电子测量是电子学中非常重要的一部分,通过电子测量,可以对电流、电压、电阻、电感、电容和功率等参数进行准确的测量和分析。
本实验旨在通过实际操作,了解并掌握一些基本的电子测量方法和仪器的使用。
实验目的:1. 了解常见的电子测量仪器,例如数字万用表、示波器和信号发生器等。
2. 掌握测量直流电流、直流电压、交流电压、交流电流、电阻、电容和电感的方法和技巧。
3. 学习使用示波器测量电压、频率和相位差等信号参数。
实验步骤和结果:1. 实验一:测量直流电流和直流电压a. 将数字万用表的选择旋钮拨到直流电流测量档位,并连接正确的电路。
b. 通过电源控制直流电流的大小,观察数字万用表的读数并记录。
c. 将数字万用表的选择旋钮拨到直流电压测量档位,连接正确的电路并测量直流电压。
2. 实验二:测量交流电压和交流电流a. 使用示波器测量交流电压和交流电流。
b. 设置示波器的时间和幅度尺度,观察波形,并测量其峰值和有效值。
3. 实验三:测量电阻、电容和电感a. 使用数字万用表测量电阻,并计算真值和误差。
b. 使用数字万用表测量电容,并记录相应的读数。
c. 使用示波器和信号发生器测量电感的感抗和品质因数。
讨论与分析:通过以上实验,我们可以得到以下的结论和分析:1. 电子测量仪器的使用:通过实验,我们了解了常见的电子测量仪器的使用方法,例如数字万用表、示波器和信号发生器。
这些仪器能够提供准确的测量结果,为电子工程师的工作提供了很大的帮助。
2. 直流电流和直流电压的测量:通过实验一,我们学会了使用数字万用表来测量直流电流和直流电压。
我们可以通过调节电源的电压和连接正确的电路来测量不同的电流和电压值。
3. 交流电压和交流电流的测量:实验二中,我们使用示波器来测量交流电压和交流电流。
通过观察波形,并测量其峰值和有效值,我们可以了解信号的振幅和频率等特性。
4. 电阻、电容和电感的测量:实验三中,我们使用数字万用表测量电阻和电容,并计算出真值和误差。
北京交通大学电测实验报告
电气工程学院电子测量技术实验报告姓名:张梦婷学号: 12292054指导教师:姜学东实验日期: 11月21日示波器波形参数实验报告姓名:张梦婷学号 12292054 指导教师:姜学东一、实验目的通过实验预习与实验操作,熟悉示波器的每个旋钮功能与用法,巩固在课堂上所学到的知识,能对示波器进行简单的操作,主要目的为以下三个:1.熟练掌握使用用示波器测量电压信号峰峰值和直流分量。
2.熟练掌握使用示波器测量电压信号周期及频率。
3.熟练掌握使用示波器,通过单踪方式与双踪方式测量两个波形相位差。
二、实验预习1.首先复习教材和ppt第三章示波测试和测量技术的相关内容,复习示波测试的基本原理。
2.阅读SS—7802A/7804示波器操作手册A.首先查看示波器操作手册中的注意事项,以免操作不慎造成仪器损坏。
B.了解示波器的控制部分、连接器和指示灯,掌握示波器的操作区域与显示屏区域的划分,知道示波器操作区域每个旋钮与按键的具体功能。
C.仔细阅读操作手册中基本操作章节,熟悉各个功能的操作方法,由其与实验直接相关的操作,对实验做好准备。
3.由于实验需要将三角波通过RC网络变化成正弦波,因此设计如下电路图:三、实验仪器与设备1.示波器SS—7802A(20MHZ)20MHz的双通道示波器,具备光标读出、频率测量功能。
●包括如下五个操作♦水平控制区POSITION:调节屏幕上信号水平方向位移。
TIME/DIV:选择扫描速度。
左右旋转时,调节选择扫描速度,其数值在屏幕显示。
当按压此旋钮,再左右旋转,可作扫描微调。
MAG³10:扫描放大。
按下“MAG³10”键,扫描速度提高10倍,波形将基于中心位置被放大。
SWEEP MODE:扫描方式选择。
“AUTO”为自动扫描方式。
“NORM”为正常扫描方式。
“SGL/RST”为单次扫描,每按一次此按键,选择一次单次触发。
♦垂直控制区CH1、CH2 :通道1(CHl)和通道2 (CH2)的垂直输入端,当连接测试线后,红色夹子为信号输入端,黑色夹子为地端。
电测实验报告
《电子测量技术》实验报告电气工程学院姓名:李晓峰学号:12281035班级:电气1307班实验一示波器波形参数测量一、实验目的通过示波器的波形参数测量,进一步巩固加强示波器的波形显示原理的掌握,熟悉示波器的使用技巧。
1.熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。
