质谱数据分析2014
第七讲质谱分析(共58张PPT)
EI 与 ESI
质谱计的主要技术指标
质量范围: 指质谱计所检测的单电荷离子的质核比范围
分辨率(R):分辨率是质谱计分开相邻两离子质量的能力。
R = m /m
m为质谱计可分辨的相邻两峰的质量差 m为可分辨的相邻两峰的平均质量
分辨率( R )是两峰间的峰谷为峰高的10%时的测定值,即 两峰各以5%的高度重叠。
◆质谱是分子离子及碎片离子的质量与其相对 强度的谱, 谱图与分子结构有关
◆质谱法进样量少, 灵敏度高, 分析速度快
◆质谱是唯一可以给出分子量, 确定分子式的方 法, 而分子式的确定对化合物的结构鉴定是至关 重要的。
质谱计框图
真空系统
加速区
Output
计算机数据 处理系统
Sample
进样系统
inlet
射方向不同的离
子会聚;
S1
分辨率不高
B
离子源
磁场
R
S2 收集器
双聚焦分析器
方向聚焦:
相同质荷比,入射 方向不同的离子会聚;
能量聚焦:
相同质荷比,速 度(能量)不同的离子 会聚;
电场
+ -
S1 离子源
磁场
S2 收集器
质量相同,能量不同的离子通过电场和磁场时,均产生能量 色散;两种作用大小相等,方向相反时互补实现双聚焦;
第七讲质谱分析
Spectrometry NOT Spectroscopy
Spectroscopy n. 光谱学, 波谱学, 光谱仪 Spectrometry n. 质谱术,质谱计
Spectrometry : Spectrometer Abbreviated to: Mass spec. or MS
14质谱分析法
1 单聚焦分析器(single focusing mass analyzቤተ መጻሕፍቲ ባይዱr) 单聚焦分析器( )
23
结论: 结论: 1 离子的 离子的m/z大,偏转半径也大,通过磁场 大 偏转半径也大, 可以把不同离子分开 2 在一定加速电压U,改变磁场强度B下,或在一 在一定加速电压U 改变磁场强度B 定磁场强度B 连续改变加速电压U 定磁场强度B下,连续改变加速电压U,可以使 不同离子先后通过检测器,实现质量扫描, 不同离子先后通过检测器,实现质量扫描,得到 质谱。 质谱。
离子运动的轨道半径
mυ = BZυ R
2
磁场强度
由上两式得 m B2R2 = z 2U
1 2 ( mυ = zU ) 2
离子在磁场中的轨道半径R取 离子在磁场中的轨道半径 取 决于: 决于: m/z、 B 、 U 、
13
1 m R= 2U B z
若B和U固定不变, 固定不变, 则离子的m /z越大 越大, 则离子的m /z越大, 运动半径越大; 运动半径越大;m /z 不同,运动半 不同, 径不同, 径不同,各种离 子按m 子按m /z 的大小 顺序分开
1 2 mυ = zU 2
离子质量 离子速度
加速电压 离子所带 电荷
12
加速后的离子进入磁场中,由于受到磁场的影响, 加速后的离子进入磁场中,由于受到磁场的影响, 离子作圆周运动(弧形运动), ),离子的向心力 离子作圆周运动(弧形运动),离子的向心力 磁场力)BZυ和运动的离心力m /R相等 (磁场力)BZυ和运动的离心力m υ2/R相等
m/z
9
离子源 分子分离器 质量分析器
10
试样在离子源内被气化、电离, 试样在离子源内被气化、电离,有机物在 高速电子流的轰击下常常被击出一个电子, 高速电子流的轰击下常常被击出一个电子, 形成带一个正电荷的正离子, 形成带一个正电荷的正离子,称为分子离 + 子 •
质谱数据解析
质谱数据解析
质谱数据解析是质谱分析中的一个重要步骤,它把得到的质谱数据转化为有用的信息,帮助分析师确定样品中存在的物质成分,鉴定分子结构和确定化合物的数量。
总的来说,质谱数据解析主要包括以下几个方面:
1. 分离峰的提取:在质谱图中,通常会出现多个峰,表示样品中可能存在多种物质。
分离峰的提取是把这些峰分开,以便分别进行分析。
2. 确定化合物的分子式:分离出的质谱图上的峰通常可以通过测定分子离子峰、裂解峰等特征峰来确定化合物的基本分子式。
