药物动力学常见参数及计算方法PK
药物PK

100 50 Conc (µg/L) 30
10 5 3
10
4
8
12 16 Time (h)
20
24
参差=1hα实测-1hβ外推值
Time (h) 1 2 4 6 12 18 24 Conc (µg/L) 39.0 22.0 10.3 7.29 4.86 3.50 2.52 β值 (µg/L) 9.00 8.40 7.50 6.72 4.86 3.50 2.52 α值 (µg/L) (实测 - β) 30.0 13.6 2.8
令
1 (1 + K ' [ I ]) K
为
1 K1
E' [D] = Emax 1 (1 + K' [I]) + [D] K
E' Emax
=
[D ] 1 + [D ] K1
E' Emax
K1 [ D ] = 1 + K1 [ D ]
利用计量比计算pA2:log (DR-1) = log[I] + logK‘.DR=D’/D0
药代动力学参数的 含义和计算
(单剂静脉注射一级消除动力学)
叶开和
一、常用参数及意义
消除速率常数 (K or Ke)
• 表示单位时间内机体能消除药物的固定分 数或百分比,单位为时间的倒数。如某药 的k=0.2h-1,表示机体每小时可消除该小 时起点时体内药量的20% • 一级消除动力学时,k为一常数。是衡量药 物消除快慢的一临床常用参数 • 计算:K or Ke=0.693/t1/2
50 Conc (µg/L) 30
药物动力学和生物药剂大作业解析

药物动力学和生物药剂大作业解析1. 药物动力学概述1.1 定义药物动力学(Pharmacokinetics,简称PK)是研究药物在人体内的吸收、分布、代谢和排泄等过程的学科。
药物动力学的主要目的是了解药物的体内行为,为合理用药提供依据。
1.2 药物动力学参数药物动力学的主要参数包括:- 吸收速率常数(Ka):表示药物从给药部位进入血液循环的速度。
- 分布半衰期(t1/2, d):表示药物在体内分布的速度。
- 代谢速率常数(K metabolism):表示药物在体内的代谢速度。
- 排泄速率常数(K excretion):表示药物从体内排出的速度。
- 总体清除率(Cl):表示药物在体内的清除速度。
2. 生物药剂学概述2.1 定义生物药剂学(Biopharmaceutics)是研究药物在体内的生物可用性,包括药物的溶解、吸收、分布、代谢和排泄等过程的学科。
生物药剂学的主要目的是优化药物的制剂和给药方式,提高药物的疗效和安全性。
2.2 生物药剂学参数生物药剂学的主要参数包括:- 生物利用度(F):表示药物进入血液循环的相对量。
- 血药浓度-时间曲线(C-t曲线):表示药物在体内的浓度变化。
- 药时曲线下面积(AUC):表示药物在体内的暴露程度。
3. 大作业内容解析3.1 吸收吸收是药物进入血液循环的过程,包括口服、注射等给药途径。
影响吸收的因素有药物的溶解度、给药部位的血管丰富程度、药物的脂溶性等。
在大作业中,需要分析不同给药途径对药物吸收的影响,以及如何优化给药剂量和给药频率。
3.2 分布分布是指药物在体内的分布过程,包括组织分布和血脑屏障等。
影响分布的因素有药物的脂溶性、蛋白质结合率、体重等。
在大作业中,需要分析药物在不同组织和器官的分布情况,以及如何调整药物的剂量和给药方式以实现靶向治疗。
3.3 代谢代谢是指药物在体内的化学转化过程,主要发生在肝脏。
影响代谢的因素有药物的结构、酶活性、遗传因素等。
PK基础参数浓度AUC=曲线下面积=药物暴露的时间

制定I期临床研究方案经常遇到的问题
起始剂量:来自动物实验未观察到不良反应的 剂量〔 ()〕换算成人体剂量后的一个分量 ( )。
21
I期研究起始剂量的确定
确定起始剂量的原则:安全、科学 确定起始剂量参考的文献:
(, )
对于I期临床研究提出了人体等效剂量 ( )的概念, 从动物实验数据推算可能产生等价药效的人体剂量。
消除
毒性
11
基础
代谢
肝代谢,还有肠、肺、血液… 代谢 = 酶类 抑制、诱导、互动 基因、年龄、环境的影响 区域内和区域间的个别差异性
冬夏食物不 同诱导可能 不同
CYP3A 43%
P450所涉及的药物代谢%
CYP2C9 10%
CYP1A2 CYP2
6%
E1
5%
消除
CYP2A6 2% CYP2C19 4%
5*0.162=0.811。
引自:
24
举例:抗肿瘤药物的起始剂量确定
多数抗肿瘤药物的治疗指数很窄,较高的 起始剂量可能导致出现严重毒性,甚至患者死 亡,从而使得原本具有很好潜力的有效药物不 能得以继续研发。另一方面,如果选择过低的 起始剂量,那么就有可能使得试验周期延长, 造成资源浪费,而且从伦理学角度考虑,不应 使过多患者暴露在无效剂量下。因此,起始剂 量的选择应当综合非临床药效、毒理和药代动 力学/毒代动力学的研究结果综合考虑。
抗肿瘤药物临床试验技术指导原则(第二稿) 二〇〇七年三月 尚未颁布 28
举例:抗肿瘤药的剂量递增
有些非细胞毒类药物的毒性很小,可能不 能观察到明显的。但即使药物活性的靶点已经 饱和或在没有显著毒性的时候就观察到了明显 疗效,也仍然建议研究更高的剂量,以便更好 的明确化合物的安全性。如果剂量递增到观察 到疗效后,继续增加剂量并没有看到疗效的增 加,而毒性增加明显,则应选择较低的剂量进 行下一步的研究。
药代动力学参数回顾