2.熟练掌握用示波器测量电压信号周期及频率。
3.熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。
二、实验设备1.信号发生器,示波器。
示波器——SS7802Aa、主要参数:SS-7802模拟示波器·具有能够选择场方式、线路的TV/视频同步功能·附有光标和读出功能·5位数计数器规格及性能·显像管:6英寸、方型8*10p(1p=10mm)约16kV·垂直灵敏度:2mV/p~5V/p(1-2-5档)(通道1、通道2)精度:±2%·频率范围:20MHz·时间轴扫描A·100ns/p~500ms/p·TV/视频同步:能够选择场方式、能够选择ODD、EVEN、BOTH、扫描线路b、主要功能描述示波器操作板如图所示:包括如下五个操作控制区域:水平控制区【◄POSITION►】:将【◄POSITION►】向右旋转,波形右移。
FINE 指示灯亮时,旋转【◄POSITION►】可作微调。
MAG×10 :扫描速率提高10倍,波形将基于中心位置向左右放大。
ALTCHOP :选择ALT(交替,两个或多个信号交替扫描)或CHOP (断续,两个或多个信号交替扫描)。
垂直控制区INPUT:输入连接器(CH1、CH2),连接输入信号。
EXTINPUT :用外触发信号做触发源。
外信号通过前面板的EXTINPUT接入。
【VOLTS/DIV】:调节【VOLTS/DIV】选择偏转因数。
按下【VOLTS/DIV】;偏转因数显示“ ”符号。
在该屏幕下,可执行微调程序。
电子测量实验报告
黄淮学院电子科学与工程系 电子测量技术课程基础性实验报告实验名称 秒脉冲信号发生器实验时间 年 月 日学生姓名实验地点 同组人员专业班级电技1101班一、实验目的1. 熟悉用石英晶体和CMOS 反相器构成多谐振荡器的电路。
2. 熟悉用分频器获得秒信号的方法。
二、实验主要仪器设备和材料1. 实验仪器直流稳压电源×1、双踪示波器×1、万用电表×1、IC3 16脚插座×1、IC2 14脚插座×1、BX05模块(含有1C 、2C 、R 和石英晶体)。
2. 实验器件 CD4060、CD4013三、实验内容图4-1 秒脉冲信号发生器电路图4-2图4-1所示为秒脉冲信号发生器电路,石英晶体的固有频率为32.768kHz ,4060为十四级二进制计数/分频/振荡器,其内部有1G 、2G 二个反相器和14级二进制计数器,电阻R 连在1G 两端,用来确定1G 静态为电压传输特性中点Q ,使1G 有较大放大倍数,如图4-2所示。
当接上电源后,石英晶体与电容1C 、2C 组成振荡回路,从噪声中选出32.768kHz 正弦信号,通过2C 输入到1G 门的I u ,经1G 放大后得到O u 获得很大削顶信号。
经2G 反相器整形,从O Φ得到32.768kHz 方波,再经14级二进制分频获得频率为32.768×1432/10=32.768×310/16384=2Hz 信号再由D 触发器组成T '触发器为二分频电路,即在Q 端获得频率为1Hz 的方波信号,这即为周期为1S 的秒信号。
为防止小电容连线受分布电影响,故将1C 、2C 、R 、石英晶体等制作于BX05模块内,使连线缩短。
四、实验步骤1. 在不接电源情况下,按图4-1所示电路进行连接、要求BX05模块与4060器件连线,尽可能短。
或用屏蔽线(如图4-1所示)。
2. 将直流稳压电源调节到+5V ,关闭电源后,将各器件电源端与稳压电源相连。
实验报告电子测量
一、实验目的1. 熟悉电子测量仪器的基本原理和使用方法。
2. 掌握常用电子测量仪器的操作技巧。
3. 提高电子测量实验技能,培养严谨的科学态度。
二、实验原理电子测量是指利用电子技术和电子仪器对各种物理量进行测量。
本实验主要涉及以下测量原理:1. 电压测量:利用电压表直接测量电路中的电压值。
2. 电流测量:利用电流表直接测量电路中的电流值。
3. 电阻测量:利用欧姆定律,通过测量电压和电流,计算出电阻值。
4. 频率测量:利用频率计测量信号源的频率值。
5. 信号发生器:产生各种频率、幅度和波形的标准信号。
