高三上学期数学期末考试试卷
北京市丰台区2023-2024学年高三上学期期末练习数学试卷含答案

丰台区2023~2024学年度第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,则()U A B ⋃=ð()A.{3,2}-- B.{3,2,1,2}--C.{3,2,1,0,1}--- D.{3,2,1,0,2}---【答案】A【解析】【分析】由补集和并集的定义求解即可.【详解】因为{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,所以{}1,0,1,2A B ⋃=-,U ð(){}3,2A B ⋃=--.故选:A .2.若(1i)1i z -=+,则||z =()A.iB.1C. D.2【答案】B【解析】【分析】根据复数的运算法则进行运算,继而直接求模即可.【详解】因为(1i)1i z -=+,所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,所以i 1z z =-=,,故选:B .3.在6(2)x y -的展开式中,42x y 的系数为()A.120- B.120C.60- D.60【答案】D【解析】【分析】求出6(2)x y -的通项,令2r =即可得出答案.【详解】6(2)x y -的通项为:()()66166C 2C 2r rr r r r r r T x y x y --+=-=-,令2r =可得:42x y 的系数为()226C 215460-=⨯=.故选:D .4.在中国文化中,竹子被用来象征高洁、坚韧、不屈的品质.竹子在中国的历史可以追溯到远古时代,早在新石器时代晚期,人类就已经开始使用竹子了.竹子可以用来加工成日用品,比如竹简、竹签、竹扇、竹筐、竹筒等.现有某饮料厂共研发了九种容积不同的竹筒用来罐装饮料,这九种竹筒的容积129,,,a a a L (单位:L )依次成等差数列,若1233a a a ++=,80.4a =,则129a a a +++= ()A.5.4B.6.3C.7.2D.13.5【答案】B【解析】【分析】利用等差数列的性质及求和公式求解.【详解】∵129,,,a a a L 依次成等差数列,1233a a a ++=,∴233a =,即21a =,又80.4a =,则()()()81912299910.49 6.3222a a a a a a a +⨯+⨯+⨯+++==== .故选:B.5.已知直线y kx =与圆221x y +=相切,则k =()A.1± B.C. D.2±【答案】B【解析】【分析】根据题意可得圆心(0,0)O 到0-=kx y 的距离等于半径1,即可解得k 的值.【详解】直线y kx =+即0-=kx y ,由已知直线y kx =+与圆221x y +=相切可得,圆221x y +=的圆心(0,0)O 到0kx y -=的距离等于半径1,1=,解得k =,故选:B .6.如图,函数()f x 的图象为折线ACB ,则不等式π()tan 4f x x >的解集是()A.{|20}x x -<< B.{|01}x x <<C.{|21}x x -<< D.{|12}x x -<<【答案】C【解析】【分析】利用正切型函数的图象与性质结合分段函数性质即可得到解集.【详解】设()πtan4h x x =,令π242k x k ππππ-<<+,且k ∈Z ,解得4242k x k -<<+,k ∈Z ,令0k =,则22x -<<,则()h x 在()2,2-上单调递增,()00h =1,1BC AC k k =-=,则2,02()2,20x x f x x x -+≤<⎧=⎨+-<<⎩,则当20x -<≤时,()0h x ≤,()0f x >,则满足()()f x h x >,即π()tan 4f x x >,当02x <<时,()11f =,且()f x 单调递减,()11h =,且()h x 单调递增,则()0,1x ∈时,()()f x h x >,即π()tan4f x x >;()1,2x ∈时,()()f x h x <,即()πtan 4f x x <;综上所述:π()tan4f x x >的解集为()2,1-,故选;C.7.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC 折起,使得二面角A BC D --为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据题意,结合线面位置关系的判定定理和性质定理,逐项判定,即可求解.【详解】对于①中,因为二面角A BC D --为直二面角,可得平面ABC ⊥平面BCD ,又因为平面ABC ⋂平面BCD BC =,DC BC ⊥,且DC ⊂平面BCD ,所以DC ⊥平面ABC ,所以①正确;对于②中,由DC ⊥平面ABC ,且AB ⊂平面ABC ,可得AB CD ⊥,又因为AB AC ⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以AB ⊥平面ACD ,所以②正确;对于③中,由AB ⊥平面ACD ,且AB ⊂平面ABD ,所以平面ABD ⊥平面ACD ,所以③正确;对于④,中,因为DC ⊥平面ABC ,且DC ⊂平面BCD ,可得平面ABC ⊥平面BCD ,若平面ABD ⊥平面BCD ,且平面ABD ⋂平面ABC AB =,可得AB ⊥平面BCD ,又因为BC ⊂平面BCD ,所以AB BC ⊥,因为AB 与BC 不垂直,所以矛盾,所以平面ABD 和平面BCD 不垂直,所以D 错误.8.已知,a b 是两个不共线的单位向量,向量c a b λμ=+r r r (,λμ∈R ).