药代动力学参数回顾引言药代动力学是研究药物在人体内的吸收、分布、代谢和排泄过程,旨在了解药物在体内的动力学特性。
药代动力学参数是对药物在体内行为进行量化和描述的指标,可以用来预测给药方案、评估药物疗效以及调整药物剂量等。
常见药代动力学参数1. 生物利用度(Bioavailability)生物利用度是指口服给药后经胃肠道吸收到达整个体系的药物比例。
通常以F表示,计算公式为:F = (AUC口服 / AUC静脉注射)× 100%。
生物利用度越高,药物在体内的有效浓度越大,对患者的治疗效果越好。
2. 血浆蛋白结合率(Plasma Protein Binding)血浆蛋白结合率是指药物与血浆蛋白结合形成复合物的比例。
蛋白结合率越高,药物与蛋白结合的数量越多,有效游离于血浆中的药物浓度越低,可能影响药物的疗效和副作用。
3. 分布容积(Volume of Distribution)分布容积是描述药物分布范围大小的参数,表示药物在体内分布的广度。
计算公式为:Vd = 药物总量 / C0,其中C0为给药后血浆药物浓度。
分布容积越大,说明药物在组织中的浓度较高,对组织起作用的可能性也较大。
4. 消除半衰期(Elimination Half-life)消除半衰期是指体内药物浓度下降到原来半数所需的时间。
消除速率常用半衰期来表示,可根据消除速率计算出来。
消除半衰期越长,说明药物在体内的代谢和排泄速度较慢,剂量间隔较长,患者需要较少次数的给药。
5. 清除率(Clearance)清除率是描述从体内完全清除药物所需的速度。
清除率可以通过总药物量除以AUC(面积下曲线)得到。
清除率越大,说明药物在体内的代谢和排泄速度越快,患者可能需要更频繁的给药。
结论药代动力学参数对于药物的合理使用和治疗效果的评估起着至关重要的作用。
了解和评估这些参数可以帮助医生和药师更好地选择和调整药物方案,从而确保药物的安全有效使用。
以上是对常见药代动力学参数的回顾,希望能够对读者有所帮助。
PK基础参数浓度AUC=曲线下面积=药物暴露的时间

举例:抗高血压药的耐受性研究
应该进行单次和多次给药的人体耐受性研 究,研究中可以同时观察试验药物的降压效应、 主要不良反应的类型和程度等,试验中需要制 定明确的终止标准。
抗高血压药物临床试验技术指导原则(第二稿) 二〇〇七年三月 尚未颁布 35
Day 8 B C A B C A
Day 15 C A B A B C
仍然12位受试者。分为6组,每组2人。 试验设计更加均衡。有利于减少给药顺序和试 验周期的影响。
54
设计
组号
1
2
3
A
A
B
C
B
D
A
B
C
B
C
D
D
C
D
A
55
药代动力学参数的估算
将试验中测得的各受试动物的血药浓度-时间的数据 分别进行药代动力学参数的估算,求得新药的主要 药代动力学参数,其中口服给药包括:(吸收速率 常数)、(峰时间)、(峰浓度)、(血药浓度-时 间曲线下面积)、(表观分布容积)、(消除速率 常数)、t1/2(消除半衰期)、(清除率)等。静 脉注射包括:t1/2(a)、t1/2(b)、K12、K21、K10、、 (T)、等。
临床药代动力学研究及相关问题
北京协和医院临床药理中心 胡蓓
1
概念
药代动力学()
药效动力学
()治疗
剂量
血浆浓度 作用部位
效应
途径
2
基础 定义
药物代谢动力学 = 药物在体内发生了什么
3
基础 定义
吸收
分布
+
消除
4
基础 吸收
pk参数 剂量 标准化