三、实验仪器1. 双踪示波器2. 数字万用表3. 欧姆表4. 频率计5. 信号发生器6. 滑动变阻器7. 电容8. 电感9. 电源四、实验内容1. 示波器使用方法(1)观察正弦波(2)观察矩形波(3)观察三角波(4)观察李萨如图形2. 电压测量(1)测量直流电压(2)测量交流电压3. 电流测量(1)测量直流电流(2)测量交流电流4. 电阻测量(1)测量固定电阻(2)测量可变电阻5. 频率测量(1)测量正弦波频率(2)测量矩形波频率6. 信号发生器使用(1)产生正弦波(2)产生矩形波(3)产生三角波五、实验步骤1. 示波器使用方法(1)打开示波器电源,调整亮度、对比度等参数。
(2)将示波器探头连接到待测电路,调整探头衰减倍数。
(3)观察波形,调整示波器参数,使波形清晰可见。
2. 电压测量(1)将电压表的正极探头连接到电路中待测电压点,负极探头接地。
(2)选择合适的量程,读取电压值。
3. 电流测量(1)将电流表串联接入电路中待测电流点。
(2)选择合适的量程,读取电流值。
4. 电阻测量(1)将待测电阻接入电路。
(2)选择合适的量程,读取电阻值。
5. 频率测量(1)将频率计探头连接到待测信号源。
(2)选择合适的量程,读取频率值。
6. 信号发生器使用(1)将信号发生器输出端连接到待测电路。
(2)调整信号发生器参数,产生所需波形。
电子测量实验报告
电子测量实验报告本实验主要涉及到电阻、电位差、电流等电学知识。
通过使用电流表、电压表、万用表等实验仪器,测量不同电路中的电流、电压和电阻等参数,并分析实验结果。
一、实验内容1.测量电路中电流的方法。
二、实验原理1.欧姆定律:电流和电势差成比例,电流与电压之比为电阻。
2.闭合电路中各点电势差和为0。
3.串联电路中电阻之和为总电阻,并联电路中电阻之倒数之和为总电阻的倒数。
三、实验步骤(2)保持电流表的接线不变,改变电路的元件,比较不同元件的电流大小。
(3)测量串、并联电路中各元件的电流大小,并与理论值进行比较。
(1)使用电压表测量电路中的电位差。
四、实验数据电路1(串联电路):R1=100Ω,R2=200Ω,R3=300Ω,U=12V。
| R | 电流 | 理论值 || 100Ω | 0.06A | 0.06A |总电流为0.11A,理论值为0.11A。
电路1(单个电源):U1=1.5V,U2=3.0V,U3=4.5V。
| U1 | 1.47V | 1.5V |电路1(测量单个电阻):R=100Ω。
测量值为99.9Ω。
测量值为600.1Ω,理论值为600Ω。
等效电路的电阻值为599.9Ω,实验值为600.1Ω。
五、实验结果与分析从实验数据可以看出,串联电路中各元件的电流随电阻大小的变化而变化,电路总电流等于各元件电流之和。
而并联电路中各元件的电流与电阻大小呈反比例关系,总电流等于各元件电流之和。
由数据对比可得,实验值与理论值较接近,误差较小,说明实验结果比较准确。
六、实验结论。
电子测量实验报告
电子测量实验报告电子测量实验报告引言:电子测量是电子工程领域中至关重要的一环,它涵盖了各种测量技术和仪器的应用。
在本次实验中,我们将探索电子测量的原理和方法,并通过实际操作来验证这些理论。
一、实验目的本次实验的目的是通过测量电阻、电容和电感等元件的参数,加深对电子测量原理的理解,并掌握相应的测量方法和技巧。
二、实验仪器和材料1. 电源:提供电流和电压源。
2. 万用表:用于测量电阻、电压和电流等参数。
3. 电阻箱:用于调节不同阻值的电阻。
4. 电容箱:用于调节不同容值的电容。
5. 电感箱:用于调节不同感值的电感。
6. 示波器:用于观察电压和电流的波形。
三、实验步骤1. 电阻测量:a. 将电阻箱的阻值调节到一个已知值,例如100欧姆。
b. 将电阻箱与万用表相连,选择电阻测量档位,记录测量结果。
c. 重复以上步骤,测量不同阻值的电阻。
2. 电容测量:a. 将电容箱的容值调节到一个已知值,例如10微法。
b. 将电容箱与万用表相连,选择电容测量档位,记录测量结果。
c. 重复以上步骤,测量不同容值的电容。
3. 电感测量:a. 将电感箱的感值调节到一个已知值,例如100毫亨。
b. 将电感箱与万用表相连,选择电感测量档位,记录测量结果。
c. 重复以上步骤,测量不同感值的电感。
四、实验结果与分析1. 电阻测量:我们测量了不同阻值的电阻,结果如下:- 100欧姆:测量值为99.8欧姆- 200欧姆:测量值为200.1欧姆- 500欧姆:测量值为500.2欧姆通过对比测量值和已知值,我们可以发现测量结果的准确性较高。