3. 确定化合物的结构:分析样品的质谱数据,根据裂解片段、离子对和其他特征峰等信息确定化合物的分子结构和功能基团。
4. 确定化合物的浓度:质谱分析通常可以确定化合物的浓度,这对于定量分析非常重要。
上述过程中,质谱仪是不可或缺的工具。
质谱仪通过对物质分子进行电离、加速、分离和检测等过程,得到物质在质谱上的分布情况。
不同质谱仪的检测灵敏度、分辨率和分析速度都有差别,因此,合理选择、使用质谱仪是确保数据解析准确的关键。
LC-MS数据分析方法
LC-MS数据分析方法
质谱数据结果分析方法:
MS数据一般都会有如下几个特征参数:PSM、Peptide、Unique Peptides、Protein,PSM是拿数据库里的多肽和质谱图进行比对,并输出最高分数值的多肽作为一个PSM,PSM值越高,则表明可信度相对越高;Peptide和Unique Peptides则代表了肽段的特异性,一般Unique Peptides和Peptides的数值越接近,则代表肽段的特异性相对越好;而Protein代表了这些Peptides综合分析所归属的蛋白,数值越小则表明Peptides所代表的的蛋白特异性相对越好。
为了得到相对确信可靠的分子进行后续的验证实验,就要综合考虑以上几个参数,同时还要照顾分子本身的定位、功能等。
第十四章 质谱分析
1) 电子轰击源(Electron Impact,EI)
作用过程: 采用高速(高能)电子束冲击样品,从
而产生电子和分子离子M+,M+继续受到 电子轰击而引起化学键的断裂或分子重排 ,瞬间产生多种离子。
水平方向:阴极发射电子—灯丝与阳极间 (70V电压)—高能电子 —冲击样品—正离 子
垂直方向:G3-G4加速电极(低电压)---较 小动能---狭缝准直G4-G5加速电极(高电 压)---较高动能---狭缝进一步准直--离子进 入质量分析器。
磁分析器质谱方程式
是设计质谱仪器的主要依据。
离子在磁场中的轨道半径R取决于: m/z、 B、 U
5 、 检测器
质谱仪常用的检测器有电子倍增器及闪烁计数 器、照相底片等。
特点:实现高灵敏度、快速测定
§14-3 质谱图及离子峰的主要类型
一、质谱图 质谱图是以质荷比(m/z)为横坐标、相对强度为纵
坐标构成,将原始质谱图上最强的离子峰定为基峰并 定为相对强度100%,其他离子峰以对基峰的相对百分 值表示。
§14-1 质谱分析概述
一、 质谱仪的发展简史 1912年: 世界第一台质谱装置 1940年代: 质谱仪用于同位素测定 1950年代:MS商品化广泛用于有机物结构分析 1960年代:研究GC-MS联用技术 1980年代:研究LC-MS联用技术 1990年代:生物分析的需要,新的离子化方法
二、 质谱分析法 将样品转化为运动的气态离子并按质荷比(m/z)大
低分辨质谱仪给出的是离子的标称质量,而高分辨 质谱仪给出的是离子的精确质量
四、 质谱仪的分类
按用途分:有机质谱;无机质谱;同位素质谱
按原理分:单聚焦质谱;双聚焦质谱;四极滤质器;飞 行时间质谱;离子阱质谱
质谱数据分析2014
• Usually, only a fraction of the proteins synthesized can be detected in a proteomics experiment, whereas the expression of ALL genes can be monitored in a whole-genome
• 最后一个R的质量多加了18,这是因为我们写在下面的是残基的分子量。
肽和肽键
质量排列
• 把所有多肽的分子量排序。
质量纹
• 如此,质谱图上的质量就可以与多肽上的质量相匹配。
http://www.absoluteastronom /topics/Peptide_mass_fi ngerprinting
质量纹
• 这就是多肽质量纹(PMF)的最基础的思路。质量纹算法成立的基础,在于酶切的特异性以及多肽离子质 量的精确测定
• 问题?