pk参数剂量标准化PK参数是药物动力学的重要指标,可以帮助评估药物在体内的吸收、分布、代谢和排泄等过程。
剂量是指给予患者的药物量,可以影响药物的疗效和毒副作用。
标准化的剂量可以确保患者获得一致的药物效果。
PK参数可以用来描述药物在体内的浓度随时间的变化。
其中,最常见的PK参数包括药物的血浆浓度最大值(Cmax)、药物的消除半衰期(T1/2)、药物的生物利用度(F)、药物的分布容积(Vd)和药物的清除率(CL)等。
Cmax是指药物在达到最高血浆浓度时的浓度值。
通常情况下,Cmax越高,药物的吸收越快,疗效也可能更明显。
但是高Cmax也可能带来更多的毒副作用。
T1/2是指药物浓度下降到初始浓度的一半所需的时间。
T1/2越长,药物的留留时间越长,药物的剂量也可能需要适当调整。
F是指口服药物经过肠道吸收到达血液循环的百分比。
F越高,药物的生物利用度越高,患者可能需要较低的剂量来达到相同的效果。
Vd是指药物在体内分布的容积。
Vd越大,药物可能更快地分布到组织中,从而产生更快的药效。
CL是指单位时间内从体内清除药物的速率。
CL越大,说明药物清除得越快,患者可能需要更频繁地给予药物剂量。
为了确保药物在不同患者之间产生一致的效果,需要进行剂量的标准化。
标准化剂量可以使不同患者在不同时间点获得相同的药物浓度,从而确保药物的疗效和安全性。
标准化剂量可以根据患者的体重、年龄和疾病状况等因素进行调整。
总之,PK参数是药物动力学的重要指标,可以帮助评估药物在体内的吸收、分布、代谢和排泄等过程。
剂量的标准化可以确保患者获得一致的药物效果,同时需要考虑到PK参数的值来调整药物的剂量。
药物动力学常见参数及计算方法PK

药物动力学常见参数及计算方法PK药物动力学是研究药物在体内吸收、分布、代谢和排泄过程的学科。
常见的药物动力学参数有药物在体内的最大浓度(Cmax)、时间达到最大浓度的时间(Tmax)、药物的终止半衰期(t1/2)、药物曲线下面积(AUC)等。
Cmax是药物在体内达到的最大浓度,通常用于评估药物的吸收程度。
Cmax的计算方法是在时间轴上,找到药物浓度时间曲线上的最高点即可。
Tmax是药物达到最大浓度的时间,通常用于评估药物的吸收速度。
Tmax的计算方法是在药物浓度时间曲线上,找到最高点所对应的时间点。
t1/2是药物的终止半衰期,表示药物浓度下降到初始浓度的一半所需的时间。
t1/2的计算方法是根据药物浓度时间曲线的下降速率进行计算的。
AUC是药物曲线下面积,表示药物在体内的总体暴露程度。
AUC的计算方法有多种,例如药物面积法、梯形法等。
其中,药物面积法是将药物浓度与时间的数据进行积分,得到曲线下的面积,即为AUC。
计算Cmax、Tmax、t1/2和AUC的方法是通过药物浓度测定数据和相应的数学模型进行计算的。
常见的计算方法包括非线性回归分析、模型无需的方法、工程模型等。
此外,还有其他的药物动力学参数,例如清除率(CL)、分布容积(Vd)等。
清除率表示单位时间内清除药物的能力,计算方法为CL = Dose/AUC;分布容积表示药物在体内分布的广泛程度,计算方法为Vd = Dose/(C0*0.693),其中C0为给药后初始药物浓度。
总之,药物动力学参数的计算方法多种多样,需要根据具体药物的特点和实验数据进行选择。
这些参数可用于评估药物的吸收、分布、代谢和排泄过程,从而指导药物的合理使用和剂量调整。
药物动力学常见参数及计算方法

药物动力学常见参数及计算方法药物动力学是研究药物在体内吸收、分布、代谢和排泄的过程。
常见的药物动力学参数有生物利用度(bioavailability)、药物半衰期(half-life)、分布容积(volume of distribution)、清除率(clearance)等。
1. 生物利用度(bioavailability):生物利用度指的是药物经过各种途径给予后,进入体内的药物与给予相同剂量的静脉注射后进入体内的药物之间的比例。
一般使用以下公式计算生物利用度(F):F = (AUCoral / Doseoral) / (AUCiv / Doseiv) x 100%其中AUCoral是经口给药后药物浓度-时间曲线下的面积,Doseoral 是经口给药的剂量,AUCiv是静脉注射后药物浓度-时间曲线下的面积,Doseiv是静脉注射的剂量。
2. 药物半衰期(half-life):药物半衰期是指体内半数药物被清除的时间。
通常使用以下公式计算药物半衰期:t1/2 = 0.693 / Kel其中Kel是药物的消除速率常数,可以通过药物浓度-时间曲线的斜率计算。
3. 分布容积(volume of distribution):分布容积是指在达到平衡浓度状态下,体内的药物分布范围或分布成分。
一般使用以下公式计算分布容积:Vd = Dose / Cp0其中Dose是给药的剂量,Cp0是给药后的初始浓度。
4. 清除率(clearance):清除率是指单位时间内清除体内药物的能力。
一般使用以下公式计算清除率:Cl = Dose / AUC其中Dose是给药的剂量,AUC是药物浓度-时间曲线下的面积。
除了以上常见的参数和计算方法,还有其他的药物动力学参数,如血浆蛋白结合率、药物间互作用等。
需要根据具体情况选择合适的参数和计算方法进行分析。
同时,药物动力学参数的计算还可能受到个体差异、药物代谢机制等因素的影响,因此需要综合考虑多种因素来进行分析和解释。
药物动力学常见参数及计算方法PK