2. 电容测量:我们测量了不同容值的电容,结果如下:- 10微法:测量值为10.1微法- 20微法:测量值为19.9微法- 50微法:测量值为50.3微法测量结果与已知值相比,存在一定的误差,这可能是由于电容箱的精度限制或测量方法的不完善导致的。
3. 电感测量:我们测量了不同感值的电感,结果如下:- 100毫亨:测量值为99.9毫亨- 200毫亨:测量值为200.2毫亨- 500毫亨:测量值为500.1毫亨测量结果与已知值相比,误差较小,说明测量方法的准确性较高。
电子厂电测实习实践报告
电子厂电测实习实践报告实习期间,我所在的电子厂主要负责电测实习工作。
在这段时间里,我在实际工作中学到了很多知识和技能,并且提升了自己的实践能力。
以下是我实习期间的总结报告。
首先,在实习期间,我学会了如何正确使用常见的电子测试仪器。
比如示波器、信号发生器、电源等。
在实际操作中,我学会了正确连接测试仪器,调整仪器参数,以及观察测试结果。
通过使用这些仪器,我可以对电子元器件或电路进行准确的测量和判断。
其次,我还学习了如何使用计算机辅助测试仪器。
在工作中,我们经常使用计算机软件来控制测试仪器和分析测试结果。
我学会了如何正确安装和配置相关软件,以及使用它们来自动化测试过程,提高测试效率。
这也为我今后工作中的数字化转型提供了基础。
另外,我还参与了一些具体的电测实验项目。
例如,测量电阻、电压、电流等基本参数,测试电路的响应时间和频率特性。
通过这些实验,我不仅加深了对电子原理和电路知识的理解,还培养了自己的实验操作能力和数据处理能力。
同时,我还学到了一些电测实践中的注意事项和技巧。
比如,要保持电测仪器的精确度和可靠性,我们需要定期校准和维护仪器。
另外,在进行电测实验时,我学会了合理安排实验步骤,防止误操作和事故发生。
这些注意事项和技巧对于保证工作质量和人身安全非常重要。
在实习期间,我还与其他同事进行了团队合作。
在项目中,我们需要共同完成一些较复杂的电测任务。
通过与其他同事的合作,我学会了如何与人合作、沟通和协调。
这对于今后的职业发展来说是非常重要的。
总的来说,电测实习期间是一个非常宝贵的学习机会。
通过实际工作的实践,我不仅加深了对电子测试仪器和技术的理解,还提高了自己的实践能力和团队合作能力。
同时,我也发现了自身的不足,例如实验操作技能和数据处理能力等方面仍需进一步提升。
因此,我会在今后的学习和工作中更加努力,补充相关知识和技能,提升自己的专业水平。
电子测量技术实验报告
电子测量技术实验报告实验一:示波器的一般应用一、实验目的:了解通用电子示波工器工作原理的基础上,学会正确使用示波器测量各种电参数的方法。
二、实验仪器:1、函数信号发生器,SG1646,1台;2、双踪示波器,型号CA8000系列,数量1台。
三、实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。
它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。
我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。
电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的_偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。
若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。
因此,只有当_偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。
一般说来,Y偏转板上所加的待观测信号的周期与_偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。
这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。
近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。
只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。
在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。
交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。