PMF中的问题
• 第一个问题:质量相近的多肽怎么处理?
• 在现实的蛋白数据库中,多肽的数量是很庞大的。这里面难保不会有质量非常相近的多肽。这样,就造成 了质谱图上的一个峰可能匹配不止一个多肽,于是我们就难以知晓这张质谱图究竟代表哪个蛋白。
From Yogita Mantri & Arvind Gopu’s presentation in 2003
array experiment.
蛋白质组学研究的目标
• 蛋白质鉴定 • 蛋白质特性-如翻译后修饰 • 蛋白质定量-相对定量、绝对定量 • 样品间比较
• 定性-不同样品间含有的蛋白类型的差异 • 定量-不同样品间含有的蛋白浓度/含量的差异 • 翻译后修饰-不同样品间是否存在不同的翻译后修饰形式
质谱的数据处理及分析
质谱的数据处理及分析
质谱的数据处理及分析是一项繁琐而又艰苦的工作。
针对质谱数据,有许多数
据处理及分析方法可以被应用,比较常见的有以下几种:
一是基于最小更新的数据处理。
这是基于上一次更新所做的数据处理。
要求仅
更新发生变化的数据项,以节省空间。
二是采用正交正则化方法处理数据。
正交正则化是一种分析质谱数据的数学方法,定义在一个特定的常数变量上,能够把复杂的数据结构拆分成不同的切片,便于读者更加清楚的理解和分析数据。
三是基于最邻近算法(K-means)进行数据聚类并分析。
最邻近算法实际上就
是确定受调查对象之间关系,以及如何将这些项目中具有相似性质的对象划分为若干聚类组,这些聚类组能够有效地揭示关键信息。
四是利用统计学方法来确定质谱数据中突出成分之间的相关关系。
统计方法有
前排法(Principal Component Analysis)、主成分回归分析(Partial Least Squares),实质上是一种显示特殊的质谱谱图,以便我们能轻松对质谱数据中的
特征群进行识别,以便进行后续的分析。
在运用数据处理及分析的时候,除了这几种常用的处理方法,我们还可以利用
多维统计和回归分析等技术为质谱分析数据提供更准确的分析支持。
此外,由于质谱数据较复杂,可以借助计算机数学方法进行繁琐的数据处理工作,提高工作效率。
总之,质谱数据处理及分析是一项繁重而又精细的工作,其中涉及到多种处理
方法,每种方法都是为了更好地完成分析任务而采用不同的数据处理方法;这也体现了质谱数据处理及分析的多样性和复杂性。
质谱数据定量分析方法
考虑了XIC截断,同位素峰叠加,母离子误差校 正等问题
提供了信噪比、同位素分布拟合优度等过滤 测试:发现采用严格过滤规则,则鉴定肽段也
可能不能定量,说明和LC-MS/MS策略可以相互 补充
第三部分:进一步的思考
预分离和信号归一化
SDS分离 蛋白质多条带分布 条带切割的不均匀性 不同实验之间信号不可比
标记定量:比值,定量指标 无标定量:定量指标
肽段定量指标计算
可选步骤
去噪处理:小波,平 滑滤波
XIC峰形拟合:复杂的 类高斯函数
XIC边界确定:信噪比, 连续性,局部最小 值
母离子匹配误差分布: 提高精度?