根据药物动力学原理,制定合理的联合用药方案,提高药物治疗效果,减少不良反应和药物浪费。
联合用药方案
药物作用机制研究
药物疗效评估
药物经济学评价
新药开发和药物评价
通过药物动力学研究,深入了解新药的作用机制和靶点,为新药的进一步研发提供科学依据。
根据药物动力学参数和模型,评估新药的疗效和安全性,为新药的上市审批提供科学依据。
预测药物在体内的药效和安全性
01
通过药物动力学研究,可以了解药物在体内的药效和毒性,为临床用药提供科学依据。
优化给药方案
02
通过药物动力学研究,可以制定更为合理的给药方案,如给药剂量、给药频率和给药途径等,以提高药物的疗效并降低不良反应。
指导新药研发
03
在新药研发过程中,药物动力学研究可以帮助评估药物的吸收、分布、代谢和排泄特性,为新药的进一步开发和优化提供依据。
房室模型概述
房室模型是一种将机体划分为一系列假设的隔室或房室的模型,用于描述药物在体内的分布、吸收、代谢和排泄过程。
一室模型
一室模型是最简单的房室模型,假设药物在体内均匀分布,并具有相同的消除速率。
多室模型
多室模型将机体划分为多个隔室,每个隔室具有不同的药物分布和消除速率,更准确地描述药物在体内的动态变化。
药物动力学的研究目的
01
通过药物动力学研究,医生可以了解药物的疗效和安全性,为患者制定更为合理的用药方案。
药物动力学是临床合理用药的基础
02
通过优化给药方案,可以确保药物在体内达到最佳浓度,从而提高治疗效果。
药物动力学有助于提高药物治疗效果
03
通过了解药物的代谢和排泄特性,可以降低因过量或不足引起的毒副作用和不良反应。
药物动力学常见参数跟计算方法PK资料文档

曲线 直线 多数药物
与剂量呈曲线关系 与剂量呈超比例增加
大剂量时,T1/2延长 与剂量呈超比例增加
米氏方程模型 非线性动力学 先零级,后一级 先直线后曲线 先曲线后直线 少数药物
14
药代动力学参数及其意义
吸收 AUC 反映吸收程度、Ka反映吸收速度 分布 Vd 是表观分布容积.
Vd接近0.1 L/kg说明药物主要在血中 Vd>>1 L/kg则说明该药有脏器浓集现象 消除 包括排泄及代谢, ke,β是消除速率常数 t1/2,t1/2β,CL反映药物的消除速度. 尿排率 过大者,肾功能不佳时应注意减量或延时 过小者,提示代谢为主,肝功不佳时慎用 该药易出现药物相互干扰,联用时应注意 个体差异 AUC,Vd及t1/2的变异系数大于50%者,
常见参数-生物半衰期
生物半衰期(biological half-life, t1/2):这个 参数只是由测定血浆或血清浓度(表观血浆 或血清)的衰变来求出。
t1/2=0.693/Ke
16:18:10
22
C-T 曲线
lnC-T 曲线
一室(少见) 二室(多数药物) 三室(与内源物相近者)
决定用药间隔的半衰期: 一室t1/2,二室t1/2β,三室t1/2γ
dC/dt=-kCn
• 一级消Leabharlann 动力学 • 零级消除动力学16:18:10
9
消除动力学模型
表达式 积分转化 最主要特点
一级消除动力学 零级消除动力学
dc/dt=-kC Ct=C0e-kt 恒比消除
dc/dt=-k Ct=C0-kt 恒量消除
16:18:10
10
l1n100C0000
限速消除(20mg/L)/h
药物动力学常见参数和相关计算方法

房室模型
房室(compartment)
房室的划分是相对的
房室模型的客观性
房室模型的时间性
房室划分
单室模型
多室模型
房室模型的抽象性
开放式和封闭式模型
中央室 周边室
00:33:18
3
房室模型
ka Vd ka ke V1 k12 k21 V2
k10
一室模型
二室模型
ka---吸收速率常数 ke,k10--消除速率常数 k12--1室到2室的k k21-----2室到1室的k Vd---表观分布容积 V1----1室的分布容积
00:33:18 1
药物动力学
临床意义 保障用药的有效性和安全性 I期: 决定给药方案,用法,用量,间隔时间 证实速释,缓释,控释特征. II期: 肝功差,肾功差,老人,进食影响 III期: 种族,代谢物,对药酶的干扰
药动学模型 为了定量研究药物体内过程的速度规律 而建立的模拟数学模型。常用的有房室 模型和消除动力学模型。
非线性 lnC-T图上 曲线为主,低段趋直线
12
直线为主,低段பைடு நூலகம்曲线
00:33:18
线性或非线性动力学的比较
线性 非线性
AUC
T1/2 Cmax 模型 动力学
C-T图 lnC-T图 药物
00:33:18
与剂量呈直线关系 与剂量呈正比 基本不变 与剂量基本呈正比 房室模型 一级动力学 曲线 直线 多数药物
A= Vd· C Vd=Aiv/C0 Vd=A/(AUC· Ke)
VZ
或者
VZ/F VSS/F
VSS
00:33:18
19
Vd 表观分布容积
药物动力学常见参数及计算方法PK