电子测量技术实验报告
电子测量技术实验报告实验名称:电子测量技术实验实验目的:1. 熟悉电子测量仪器的使用方法。
2. 掌握基本的电子测量技术,包括电压、电流、频率等参数的测量。
3. 理解测量误差的来源及其对测量结果的影响。
实验原理:电子测量技术是利用电子仪器对电子电路中的电参数进行定量分析的技术。
常见的电子测量仪器包括示波器、万用表、频率计等。
本实验主要通过这些仪器对电路中的电压、电流、频率等参数进行测量,以验证电路设计的正确性及性能指标。
实验设备:1. 示波器2. 万用表3. 频率计4. 信号发生器5. 待测电路板及相关连接线实验步骤:1. 检查实验设备是否完好,确保所有仪器均处于正常工作状态。
2. 根据实验要求,搭建待测电路,并连接相应的测量仪器。
3. 使用示波器测量电路中的波形,记录波形的幅度和频率。
4. 使用万用表测量电路中的电压和电流,记录测量值。
5. 使用频率计测量信号的频率,记录频率值。
6. 分析测量结果,与理论值进行比较,计算误差。
7. 根据实验结果,调整电路参数,优化电路性能。
实验结果:1. 示波器测量结果显示,波形幅度为X伏特,频率为Y赫兹。
2. 万用表测量结果显示,电路中的电压为Z伏特,电流为A安培。
3. 频率计测量结果显示,信号频率为B赫兹。
误差分析:1. 示波器测量误差可能来源于仪器的校准精度以及操作者读数的准确性。
2. 万用表测量误差可能来源于仪器的内部误差以及接触不良。
3. 频率计测量误差可能来源于信号源的稳定性以及测量环境的干扰。
实验结论:通过本次实验,我们成功地掌握了电子测量技术的基本操作,并对电路中的电压、电流、频率等参数进行了准确的测量。
实验结果与理论值相比,误差在可接受范围内,说明电路设计基本正确,性能指标符合预期。
通过误差分析,我们了解到了测量误差的来源,为今后的实验提供了宝贵的经验。
实验心得:在本次实验中,我深刻体会到了电子测量技术在电子电路分析中的重要性。
通过实际操作,我不仅学会了如何使用各种电子测量仪器,还学会了如何分析测量结果,评估电路性能。
《电子测量技术》实验报告
《电子测量技术》实验报告实验名称:电子测量技术实验实验目的:1. 理解电子测量的基本原理和方法。
2. 掌握常用电子测量仪器的使用方法。
3. 学会利用电子测量技术进行电路参数的测量和分析。
实验设备:1. 多用电表2. 示波器3. 信号发生器4. 电阻、电容、电感等电子元件5. 电路板及相关连接线实验原理:电子测量技术是利用电子仪器对电子电路中的电压、电流、频率、时间等参数进行测量的技术。
本实验通过使用多用电表、示波器等仪器,对电路中的参数进行测量,以验证电路设计的正确性和性能指标。
实验内容及步骤:1. 使用多用电表测量电阻、电容和电感的值。
- 校准多用电表,选择合适的量程。
- 将待测元件接入多用电表,记录测量结果。
2. 使用示波器观察信号波形。
- 连接信号发生器和示波器,设置信号发生器的频率和幅度。
- 观察示波器显示的波形,记录波形参数。
3. 测量电路的频率响应。
- 搭建待测电路,连接信号发生器和示波器。
- 改变信号发生器的频率,观察示波器上波形的变化,记录不同频率下的波形参数。
4. 分析测量结果。
- 对比理论值和测量值,分析误差产生的原因。
- 根据测量结果,评估电路的性能。
实验结果:1. 电阻、电容和电感的测量值与理论值基本一致,误差在可接受范围内。
2. 信号波形清晰,幅度和频率与设置值相符。
3. 电路的频率响应曲线平滑,符合设计预期。
实验结论:通过本次实验,我们掌握了电子测量的基本方法和仪器的使用,能够对电路中的参数进行准确测量。
实验结果表明,所搭建的电路性能良好,与设计预期相符。
通过实验,我们加深了对电子测量技术的理解,提高了实际操作能力。
注意事项:1. 在使用电子测量仪器前,应仔细阅读使用说明书,了解仪器的使用方法和注意事项。
2. 在测量过程中,注意仪器的量程选择,避免超量程测量。
3. 实验结束后,应及时整理实验器材,确保仪器和元件完好无损。
本次实验报告到此结束,感谢指导老师的悉心指导和同学们的协助。
电子测量实验报告
电子测量实验报告本次实验主要是为了学习电子测量的基本原理和方法,并掌握其在实际应用中的运用。
通过了解电子测量的基本概念和理论,我深刻认识到电子测量在现代科技领域中的重要作用。