标记定量:比值计算,MaxQuant采用了最小二乘拟合法 问题:不同试剂标记的肽段XIC平移,差异越大,表现越明显 无标记定量:定量指标计算
定量软件-Mascot
支持的定量类型
多种标记定量, MS/MS图谱 定量, emPAI, 重复实验 Label free, 选择信号最强的3 个肽段
数据处理算法特色
基于m/z和RT的对齐,多种XIC积分方法,多参数鉴定结果过滤,outliers排 除,归一化处理(利用均值)
使用方法
在搜库前定义修饰和定量的参数(通过修改XML文件实现),搜库,然后 使用Distiller定量
差异显著性检验 从肽段到蛋白质的信息综合:平均?筛选? 异方差问题:信号越弱,误差分布越宽
一个例子
XIC
定量信息:TGVIVGEDVHNLFTYAK
图谱计数SC 126 70 3 4
XIC面积SA(对数) 8.54 7.56 5.15 5.89
保留时间RT 53.661617 58.135022 59.199630 57.643797
质谱数据定量分析方法概要
质谱数据定量分析方法概要质谱数据定量分析是一种使用质谱仪获取样品中特定化合物或元素含量的方法。
它能够在短时间内实现对多种目标化合物的分析,具有高灵敏度、准确度和选择性等优点。
下面将概述几种常用的质谱数据定量分析方法,包括标准曲线法、内标法、同位素稀释法和定量结构活性关系分析方法。
1.标准曲线法标准曲线法是质谱数据定量分析中最常用的方法之一、在这种方法中,首先准备一系列已知浓度的标准溶液,并对这些标准溶液进行质谱分析,得到样品中目标化合物的质谱峰面积或峰高度。
然后,根据标准曲线绘制出目标化合物浓度与质谱峰面积或峰高度之间的关系曲线,通过对待测样品的质谱峰进行测定,可以根据标准曲线计算出目标化合物在样品中的浓度。
2.内标法内标法是一种相对比较准确的质谱定量分析方法。
在这种方法中,选择一个与目标化合物具有相似物理化学性质的化合物作为内标物,并将内标物溶液加入待测样品中。
然后,对待测样品进行质谱分析,测定目标化合物和内标物的质谱峰面积或峰高度。
通过计算目标化合物和内标物的峰面积或峰高度比例,并与已知浓度的标准溶液进行比较,可以计算出目标化合物在样品中的浓度。
3.同位素稀释法同位素稀释法是一种用于分析样品中特定元素或化合物含量的高精确度和高灵敏度的质谱定量方法。
在这种方法中,已知浓度的同位素标准物质加入样品中作为内标物,并进行质谱分析。
通过测定目标化合物和同位素标准物质的质谱峰面积或峰高度比例,并与已知浓度的同位素标准物质进行比较,可以计算出目标化合物在样品中的浓度。
同位素稀释法有很高的精确度和准确度,广泛应用于环境分析、食品检测和生命科学研究等领域。
4.定量结构活性关系分析方法定量结构活性关系分析方法是一种基于质谱数据分析化合物结构与活性之间关系的定量分析方法。
在这种方法中,首先通过质谱技术获取样品中一系列化合物的质谱数据,然后将这些质谱数据与已知的化合物结构信息进行比对和分析,建立起化合物结构与特定活性之间的关系模型。
第二章 4 蛋白质鉴定技术--质谱数据分析 end 2
采用计算的方法通过实验质谱去鉴定多肽序列的问题可 分成三大块: 1) 数据预处理---即从质谱中提取对鉴定有用且无偏 的信息。 1 原始质谱数据的预处理 2 谱峰中心化后的质谱数据的预处理 2)理论谱构造
构造趋近客观和完备的理论谱。
3) 肽序列鉴定
即比较理论和实验质谱而鉴别多肽的序列以致于确定蛋 白质身份。
PMF VS blast
相似点:PMF需要对庞大的蛋白质数据 库进行筛选来找到和实验所测的分子量 所匹配的氨基酸序列 不同点:蛋白质研究领域中对于PMF没 有一个可以被广泛接受的算法和概率模 型
常用的质量纹算法
现在试验中可用的算法有:
Mascot: Profound: /cgibin/Profound Expasy tools: http://www.expasy.ch/tools/ PeptideSearch: http://mac-mann6.emblheidelberg.de
1) 质谱噪声基线的识别
根据基线的设定方法,可以大致分为三 类: (1)固定基线算法 (2)固定峰数法 (3)窗口基线法 (4)窗口基线法和固定峰数法的结合
(1)固定基线算法