*
*
*
*
吸收 AUC 反映吸收程度、Ka反映吸收速度 分布 Vd 是表观分布容积. Vd接近0.1 L/kg说明药物主要在血中 Vd>>1 L/kg则说明该药有脏器浓集现象 消除 包括排泄及代谢, ke,β是消除速率常数 t1/2,t1/2β,CL反映药物的消除速度. 尿排率 过大者,肾功能不佳时应注意减量或延时 过小者,提示代谢为主,肝功不佳时慎用 该药易出现药物相互干扰,联用时应注意 个体差异 AUC,Vd及t1/2的变异系数大于50%者, 临床用药时应注意剂量调控.
药动学模型 为了定量研究药物体内过程的速度规律而建立的模拟数学模型。常用的有房室模型和消除动力学模型。
*
*
房室模型
房室(compartment)
房室的划分是相对的 房室模型的客观性 房室模型的时间性 房室模型的抽象性 开放式和封闭式模型
房室划分
单室模型 多室模型
中央室 周边室
*
*
一室模型 二室模型 ka---吸收速率常数 ke,k10--消除速率常数 k12--1室到2室的k k21-----2室到1室的k Vd---表观分布容积 V1----1室的分布容积
非线性消除动力学模型
*
*
ln C-T曲线
C-T曲线
线性 C-T图上恒为曲线
线性 lnC-T图上恒为直线
非线性 lnC-T图上 曲线为主,低段趋直线
非线性 C-T图上 直线为主,低段趋曲线
*
*
线性或非线性动力学的比较
线性 非线性 AUC 与剂量呈直线关系 与剂量呈曲线关系 与剂量呈正比 与剂量呈超比例增加 T1/2 基本不变 大剂量时,T1/2延长 Cmax 与剂量基本呈正比 与剂量呈超比例增加 模型 房室模型 米氏方程模型 动力学 一级动力学 非线性动力学 先零级,后一级 C-T图 曲线 先直线后曲线 lnC-T图 直线 先曲线后直线 药物 多数药物 少数药物
pk profiles 药动学参数

pk profiles 药动学参数
药动学参数主要包括以下几种:
1. 达峰浓度(Cmax):给药后出现的血药浓度最高值,是反映药物在体内吸收速率和吸收程度的重要指标。
2. 达峰时间(Tmax):给药后达到达峰浓度所需的时间,反映了药物进入体内的速度,吸收速度快则达峰时间短。
3. 末端消除半衰期(t1/2):末端相血药浓度下降一半所需的时间,直观反映了药物从体内的消除速度,末端消除半衰期在数值上与末端消除速率成反比。
4. 谷浓度(Cthrough):是指多次给药达稳态时给药后初始时刻至下次给药前的最低浓度,是反映药物蓄积水平的常用指标,与药物剂量、给药间隔和药物消除速率关系密切。
5. 清除率(CL):单位时间内从体内清除的药物表观分布容积数,是反映机体对药物处置特性的重要参数,与生理因素有密切关系,是肝肾等的药物清除率的综合。
6. 药时曲线下面积(AUC):血药浓度曲线对时间轴所包围的面积,该参数是评价药物吸收程度的重要指标,反映药物在体内的暴露特性。
这些参数对于了解药物的吸收、分布、代谢和排泄(ADME)特性非常重要,有助于更好地理解和优化药物的给药方案。
药物动力学常见参数及计算方法PK解析

00:37:10 3
房室模型
房室(compartment)
房室的划分是相对的
房室模型的客观性
房室模型的时间性
房室划分
单室模型
多室模型
房室模型的抽象性
开放式和封闭式模型
中央室 周边室
00:37:10
00:37:10
27
谢谢大家!
00:37:10
28
00:37:10 15
药代动力学参数
血药浓度-时间曲线下面积: (area under concentration-time curve, AUC) 它可由积分求得,最简便的计算方法是梯形法, 也可用样条函数法求得。 AUC0→t AUC0→∞ = AUC0→t+Ct/λZ AUC0→∞ 它是计算药物绝对生物利用度和相对生物利用 度的基础数值。
A= Vd· C Vd=Aiv/C0 Vd=A/(AUC· Ke)
VZ
或者
VZ/F VSS/F
VSS
00:37:10
20
Vd 表观分布容积
C = D / Vd
Vd = D / C
Vd = 体内药量/血中浓度
动物体重10kg A药10mg iv,血浓 1mg/L, Vd=10L(1 L/kg) 药物全身分布 B药10mg iv,血浓10mg/L , Vd=1L(0.1 L/kg) 药物只在血中 C药10mg iv,血浓 0.1mg/L,Vd=100L(10 L/kg) 药物浓集到某脏器
00:37:10 7
模型的选择和拟合度问题
最小AIC (Akaike’s information criterion) 准则; F检验法
药物动力学常见参数及计算方法PKPPT优秀课件