“0λ>,且0μ>”是“()0c a b ⋅+> ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】举例验证必要性,通过向量的运算来判断充分性.【详解】当0λ>,且0μ>时,()()()()()22cos ,c a b a b a b a a b b a b λμλλμμλμλμ⋅+=+⋅+=++⋅+=+++ ()0λμλμ>+-+=,充分性满足;当()0c a b ⋅+> 时,()()cos ,c a b a b λμλμ⋅+=+++ ,当0λ>,0μ=时,()cos ,c a b a b λλ⋅+=+ 是可以大于零的,即当()0c a b ⋅+> 时,可能有0λ>,0μ=,必要性不满足,故“0λ>,且0μ>”是“()0c a b ⋅+>”的充分而不必要条件.故选:A .9.在八张亚运会纪念卡中,四张印有吉祥物宸宸,另外四张印有莲莲.现将这八张纪念卡平均分配给4个人,则不同的分配方案种数为()A.18B.19C.31D.37【答案】B【分析】设吉祥物宸宸记为a ,莲莲记为b ,将这八张纪念卡分为四组,共有3种分法,再分给四个人,分别求解即可.【详解】设吉祥物宸宸记为a ,莲莲记为b①每人得到一张a ,一张b ,共有1种分法;②将这八张纪念卡分为()()()(),,,,,,,a a a a b b b b 四组,再分给四个人,则有2242C C 6=种分法③将这八张纪念卡分为()()()(),,,,,,,a b a a a b b b 四组,再分给四个人,则有2142C C 12=种分法共有:161219++=种.故选:B .10.已知函数2()||2||f x x a x =++,当[2,2]x ∈-时,记函数()f x 的最大值为()M a ,则()M a 的最小值为()A.3.5B.4C.4.5D.5【答案】C【解析】【分析】先利用函数的奇偶性,转化为求()f x 在[]0,2上的最大值;再根据a 的取值范围的不同,讨论函数()f x 在[]0,2上的单调性,求函数()f x 的最大值.【详解】易判断函数()f x 为偶函数,根据偶函数的性质,问题转化为求函数()22f x x a x =++,[]0,2x ∈上的最大值()M a .当0a ≥时,()22f x x x a =++,二次函数的对称轴为1x =-,函数在[]0,2上单调递增,所以()()288M a f a ==+≥;当10a -≤<时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,1≤,所以()f x在⎡⎣上递增,在2⎤⎦上也是递增,所以()()287M a f a ==+≥;当41a -<<-时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,因为12<<,所以()f x 在[]0,1上递增,在(上递减,在2⎤⎦上递增,所以()()11M a f a ==-或()()28M a f a ==+,若18a a -≥+⇒742a -≤≤-,则()()9112M a f a ==-≥;若18a a -<+⇒712a -<<-,则()()9282M a f a ==+>;当4a ≤-时,()22f x x x a =-+-,[]0,2x ∈2≥),所以函数()f x 在[]0,1上递增,在(]1,2上递减,所以()()115M a f a ==-≥.综上可知:()M a 的最小值为92.故选:C【点睛】关键点点睛:问题转化为二次函数在给定区间上的最值问题,然后讨论函数在给定区间上的单调性,从而求最大值.认真分析函数的单调性是关键.第二部分非选择题(共110分)二、填空题共5小题,每小题5分,共25分.11.双曲线2214x y -=的渐近线方程________.【答案】12y x =±【解析】【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214x y -=的a=2,b=1,焦点在x 轴上而双曲线22221x y a b-=的渐近线方程为y=±b x a ∴双曲线2214x y -=的渐近线方程为y=±12x故答案为y=±12x 【点睛】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想12.已知()44x x f x -=-,则11(()22f f -+=___.【答案】0【解析】【分析】由解析式直接代入求解即可.【详解】因为1122113()442222f -=-=-=,1122113()442222f --=-=-=-,所以11((022f f -+=.故答案为:0.13.矩形ABCD 中,2AB =,1BC =,且,E F 分为,BC CD 的中点,则AE EF ⋅= ___.【答案】74-##-1.75【解析】【分析】以A 为坐标原点,建立如下图所示的平面直角坐标系,求出,AE EF ,由数量积的坐标表示求解即可.【详解】以A 为坐标原点,建立如下图所示的平面直角坐标系,()()()()()10,0,2,0,2,1,0,1,2,,1,12A B C D E F ⎛⎫ ⎪⎝⎭,所以112,,1,22AE EF ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ,()11172122244AE EF ⋅=⨯-+⨯=-+=- .故答案为:74-.14.如图,在平面直角坐标系xOy 中,角(0π)αα<<的始边为x 轴的非负半轴,终边与单位圆O 交于点P ,过点P 作x 轴的垂线,垂足为M .若记点M 到直线OP 的距离为()f α,则()f α的极大值点为___,最大值为___.【答案】①.π4或3π4②.12##0.5【解析】【分析】根据三角函数的概念得(cos ,sin )P αα及,,OP OM MP ,利用面积法求得()f α,根据α的范围及三角函数的性质讨论()f α的单调性,进而求得答案.