在本文中,我将分享我的实验经验以及对电子测量的一些认识。
一、实验目的及原理1. 实验目的:(1)掌握电子测量系统的工作原理;(2)了解电子仪器在实际应用中的优势和不足;(3)学会使用示波器、万用表等基本电子仪器进行测量和分析。
2. 原理电子测量是一种使用电子仪器对电路中的电压、电流、频率、电阻、电容等参数进行测量的方法。
电子测量系统由各种电子仪器组成,其中更加常用的是示波器和万用表。
示波器是一种能够显示波形的电子仪器,它可以显示信号的振幅、频率、相位等参数。
示波器的工作原理是将电压信号转换为电流信号,并通过电子管进行放大,最终在显像管上形成图象。
波形的形状可以反映电路中存在的各种问题,如幅值、频率、相位、波形失真等。
万用表是一种通用测量仪器,它能够测量电压、电流、电阻等不同类型的参数。
万用表的原理是通过电阻进行测量,通过电阻计算出被测量的参数。
由于万用表能够自动调整量程,因此它也是一种非常常用的电子仪器。
二、实验操作及结果在实验中,我们首先使用万用表对电路进行初步测试,测量各节点的电压和电阻值。
接下来,我们使用示波器对电路中的信号进行测量,如测量不同频率下的信号波形、测量滤波器的截止频率等。
最终,我们还使用示波器进行信号发生器的调整和测量,以学习如何生成各种信号和测量示波器的性能。
通过实验,我对电子测量的基本原理和方法有了更深入的了解。
同时,我也认识到电子仪器在实际应用中存在的各种问题,如精度、量程、滞后等。
电子测量需要精密的仪器和高超的技能,因此在日常的实践中需要谨慎、细致地进行。
三、实验结论及心得通过本次实验,我对电子测量有了更系统的认识,并掌握了一些基本的技能和方法。
在实际应用中,电子测量起着至关重要的作用,它在各个行业中都有应用,如通讯、电力、航空等。
电子测量技术实验报告
电子测量技术实验报告电子测量技术实验报告引言:电子测量技术是电子工程中非常重要的一部分,它涉及到电子设备的测量、测试和校准等方面。
本实验报告将对电子测量技术进行探讨和总结,包括测量仪器的使用、测量误差的分析和校准方法的介绍。
一、测量仪器的使用在电子测量中,常用的测量仪器有示波器、信号发生器和多用表等。
示波器是一种用于观察和测量电压波形的仪器,它能够直观地显示信号的幅度、频率和相位等信息。
信号发生器则是用于产生各种特定频率和幅度的信号,以便进行测试和校准。
多用表则广泛应用于电压、电流、电阻等基本参数的测量。
二、测量误差的分析在电子测量中,由于各种因素的存在,测量结果往往会存在一定的误差。
误差的来源包括测量仪器的精度、环境条件的变化以及人为操作的不准确等。
为了减小误差,我们需要了解误差的类型和产生原因。
常见的误差类型有系统误差和随机误差。
系统误差是由于测量仪器本身的不准确性或者测量环境的变化引起的,而随机误差则是由于测量过程中的偶然因素导致的。
三、校准方法的介绍为了提高测量结果的准确性,我们需要对测量仪器进行校准。
校准是通过与已知准确值进行比较,确定测量仪器的误差并进行修正的过程。
常用的校准方法包括零点校准、量程校准和线性校准等。
零点校准是将测量仪器的零点偏差调整到准确值,以消除系统误差。
量程校准则是通过调整测量仪器的量程范围,使其能够准确测量不同幅度的信号。
线性校准则是通过与已知线性关系的信号进行比较,确定测量仪器的非线性误差并进行修正。
四、实验结果与讨论在本次实验中,我们使用示波器对一个正弦信号进行测量,并对测量结果进行分析和讨论。
通过实验数据的记录和处理,我们可以得到信号的幅度、频率和相位等参数。
同时,我们还可以计算出测量结果的误差,并通过校准方法进行修正。
实验结果表明,经过校准后,测量结果的准确性得到了显著提高。
结论:电子测量技术是电子工程中不可或缺的一部分,它对于电子设备的测试和校准具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电子测量技术》实验报告姓名:xxxxxxx学号:xxxxxxxxxxx班级:电气xxxxx班组员:xxxxxxxxxxx指导教师:xxxxxxxx实验日期:xxxxxxxxxxxx实验一示波器波形参数测量一实验目的通过示波器的波形参数测量,进一步巩固加强示波器的波形显示原理的掌握,熟悉示波器的使用技巧。
1. 熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。
2. 熟练掌握用示波器测量电压信号周期及频率。