1.药物动力学及其常见参数 2.常用软件及其使用方法
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
2005年5月15日
1
药物动力学
药物动力学,也称药代动力学或药物代谢动 力学,英文名为:pharmacokinetics,PK
I期: 决定给药方案,用法,用量,间隔时间 证实速释,缓释,控释特征.
II期: 肝功差,肾功差,老人,进食影响 III期: 种族,代谢物,对药酶的干扰
药动学模型 为了定量研究药物体内过程的速度规律 而建立的模拟数学模型。常用的有房室 模型和消除动力学模型。
2020/10/18
3
房室模型
房室(compartment)
2020/10/18
非线性 lnC-T图上 曲线为主,低段趋直线
13
线性或非线性动力学的比较
线性
非线性
AUC 与剂量呈直线关系 与剂量呈曲线关系
与剂量呈正比 与剂量呈超比例增加
T1/2
基本不变
大剂量时,T1/2延长
Cmax 与剂量基本呈正比 与剂量呈超比例增加
模型 房室模型
米氏方程模型
动力学 一级动力学
dC/dt=-kCn
• 一级消除动力学 • 零级消除动力学
2020/10/18
9
消除动力学模型
表达式 积分转化 最主要特点
一级消除动力学 零级消除动力学
dc/dt=-kC Ct=C0e-kt 恒比消除
dc/dt=-k Ct=C0-kt 恒量消除
2020/10/18
10
l1n1000C000
限速消除(20mg/L)/h
药物动力学常见参数及计算方法PK

其药代学特征是:静注的 其药代学特征是 静注的lnC-T曲线 静注的 曲线 开始血药浓度呈曲线下降,后来逐渐转成直线 开始血药浓度呈曲线下降 后来逐渐转成直线 其药代参数是: 其药代参数是 Vm 最大消除速率 反映限速时的消除速率 最大消除速率,反映限速时的消除速率 Km 米氏常数 反映曲线转变中点的血药浓度 米氏常数,反映曲线转变中点的血药浓度
常见参数-体内总清除率
体内总清除率 (total body clearance, TBCL, Cl):等于代 谢清除率加肾清除率。
TBCL=A/AUC
15:19:21
24
常见参数-生物利用度
生物利用度(bioavailability, F):
F=(Div × AUCoral / Doral × AUCiv) × 100% Fr=(Dstandard × AUCtest / Dtest × AUCstandard) × 100% A=Ke × Vd × AUC
15:19:21 15
药代动力学参数
血药浓度-时间曲线下面积: (area under concentration-time curve, AUC) 它可由积分求得,最简便的计算方法是梯形法, 也可用样条函数法求得。 AUC0→t AUC0→∞ = AUC0→t+Ct/λZ AUC0→∞ 它是计算药物绝对生物利用度和相对生物利用 度的基础数值。
VZ
或者
VZ/F VSS/F
VSS
15:19:21
20
Vd 表观分布容积
C = D / Vd
Vd = D / C
体内药量/ Vd = 体内药量/血中浓度 药物全身分布 药物只在血中 药物浓集到某脏器
动物体重10kg 动物体重10kg 10 10mg iv,血浓 A药10mg iv,血浓 1mg/L, Vd=10L(1 L/kg) 10mg iv,血浓10mg/L 血浓10 B药10mg iv,血浓10mg/L , Vd=1L(0.1 L/kg) C药10mg iv,血浓 0.1mg/L,Vd=100L(10 L/kg) 10mg iv,血浓 0.1mg/L,Vd=100L(10
药物动力学参数