即根据经验对所有的图谱设定同样的基 线,不考虑图谱的差异。 绝对强度基线法,比较简单,即给定一 个绝对强度的基线,在此基线以下的全 部舍弃 相对强度基线法,即将峰强归一化,取 定一个百分比值,在此基线以下认为是 噪音。
质谱法实验报告结果分析(3篇)
第1篇一、实验背景质谱法(Mass Spectrometry,MS)是一种强大的分析技术,广泛应用于化学、生物学、环境科学和医学等多个领域。
本实验旨在利用质谱法对样品中的化合物进行定性分析,并通过对比实验结果与标准谱图,实现对未知化合物的鉴定。
二、实验材料与方法1. 实验材料:- 样品:未知有机化合物- 试剂:溶剂(如甲醇、乙腈等)- 仪器:气相色谱-质谱联用仪(GC-MS)2. 实验方法:- 样品制备:将未知有机化合物用适量溶剂溶解,制成溶液。
- GC-MS分析:将制备好的溶液注入GC-MS仪,进行气相色谱分离,然后进入质谱检测器进行质谱分析。
- 数据处理:将得到的质谱数据与标准谱图库进行比对,分析未知化合物的结构。
三、实验结果1. 质谱图分析:- 通过GC-MS分析,得到了未知有机化合物的质谱图。
- 质谱图中,基峰(m/z)为261,碎片离子为m/z 85、137、181等。
- 根据碎片离子的组合,初步判断未知化合物可能为芳香族化合物。
2. 标准谱图比对:- 将得到的质谱数据与标准谱图库进行比对,发现与化合物编号为C15H12的化合物谱图高度相似。
- 该化合物结构式为苯并[a]芘,属于多环芳烃类化合物。
四、结果分析1. 定性分析:- 通过GC-MS分析,成功鉴定出未知有机化合物为苯并[a]芘。
- 该结果与标准谱图比对结果一致,具有较高的可靠性。
2. 定量分析:- 通过峰面积归一化法,计算出未知化合物在样品中的含量为0.15%。
- 该结果与实际样品含量相符,表明实验方法具有较高的准确性。
3. 实验误差分析:- 实验过程中可能存在的误差包括:样品制备过程中的污染、仪器操作误差、数据处理误差等。
- 通过严格控制实验操作,尽量减少误差的影响,提高实验结果的可靠性。
五、结论本实验利用GC-MS对未知有机化合物进行定性分析,成功鉴定出其为苯并[a]芘。
实验结果表明,GC-MS是一种快速、准确、可靠的有机化合物分析方法,在化学、生物学等领域具有广泛的应用前景。
蛋白组学质谱数据分析报告
蛋白组学质谱数据分析报告1. 引言蛋白组学质谱数据分析是一项重要的研究领域,通过质谱技术可以快速、高效地鉴定和定量蛋白质样本中的成分。
本报告将对蛋白组学质谱数据分析的方法和结果进行详细介绍。
2. 实验设计与方法2.1 样本准备样本准备是蛋白组学研究的关键步骤之一。
在本次实验中,我们使用了XXX细胞系培养物作为样本,经过细胞裂解和蛋白质提取后,采用XXX方法进行样品的预处理。
2.2 质谱分析在本次实验中,我们使用了XXX质谱仪进行蛋白质样品的分析。
质谱分析可以将样品中的蛋白质分子通过质量-电荷比(m/z)的测定进行鉴定和定量。
2.3 数据分析蛋白组学质谱数据分析包括鉴定和定量两个主要的步骤。
在本次实验中,我们使用了XXX软件对质谱数据进行处理和分析。
具体的数据分析流程如下:1.数据预处理:包括峰提取、去噪、质量校正等步骤,以获得高质量的质谱数据。
2.蛋白鉴定:通过与已知蛋白质数据库进行比对,确定质谱谱图中的峰对应的蛋白质。
鉴定的结果包括蛋白质的名称、序列、覆盖率等信息。
3.蛋白定量:根据质谱峰的相对强度或面积,确定样品中不同蛋白质的含量。
定量结果可以反映样品中蛋白质的相对丰度。
3. 结果与讨论3.1 数据预处理结果经过数据预处理,我们得到了质谱数据的峰列表。
每个峰对应一个蛋白质,通过与已知蛋白质数据库的比对,我们成功鉴定了XXX个蛋白质。
3.2 蛋白鉴定结果经过蛋白鉴定步骤,我们获得了每个鉴定蛋白质的详细信息。
其中包括蛋白质的名称、序列、预测功能等。
通过进一步的分析,我们发现XXX蛋白质在样本中的表达量较高。
3.3 蛋白定量结果根据质谱峰的相对强度或面积,我们成功确定了样品中不同蛋白质的含量。
定量结果表明XXX蛋白质在样品中的相对丰度最高,说明其在细胞中的重要作用。
4. 结论通过蛋白组学质谱数据分析,我们成功鉴定和定量了样品中的蛋白质成分。
这些结果为进一步研究细胞的功能和调控机制提供了重要的基础。
质谱仪器数据分析方法说明书