3. 熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。
二实验设备1.信号发生器, 示波器2.电阻、电容等三实验步骤1.测量1kHZ的三角波信号的峰峰值及其直流分量。
2.测量1kHZ的三角波经下图阻容移相平波后的信号的峰峰值及其直流分量。
3.测量1kHZ的三角波的周期及频率。
4.用单踪方式测量三角波、两信号间的相位差。
5.用双踪方式测量三角波、两信号间的相位差。
6.信号改为100HZ,重复上述步骤1~5。
四实验数据1.本实验所用RC 移相平波电路中,2.1kHz三角波测量结果数据记录表和相位差100Hz 三角波测量结果数据记录表三角波和相位差3.数据处理与分析(1)幅值解:由于输出信号幅值基本保持不变,下面以幅值衰减倍数作为变量进行比较:输入信号为1kHz三角波时,幅值衰减倍数输入信号为100Hz三角波时,幅值衰减倍数该移相平波电路对100Hz三角波的衰减较小,推广到一般,RC移相平波电路对低频信号的衰减较小(2)直流分量:解:由于输出信号直流分量基本保持不变,可直接对输出信号的直流分量进行比较,输入信号为1kHz三角波时,输入信号为100Hz三角波时,该移相平波电路对三角波的直流分量的阻隔作用近乎没有。
推广到一般,RC移相平波电路对信号的直流分量没有阻隔作用。
(3)相位差:°解:输入信号为1kHz三角波时,采用单踪方式:采用双踪方式:输入信号为100Hz三角波时,采用单踪方式:采用双踪方式:单踪方式较双踪方式准确比较两项的相位差可知,该移相平波电路对1kHz三角波的移相作用较明显,推广到一般,RC移相平波电路对高频信号的移相作用较大五实验结论1.RC移相平波电路对于100Hz三角波信号,幅值衰减较小,直流分量阻隔作用较大,相位移动较小;对于1kHz三角波信号,幅值衰减较大,直流阻隔分量较小,相位移动较大。
推广到一般,RC移相平波电路对于低频信号,幅值衰减较小,直流分量阻隔作用较大,相位移动较小;对于高频信号,幅值衰减较大,直流阻隔分量较小,相位移动较大。
2.对于示波器测量,单踪方式较双踪方式更为准确,且适用范围较广,因为双踪方式不可用于不相干信号的测量,否则会导致波形不稳定。
六实验问题讨论1.测量相位差时,你认为双踪、单踪测量哪种方式更准确?为什么?解:单踪测量更准确。
选用双踪方式时,使用两个输入通道,双踪方式的扫描分为交替方式(ALT)和断续方式(CHOP)两种,均会产生更大系统误差,因而导致双踪工作方式的准确度略低于单踪工作方式。
2.你认为在实验过程中,双踪示波器的扫描是工作在交替、还是断续方式?为什么?解:当输入信号为1kHz三角波时,示波器工作在交替方式;当输入信号为100Hz三角波时,示波器工作在断续方式;交替扫描方式为非实时扫描,开关速度低,适用于高频信号,而断续、扫描方式为实时扫描,开关速度高,适用于低频信号。
3.对于同一组移相电路,1kHz和100Hz三角波经过移相变换后,其相位、幅值有何不同?为什么解:对于同一组移相电路,输入信号形式相同但频率不同时,会产生不同输出信号。
下面先进行理论分析:根据基尔霍夫定律,得:解之,得:代入输入信号(三角波)其中,为三角波斜率,正比于三角波的频率解常微分方程,得:明显与三角波频率f有关。
不同频率的信号将产生不同的输出信号:RC移相平波电路对于低频信号,幅值衰减较小,直流分量阻隔作用较大,相位移动较小;对于高频信号,幅值衰减较大,直流阻隔分量较小,相位移动较大。
在实验中,实验现象与理论分析相恰。
因此,考虑到实际应用,使用RC电路进行隔直作用时,输入信号的频率尽量低。
七实验总结1.用示波器进行测量时,可采用光标测量。
具体操作方法如下:(1)按选择功能::光标水平放置,进行电压测量;:光标垂直放置,进行时间测量;OFF:光标消失,退出光标测量功能。
(2)按TCK/C2选择跟踪基线:C1,C2,C1和C2。
(3)调节FUNCTION,以调整光标位置,其中,当选定C1和C2进行跟踪时,两光标保持间距不变进行位置移动。
(4)在屏幕下方读出所测数据()2. 单踪方式与双踪方式:(1)进行测量时,触发信号应接外触发(待测信号),以免波形不稳;(2)对于示波器,单踪方式较双踪方式更为准确,且适用范围较广,因为双踪方式不可用于不相干信号的测量,否则会导致波形不稳定。
但双踪方式在比较时更为直观(3)由以上分析可知:进行相位差的测量时,单踪方式的测量误差比双踪方式略小。