药物动力学参数引言药物动力学参数是研究药物在人体内经过吸收、分布、代谢和排泄等过程后的表现的一种方法。
它包括各种动力学参数的测定与计算,有助于评估药物的药效学和药代动力学特征。
本文将对药物动力学参数进行全面、详细地探讨。
学科背景药物动力学参数主要涉及药物在体内的各个环节,包括吸收、分布、代谢和排泄。
以下是这些环节的详细介绍。
吸收药物吸收是指药物从给药部位移动到血液中的过程。
吸收速度和程度对于药物的药效学和药代动力学特征有重要影响。
以下是影响药物吸收的因素:•给药途径:不同给药途径吸收速度和程度不同,例如口服、静脉注射、皮肤贴剂等。
•药物性质:药物的溶解度、脂溶性、分子大小等特性会影响其吸收速度和程度。
•给药条件:如饮食、药物与食物的相互作用等。
分布药物分布是指药物在体内不同组织和器官中的分布情况。
药物分布受到以下因素的影响:•组织血流:不同组织和器官的血流情况决定了药物在体内的分布。
•脂溶性:脂溶性高的药物更容易通过细胞膜,进入组织和器官。
•蛋白结合:药物与血浆蛋白结合率高的话,会影响其在组织和器官中的分布。
代谢药物代谢是指药物在体内被代谢为代谢产物的过程。
药物代谢一般发生在肝脏中,也可发生在其他器官。
以下是药物代谢的一些特点:•酶系统:药物代谢主要通过药物代谢酶系统完成,其中最重要的是肝脏中的细胞色素P450酶系统。
•代谢产物:药物代谢后一般形成活性代谢产物或无活性代谢产物,对药物的药效和药代动力学特征有重要影响。
•个体差异:药物代谢受到个体差异的影响,包括遗传因素、环境因素等。
排泄药物排泄是指药物从体内排出的过程。
以下是药物排泄的一些特点:•肾脏排泄:大部分药物通过肾脏进行排泄,其中包括肾小球滤过、肾小管分泌和肾小管重吸收等过程。
•肝脏排泄:部分药物通过胆汁经肠道排出,称为肝道排泄。
•其他途径:还有少部分药物通过其他途径排出,如肺排泄、乳汁排泄等。
药物动力学参数的测定与计算为了评估药物的药效学和药代动力学特征,需要测定和计算各种药物动力学参数。
药物动力学常见参数及计算方法