【详解】由题意(cos ,sin )P αα,1,cos ,sin OP OM MP αα===,由()1122OP f OM MP α⋅=⋅,得()1πsin 2,0122cos sin sin cos sin 21π2sin 2,π22f αααααααααα⎧<<⎪⎪=⋅===⎨⎪-<<⎪⎩,∴当π04α<<时,()f α单调递增;当ππ42α<<时,()f α单调递减;当π3π24α<<时,()f α单调递增;当3ππ4α<<时,()f α单调递减,则()f α的极大值点为π4或3π4,∵0πα<<,022πα<<,∴当sin 21α=±,即π4α=或3π4α=时,()f α取最大值为12.故答案为:π4或3π4;12.15.在平面直角坐标系内,动点M 与定点(0,1)F 的距离和M 到定直线:3l y =的距离的和为4.记动点M 的轨迹为曲线W ,给出下列四个结论:①曲线W 过原点;②曲线W 是轴对称图形,也是中心对称图形;③曲线W 恰好经过4个整点(横、纵坐标均为整数的点);④曲线W 围成区域的面积大于则所有正确结论的序号是___.【答案】①③④【解析】【分析】根据题目整理方程,分段整理函数,画出图象,可得答案.【详解】设(),M x y ,则MF =,M 到直线l 的距离3d y =-,34y +-=,222(1)(43)x y y +-=--,22221168369x y y y y y +-+=--+-+,224483x y y =---,当3y ≥时,2214812412x y y x =-=-+,,则2214312,12x x x -+≥≤-≤≤,当3y <时,22144x y y x ==,,则2134x <,212x <,x -<<可作图如下:由图可知:曲线W 过原点,且是轴对称图形,但不是中心对称图形,故①正确,②错误;曲线W 经过()()()()0,02,10,42,1O A C E -,,,4个点,没有其它整点,故③正确;由()B ,()D -,()0,3F ,四边形AFEO 的面积113462S =⨯⨯=,122ABF EFD S S ==⨯= ,112BCD S =⨯⨯= ,多边形ABCDEO 的面积626S =+⨯=+曲线W 围成区域的面积大于,故④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,a =,2π3A =.(1)求C 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出AC 边上的中线的长度.条件①:2a b =;条件②:△ABC 的周长为4+ABC 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π6(2【解析】【分析】(1)由正弦定理可解得;(2)条件②由余弦定理可得;条件③由三角形的面积公式和余弦定理可得.【小问1详解】在ABC 中,因为sin sin a cA C=,又a =,所以sin A C =.因为2π3A =,所以1sin 2C =.因为π03C <<,所以π6C =.【小问2详解】选择条件②:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为a =,所以24a b c b ++=+=+.所以2b =.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.选择条件③:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为ABC 的面积为312πsin 323ABC S bc ∆==,所以2b c ==.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.由题可知3a b =,故①不合题意.17.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,AD PA =,点E 为PA 中点.(1)求证:AD //平面BCE ;(2)点Q 为棱BC 上一点,直线PQ 与平面BCE 所成角的正弦值为515,求BQ BC 的值.【答案】(1)证明见解析(2)12BQ BC =【解析】【分析】(1)根据线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用线面角的向量求法可得Q 的坐标,即可得解.【小问1详解】因为正方形ABCD 中,//BC AD .因为BC ⊂平面BCE ,AD ⊄平面BCE ,所以//AD 平面BCE .【小问2详解】因为PA ⊥底面ABCD ,正方形ABCD 中AB AD ⊥,分别以,,AB AD AP的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,如图不妨设2PA =,因为AD PA =,点E 为PA 的中点,点Q 为棱BC 上一点,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,0,1)E ,(0,0,2)P ,(2,,0)Q m (02)m ≤≤.所以(0,2,0)BC = ,(2,0,1)BE =- ,(2,,2)PQ m =-.设(,,)n x y z =为平面BCE 的法向量,则BCn ⊥ ,BE n ⊥.所以2020BC n y BE n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,得102x y z =⎧⎪=⎨⎪=⎩,所以(1,0,2)n = .