其原因主要在于示波器在两种工作状态下的工作方式有所不同:双踪方式的扫描分为交替方式(ALT)和断续方式(CHOP)两种,均会造成微小误差,因而导致双踪工作方式的准确度略低于单踪工作方式。
另外,交替扫描方式适用于高频信号,而断续扫描方式适用于低频信号。
3. RC移相平波电路:对于低频信号,幅值衰减较小,直流分量阻隔作用较大,相位移动较小;对于高频信号,幅值衰减较大,直流阻隔分量较小,相位移动较大。
因此,考虑到实际应用,使用RC电路进行隔直作用时,输入信号的频率尽量低实验二图示仪的使用及晶体管特性参数测量一实验目的通过图示仪对晶体管参数的测量使用,加强对图示仪的波形显示原理的掌握,熟悉图示仪的使用方法。
1.学会用图示仪测量晶体三极管的特性参数。
2.学会用图示仪测量二极管的特性参数。
3.学会用图示仪测量稳压二极管的特性参数。
二实验设备1.图示仪2.二极管、稳压二极管、晶体管9012、9013三实验步骤1.测量二极管的导通特性曲线。
2.测量稳压二极管的正向、反向特性曲线。
3.测量晶体管9012的特性曲线,计算、、、。
4.测量晶体管9013的特性曲线,计算、、、。
四实验数据1.晶体管9013的特性曲线(9013为NPN型三极管)图一 图二横轴表示集电极电压,一格表示2V, 纵轴表示集电极电流,一格表示2mA下面从输出特性曲线上能够查出、、、这四个主要参数:(1)时的即为。
由图一可知,当时,集电极电流基本为零。
(2) 饱和压降。
集电极电流(饱和)时对应的即为饱和压降。
由图一可以读出。
(3)电流放大倍数 理论公式读图一知,基极所加阶梯电流,集电极电流变化,。
(4)反向击穿电压按下零电流,即,适当的选择限流电阻,适当的选择电压档位和极性,逐渐增加扫描电压,观测电流的变化,当发生电流突变时的拐点位置,即为击穿电压。
由下图可知:此时横轴一格表示,。
2.晶体管9012特性曲线(9012为PNP型三极管)图三图四由图三知,横轴一格表示2V,纵轴一格表示2mA,,,,由图四知,此时横轴一格表示10V,五实验问题讨论1.测量二极管、稳压二极管的特性曲线时,如何注意Rc及扫描电压的档位?解:RC应该调至适当的档位,保护被测电阻。
测量正向特性时应将RC适当调大,使扫描的电流小于稳压管的最大电流,以免烧坏器件。
扫描电压应调至“0”处,待实验开始后逐渐增大,但应小于器件的最大电压。
2.测量晶体管的特性曲线时,为什么增加级数时,屏幕上的波形为什么会闪动?请你计算扫描一簇曲线所用的时间?解:增加簇数,使n增大,由知,要增大,阶梯波发生器开关速度低,重新产生增大后的阶梯信号会出现闪动。
3. 如何进行阶梯波的调零?解:以PNP型三级管为例,显示部分中间按钮按下,调零起始位置在右上角,级数选择“1”,最“左”位置。
按下测量板上的“零电流”,调整Vce=10V,此时为,松开零电流,应使第一条线与重合,即阶梯调零旋钮。
实验三数值化测量仪的使用一实验目的通过数字化测量仪的使用,进一步巩固加强对数值化测量原理的掌握,不同数值化测量的误差分析及影响因素。
1.学会用数字化测量仪测量信号的周期和频率。
2.学会分析数字化测量的误差来源。
3.掌握如何减少测量误差的措施。
二实验设备1.信号发生器2.数字频率计三实验步骤分别用测频、测周的方法测量100Hz、1kHz、100Hz的方波,将测量数据添入下表。
四实验问题讨论1.通过以上实验数据,请你分析该测量系统的误差来源,以及减少测量误差的措施和方法。
解:在测频时:相对误差由量化误差和标准频率误差两部分组成:=-,称为标准频率误差。
当频率一定,闸门时间越长,测量准确度越高;当闸门时间一定时,频率越高,测量准确度越高。
解决方法:A:选择准确性高、稳定性高的晶振作为时标信号发生器。
B: 在不使计数器产生溢出的情况下加大分频器的分频系数,扩大主门的开启时间。
C:对于随机的计数误差可提高信噪比或调小通道增益来减小误差。
在测周时:误差有量化误差、转换误差、标准频率误差。
当频率一定,闸门时间越长,测量准确度越高;当闸门时间一定时,频率越小,测量准确度越高。
解决方法:A:采用多周期测量。
B:选用小时标。
C:测量过程中尽可能提高信噪比。
2.为什么在减小输入信号的幅值到一定程度时,测量数值相差会突然增大?解:在减小输入信号的幅值到一定程度时,测量无法满足计数器要求的触发电平,所以相位差会突然增大。