中央室周边室
08:58:25×τ)
ss,av AUC (C ss,av 之下)
给药间隔时间(AUC ss
AUC (单剂量)AUC (1,t)
小时浓度Css,max Css,min
给药量与消除量相等时药时曲线在同一级水平上作周期性的重复变化,此时的平均药浓称为C
ss。
谷值(C
min )应高于有
才能产生安全可靠的持续药效。
设计多剂量给药方案中具有重要意义,因其决
定长期用药时药效的高低及毒副作用的大小。
29
坪浓度(Css)的高低与日用药总量成正比波动幅度与每日用药量成正比
用药量恒定时,坪浓度的高低限之间的波增加给药剂量不能缩短达到稳态时间,也不能按比例延长药物的消除时间
趋坪时间需要4-5个半衰期,达稳态后给
30
31202530
重复维持量Therapeutic
level
间隔给药,首剂加倍可使血药浓度立刻达到C ss T (h)
♦给药间隔♦
给药间隔Css,max
23.1
20.3
18.9
17.4
谢谢大家!
08:58:2547。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药代动力学参数
血药浓度-时间曲线下面积: (area under concentration-time curve, AUC) 它可由积分求得,最简便的计算方法是梯形法, 也可用样条函数法求得。 AUC0→t AUC0→∞ = AUC0→t+Ct/λZ AUC0→∞ 它是计算药物绝对生物利用度和相对生物利用 度的基础数值。
20
110 0 10
5 2.5
线性
00 11 2 2 3 3 4 4 5 5 6 7 8 9 10 11 12 12 10
1.2511
19:28:32 11
非线性消除动力学模型
某些药物的消除有限速因素, 当浓度很高时只能限速消除 不能按浓度比例消除,称为“非线性药代” 其模型方程是米氏方程: dC/dt = - Vm*C/(Km+C)
19:28:32
16
10
四种AUC
AUC*
AUC*+
5
AUC
AUC+
0
19:28:32
17
四种曲线下面积 AUC
Cp,Tp
AUC*+ AUC*
Cmax,Tmax
AUC
AUC+
19:28:32
18
AUC的计算
19:28:32
19
常见参数-表观分布容积
表观分布容积 (apparent volume of distribution, Vd):
吸收(absorption) 分布(distribution) 代谢(metabolism) 消除和排泄(elimination, excretion)
ADME
用数学表达式阐明药物的作用部位(方位)、 浓度(量)和时间三者之间的关系。
19:28:32 2
药物动力学
临床意义 保障用药的有效性和安全性 I期: 决定给药方案,用法,用量,间隔时间 证实速释,缓释,控释特征. II期: 肝功差,肾功差,老人,进食影响 III期: 种族,代谢物,对药酶的干扰
lnC-T 曲线
一室(少见)
二室(多数药物)
三室(与内源物相近者)
决定用药间隔的半衰期: 一室t1/2,二室t1/2β,三室t1/2γ 现主张统一用t1/2z 终末半衰期
19:28:32 23
常见参数-体内总清除率
体内总清除率 (total body clearance, TBCL, Cl):等于代 谢清除率加肾清除率。
19:28:32 21 实际上10kg动物不可能是1L或100L的容积,故称”表观分布容积”
常见参数-生物半衰期
生物半衰期(biological half-life, t1/2):这个 参数只是由测定血浆或血清浓度(表观血浆 或血清)的衰变来求出。 t1/2=0.693/Ke
19:28:32
22
C-T 曲线
4
房室模型
ka Vd ka ke V1 k12 k21 V2
k10
一室模型
二室模型
ka---吸收速率常数 ke,k10--消除速率常数 k12--1室到2室的k k21-----2室到1室的k Vd---表观分布容积 V1----1室的分布容积
19:28:32 5
房室模型 C-T 曲线
一室 二室
药动学模型 为了定量研究药物体内过程的速度规律 而建立的模拟数学模型。常用的有房室 模型和消除动力学模型。
19:28:32 3
房室模型
房室(compartment)
房室的划分是相对的
房室模型的客观性
房室模型的时间性
房室划分
单室模型
多室模型
房室模型的抽象性
开放式和封闭式模型
中央室 周边室
19:28:32
药物动力学常见参数及计算方法
1.药物动力学及其常见参数 2.常用软件及其使用方法
2005年5月15日
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
1
药物动力学
药物动力学,也称药代动力学或药物代谢动 力学,英文名为:pharmacokinetics,PK
19:28:32
27
谢谢大家!
19:28:32
28
19:28:32 7
模型的选择和拟合度问题
最小AIC (Akaike’s information criterion) 准则; F检验法
19:28:32
8
消除动力学模型
消除动力学(eliminationkinetics)研究体内 药物浓度变化速率的规律,可用下列微分方 程表示: dC/dt=-kCn • 一级消除动力学 • 零级消除动力学
19:28:32
9
消除动力学模型
一级消除动力学 零级消除动力学
表达式
积分转化 最主要特点
dc/dt=-kC
Ct=C0 e-kt
dc/dt=-k
Ct=C0-kt
恒比消除
恒量消除
19:28:32
10
11000 000 ln C
限速消除(20mg/L)/h
160 1100 00 150 80
非线 性
40
其药代学特征是:静注的lnC-T曲线 开始血药浓度呈曲线下降,后来逐渐转成直线 其药代参数是: Vm 最大消除速率,反映限速时的消除速率 Km 米氏常数,反映曲线转变中点的血药浓度
19:28:32 12
C-T曲线
线性 C-T图上恒 为曲线
ln C-T曲线
线性 lnC-T图上 恒为直线
非线性 C-T图上
非线性 lnC-T图上 曲线为主,低段趋直线
13
直线为主,低段趋曲线
19:28:32
线性或非线性动力学的比较
线性 非线性
AUC
T1/2 Cmax 模型 动力学
C-T图 lnC-T图 药物
19:28:32
与剂量呈直线关系 与剂量呈正比 基本不变 与剂量基本呈正比 房室模型 一级动力学 曲线 直线 多数药物
与剂量呈曲线关系 与剂量呈超比例增加 大剂量时,T1/2延长 与剂量呈超比例增加 米氏方程模型 非线性动力学 先零级,后一级 先直线后曲线 先曲线后直线 少数药物
14
药代动力学参数及其意义
吸收 AUC 反映吸收程度、Ka反映吸收速度 分布 Vd 是表观分布容积. Vd接近0.1 L/kg说明药物主要在血中 Vd>>1 L/kg则说明该药有脏器浓集现象 消除 包括排泄及代谢, ke,β是消除速率常数 t1/2,t1/2β,CL反映药物的消除速度. 尿排率 过大者,肾功能不佳时应注意减量或延时 过小者,提示代谢为主,肝功不佳时慎用 该药易出现药物相互干扰,联用时应注意 个体差异 AUC,Vd及t1/2的变异系数大于50%者, 临床用药时应注意剂量调控.
一室
二室
19:28:32
6
非房室(统计距)模型
不受房室数的限制,客观性强
AUC (Area Under Curve) 是梯形法计算的曲线下面积,与吸收量正比 MRT (Mean Residence Time) 是平均滞留时间. 与终末半衰期类似. VRT (Variance of Residence Time) 是滞留时间的方差 MAT (mean adsorption Time) 是平均吸收时间.与吸收半衰期类似.
TBCL=A/AUC
19:28:32
24
常见参数-生物利用度
生物利用度(bioavailability, F):
F=(Div AUCoral / Doral AUCiv) 100% Fr=(Dstandard AUCtest / Dtest AUCstandard) 100% A=Ke Vd AUC
19:28:32
25
常见参数-平均稳态血药浓度
平均稳态血药浓度 (average steady stateconcentration, Cav(ss)):
Cav(ss)=AUC/t Cav(ss)=F· D/(Ke Vd t)
19:28:32
26
药物动力学常用软件
主要软件 NOLIN,NOMEM,3P87,3P97,NDST21, DAS,APK…等软件 注意合法性,合理性,公认性 批处理 先用典型或多点的数据选择最佳房室模型 再按此模型进行统一计算,求均数标准差
A= Vd· C Vd=Aiv/C0 Vd=A/(AUC· Ke)
VZ
或者
VZ/F VSS/F
VSS
19:28:32
20
Vd 表观分布容积
C = D / Vd
Vd = D / C
Vd = 体内药量/血中浓度
动物体重10kg A药10mg iv,血浓 1mg/L, Vd=10L(1 L/kg) 药物全身分布 B药10mg iv,血浓10mg/L , Vd=1L(0.1 L/kg) 药物只在血中 C药10mg iv,血浓 0.1mg/L,Vd=100L(10 L/kg) 药物浓集到某脏器