人教版初中数学总复习资料精编版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学总复习资料

㈠数与代数

⒈数与式

⑴有理数:有限或不限循环性数(无理数:无限不循环小数)

⑵数轴:“三要素”

⑶相反数

⑷绝对值:│a │= a(a≥0) │a │=-a(a<0)

⑸倒数

⑹指数

① 零指数:0a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数)

⑺完全平方公式:2222)(b ab a b a +±=±

⑻平方差公式:(a+b )(a-b )=22b a -

⑼幂的运算性质:

①m a ·n a =n m a + ②m a ÷n a =n m a - ③n m a )(=mn a ④n ab )(=n a n

b ⑤n n

n b a b a

=)(⑽科学记数法:n a 10⨯(1≤a <10,n 是整数)

⑾算术平方根、平方根、立方根、 ⑿b a

n d b m c a n d b n m

d c

b a

=++++++⇒≠+++=== :)0(等比性质

⒉方程与不等式

⑴一元二次方程

①定义及一般形式:)0(02≠=++a c bx ax

②解法:

1.直接开平方法.

2.配方法

3.公式法:)04(24222,1≥--±-=ac b a ac

b b x

4.因式分解法.

③根的判别式:

ac b 42-=∆>0,有两个解。

ac b 42-=∆<0,无解。

ac b 42-=∆=0,有1个解。 ④维达定理:a

c x x a b x x =⋅-=+2121, ⑤常用等式:2122122

212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=- ⑥应用题

1.行程问题:相遇问题、追及问题、水中航行:

水速船速顺+=v ;水速船速逆-=v 2.增长率问题:起始数(1+X)=终止数

3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

4.几何问题

⑵分式方程(注意检验)

由增根求参数的值:

①将原方程化为整式方程

②将增根带入化间后的整式方程,求出参数的值。

⑶不等式的性质

①a>b → a+c>b+c

②a>b → ac>bc(c>0)

③a>b → ac

④a>b,b>c → a>c

⑤a>b,c>d → a+c>b+d.

⒊函数

⑴一次函数

①定义:y=kx+b(k ≠0)

②图象:直线过点(0,b )—与y 轴的交点和(-b/k,0)—与x 轴的交点。

③性质:

k>0,直线经过一、三象限,y 随x 的增大而增大。

k<0,直线经过二、四象限,y 随x 的增大而减小。

当b>0时,直线必通过一、二象限。

当b=0时,直线通过原点。

当b<0时,直线必通过三、四象限。

④图象的四种情况:

x o y (k>0,b>0)

x o y (k<0,b>0) x o y (k>0,b<0) x o y (k<0,b<0)

⑵正比例函:

①定义:y=kx(k ≠0)

②图象:直线(过原点)

⑶反比例函数 ①定义:1-==kx x

k y (k ≠0). ②图象:双曲线(两支)

③性质:

k>0时,两支曲线分别位于第一、三象限,y 的值随x 值的增大而减小。

k<0时,两支曲线分别位于第二、四象限,y 的值随x 值的增大而增大。;

④两支曲线无限接近于坐标轴但永远不能到达坐标轴。

⑷二次函数.

①定义:

))(0()(2顶点式≠+-=a k h x a y ))(0(2一般式≠++=a c bx ax y

②图象:抛物线

)0(2≠++=a c bx ax y 顶点:

)0()(2≠+-=a k h x a y 顶点:(h,k)

③性质:

⑴当a>0时,开口向上;当a<0时,开口向下。|a|越大,则抛物线的开口越小。

⑵当a 与b 同号时(ab>0),对称轴在y 轴左边;当a 与b 异号时(ab<0),对称轴

在y 轴右边;当b=0时,对称轴在y 轴。(左同右异)

⑶当c>0时,与y 轴交于正半轴;当c<0时,与y 轴交于负半轴;当c=0时,与

y 轴交于原点。

④平行移动的规律:

当h>0时,y=ax 向右平行移动h 个单位得到y=a(x-h)

当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,y=ax 向右平行移动h 个单位,再向上移动k 个单位,得到y=a(x-h)

+k

当h>0,k<0时,y=ax 向右平行移动h 个单位,再向下移动|k|个单位,得到y=a(x-h)

+k

当h<0,k>0时,y=ax 向左平行移动|h|个单位,再向上移动k 个单位,得到y=a(x-h)

+k

当h<0,k<0时,y=ax 向左平行移动|h|个单位,再向下移动|k|个单位,得到

y=a(x-h)^2+k

㈡空间与图形

⒈三角形

⑴面积公式:底乘以高除以2

⑵“四心”:

①垂心:三角形三条高的交点。

②内心:三角形三条内角平分线的交点,即内接圆的圆心。

③重心:三角形三条中线的交点。

④外心:三角形三条边的垂直平分线的交点,即外接圆的圆心。

⑶三角形边与边的关系:

两边之和大于第三边。(较短的两条边) 两边之差小于第三边。(最长的边和最小的边)

⑷三角形内角和、外角与内角的关系:

三角形内角和为180度。

三角形的一个外角等于和它不相邻的两个内角和。

三角形的一个外角大于任何一个和它不相邻的内角。

⑸证明

判定及性质

直角三角形①在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

②如果三角形一边上的中线等于这条斜边的一半,那么这条边所对的角是直角。

①直角三角形两个锐角互余。

②直角三角形斜边上的中线等于斜边的一半。

③在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a2+b2=c2 。

等腰三角形①等腰三角形的两个底角相等。(等边对等角)

②等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一)

等边三角

①有一个角等于60°的等腰三角形是等边三角形。

相似三角形①相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比。

②相似三角形周长的比等于相似比。

③相似三角形面积的比等于相似比的平方。

④相似三角形的对应角相等,对应边成比例。

全等①三边对应相等的两个三角形全等。(SSS )

②两边及其夹角对应相等的两个三角形全等。(SAS)

相关文档
最新文档