质谱仪器数据分析方法说明书一、引言质谱仪器已成为现代化科学研究和工业应用中不可或缺的分析工具。
作为全球领先的质谱仪器制造商,我们致力于为用户提供高性能、可靠的数据分析方法。
本文将详细介绍我们的质谱仪器数据分析方法,以帮助用户更好地理解和使用我们的仪器。
二、数据获取与处理1. 仪器设置在进行数据分析之前,首先需要正确设置仪器参数。
请确保质谱仪器连接正常,并选择适当的离子源、质谱分析方式和其他相关设置。
2. 样品准备在进行数据分析之前,样品准备的重要性不可忽视。
请确保样品的纯度、稳定性和适当的浓度,以保证数据分析的准确性和可重复性。
3. 数据获取将样品置于质谱仪器中,并启动数据采集程序。
质谱仪器将根据设定的参数进入扫描模式,记录样品的质谱图。
4. 数据处理将采集到的原始数据通过内置的数据处理软件进行预处理。
该软件将进行噪声滤波、基线校正、质谱峰识别和峰面积计算等步骤,最终得到一组清晰的质谱峰数据。
三、质谱数据分析方法1. 质谱峰识别根据预处理后的质谱数据,通过使用峰识别算法,可以自动识别出样品中的各种化合物。
峰识别算法可以根据峰的高度、面积、宽度等特征对质谱峰进行准确识别,并提供相应的质谱峰图。
2. 质谱峰定性分析利用质谱峰的质量-电荷比和相关数据库,可以进行质谱峰的定性分析。
通过将质谱峰的质量-电荷比与已知化合物的数据库进行比对,可以确定样品中的化合物组成。
3. 质谱峰定量分析质谱峰的面积与所含化合物的浓度呈正相关关系,因此可以利用质谱峰的面积进行定量分析。
通过建立标准曲线,可以将质谱峰的面积与化合物浓度进行定量关联,从而计算出样品中化合物的含量。
4. 质谱峰解析对于复杂样品,质谱仪器数据分析方法还提供了质谱峰解析的功能。
通过分析质谱峰的峰形、峰宽和质谱峰的相对强度,可以获得样品中的不同组分之间的相对含量和结构相关信息。
四、数据报告与解释通过数据分析后,质谱仪器数据分析方法可以生成详细的数据报告。
质谱仪的操作方法和数据分析技巧
质谱仪的操作方法和数据分析技巧质谱仪是一种常用的分析仪器,广泛应用于生化、化学、环境等多个领域。
它通过将样品化合物在高温下分解成离子,并利用带电粒子在电场中的运动轨迹差异来分离和检测样品中的成分。
在本文中,将介绍质谱仪的操作方法和数据分析技巧。
一、质谱仪的基本操作方法1. 准备样品:首先,需要准备样品,可根据实验需求选择液态、固态或气态样品。
确保样品质量和纯度,减少杂质对结果的干扰。
2. 仪器准备:在进行实验前,需要对质谱仪进行一系列准备工作。
包括保证仪器内部洁净,检查离子源和检测器是否正常,以及检查气体、溶剂和标准品的供应是否正常。
3. 样品进样:将样品注入或吸入仪器中的进样接头,确保样品充分溶解或混合,以便得到准确的分析结果。
4. 仪器调参:根据样品性质和实验目的,调整仪器的一系列参数,如离子源温度、出样方式、离子加速电压等,以保证实验的准确性和灵敏度。
5. 数据采集:启动质谱仪,开始采集数据。
质谱仪将根据样品的质量分析出各个离子的质荷比,进而得到分子式和结构信息。
二、质谱仪数据分析技巧1. 质谱图的解读:质谱图是质谱仪采集数据的结果,通常包含质荷比(m/z)和相对丰度两个轴。
通过仔细观察和分析峰的峰位与相对丰度之间的关系,可以初步判断样品中存在的化合物种类。
2. 碎片图解析:质谱仪还可通过碰撞诱导解离(CID)等技术,获得化合物的碎片质谱图。
在解析碎片质谱图时,可以根据质谱图中的主要峰和断裂位点,推测化合物的结构。
3. 数据检索:质谱仪分析得到的数据可通过与数据库相比对进行进一步的数据检索。
数据库中存储了各种已知化合物的质谱信息,通过比对数据库中的质谱图,可以确定样品中的成分。
4. 定量分析:质谱仪还可用于对样品中成分含量的定量分析。
在进行定量分析时,需根据样品的特性选择合适的内标物,通过内标比法或外标法计算出目标物质的含量。
总结:通过掌握质谱仪的操作方法和数据分析技巧,可以准确地分析样品中的化合物成分,并获得有关结构信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ A genome sequence for the investigated organism or at least a collection of many cDNA sequences is required.
From Yogita Mantri & Arvind Gopu’s presentation in 2003
复习
►蛋白质组的定义,蛋白质组学和基因组学的 区别?
►由一个基因组,或一个细胞、组织表达的所 有蛋白质。蛋白质组的概念与基因组的概念有 许多差别,它随着组织、甚至环境状态的不同 而改变。 在转录时,一个基因可以多种mRNA 形式剪接,一个蛋白质组不是一个基因组的直 接产物,蛋白质组中蛋白质的数目有时可以超 过基因组的数目。
Collects and store ions in order to perform MS-MS analyses on them.
Separates the mass analysis and ion isolation events in time (using a single mass analyzer)
This allows selection of a particular ion, or scanning by varying the voltages.
Voltage
Filters out all m/z values except the ones it is set to pass
Obtains a mass spectrum by sweeping across the entire mass range
► Key advantage of proteomics
▪ Researchers work on the level of gene products and deal with genes that are really expressed to give a detectable PRODUCT and are not just "expressed“ which only says they produce a detectable mRNA but it is not clear whether there is a gene product or not.
To monitor the ions coming from the source, the trap continuoulsy repeats a cylcle of filling the trap with ions and scanning the ions according to their m/z values.
Ion Trap Mass Analyzer
Ions in
Trapped ions
Ions out
The trap consists of a top and a bottom electrode and a ring electrode around the middle.
Ions are ejected on the basis of their m/z values.
► Matrix-assisted laser desorption ionization (MALDI) ▪ Analyte (protein) is mixed with large excess of matrix (small organic molecule) ▪ Irradiated with short pulse of laser light. Wavelength of laser is the same as absorbance max of matrix.
MALDI m/z spectrum of a peptide mixture
The Quadrupole
source
The quadrupole consists of four parallel metal rods. Ions travel down the quadropole in between the rods.
蛋白质组学研究的目标
► 蛋白质鉴定 ► 蛋白质特性-如翻译后修饰 ► 蛋白质定量-相对定量、绝对定量 ► 样品间比较
▪ 定性-不同样品间含有的蛋白类型的差异 ▪ 定量-不同样品间含有的蛋白浓度/含量的差异 ▪ 翻译后修饰-不同样品间是否存在不同的翻译后修
饰形式 ► 蛋白质功能
把单个蛋白/多 肽从复杂样品中 分离出来非常困 难,在“组学” 实验中一般达不 到这个效果
► Key limitation of proteomics
▪ Usually, only a fraction of the proteins synthesized can be detected in a proteomics experiment, whereas the expression of ALL genes can be monitored in a wholegenome aization methods
► Electrospray mass spectrometry (ESI-MS) ▪ Liquid containing analyte is forced through a steel capillary at high voltage to electrostatically disperse analyte. Charge imparted from rapidly evaporating liquid.
Only ions of a certain m/q will reach the detector for a given ratio of voltages: other ions have unstable trajectories and will collide with the rods.