设直线PQ 与平面BCE 所成角为θ,则sin cos ,15PQ n PQ n PQ n θ⋅==== ,解得21m =,因为02m ≤≤,所以1m =,所以12BQ BC =.18.2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值a ,将该指标小于a 的人判定为阳性,大于或等于a 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p a ;误诊率是将未患病者判定为阳性的概率,记为()q a .假设数据在组内均匀分布,用频率估计概率.(1)当临界值20a =时,求漏诊率()p a 和误诊率()q a ;(2)从指标在区间[20,25]样本中随机抽取2人,记随机变量X 为未患病者的人数,求X 的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记()f a 为该地诊断结果不符合真实情况的概率.当[20,25]a ∈时,直接写出使得()f a 取最小值时的a 的值.【答案】(1)(20)0.1p =,(20)0.05q =(2)分布列见解析;期望为65(3)20a =【解析】【分析】(1)由频率分布直方图计算可得;(2)利用超几何分布求解;(3)写出()f a 的表达式判单调性求解.【小问1详解】由频率分布直方图可知(20)0.0250.1p =⨯=,(20)0.0150.05q =⨯=.【小问2详解】样本中患病者在指标为区间[20,25]的人数是200.0252⨯⨯=,未患病者在指标为区间[20,25]的人数是200.0353⨯⨯=,总人数为5人.X 可能的取值为0,1,2.202325C C 1(0)10C P X ===,112325C C 3(1)C 5P X ===,022325C C 3(2)10C P X ===.随机变量X 的分布列为X012P11035310随机变量X 的期望为1336()012105105E X =⨯+⨯+⨯=.【小问3详解】由题,()()()95%5%f a q a p a =⨯+⨯,[20,25]a ∈时,令()20,0,1,2,3,4,5a t t =+=()()50.010.03,50.020.0255t t q a p a ⎛⎫⎛⎫=⨯+⨯=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭所以()()50.010.0395%50.020.025%55t t f a g t ⎛⎫⎛⎫==⨯+⨯⨯+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,关于t 的一次函数系数为()50.0319%0.021%0⨯-⨯>,故()g t 单调递增,则0=t 即20a =时()f a 取最小值19.已知函数2()e ()x f x x ax a =--.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求实数a 的值;(2)求函数()f x 的单调区间.【答案】(1)1(2)答案见解析【解析】【分析】(1)先求函数()f x 的导函数,若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,只需保证()01f '=,求实数a 的值即可;(2)求得()0f x '=有两个根“2x =-和x a =”,再分2a <-、2a =-和2a >-三种情况分析函数()f x 的单调性即可.【小问1详解】由题可得2()e [(2)2]x f x x a x a '=+--,因为()f x 在点(1,(1))f 处的切线平行于x 轴,所以()01f '=,即e(33)0a -=,解得1a =,经检验1a =符合题意.【小问2详解】因为2()e [(2)2]x f x x a x a '=+--,令()0f x '=,得2x =-或x a =.当2a <-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,)a -∞a(,2)a -2-(2,)-+∞()f 'x +-+()f x 单调递增()f a 单调递减(2)f -单调递增所以()f x 在区间(,)a -∞上单调递增,在区间(,2)a -上单调递减,在区间(2,)-+∞上单调递增.当2a =-时,因为2()e (2)0x f x x '=+≥,当且仅当2x =-时,()0f x '=,所以()f x 在区间(,)-∞+∞上单调递增.当2a >-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,2)-∞-2-(2,)a -a(,)a +∞()f 'x +-+()f x 单调递增(2)f -单调递减()f a 单调递增所以()f x 在区间(,2)-∞-上单调递增,在区间(2,)a -上单调递减,在区间(,)a +∞上单调递增.综上所述,当2a <-时,()f x 的单调递增区间为(,)a -∞和(2,)-+∞,单调递减区间为(,2)a -;当2a =-时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当2a >-时,()f x 的单调递增区间为(,2)-∞-和(,)a +∞,单调递减区间为(2,)a -.20.已知椭圆22:143x y E +=.(1)求椭圆E 的离心率和焦点坐标;(2)设直线1:l y kx m =+与椭圆E 相切于第一象限内的点P ,不过原点O 且平行于1l 的直线2l 与椭圆E 交于不同的两点A ,B ,点A 关于原点O 的对称点为C .记直线OP 的斜率为1k ,直线BC 的斜率为2k ,求12k k 的值.【答案】(1)离心率为12,焦点坐标分别为(1,0)-,(1,0)(2)121k k =【解析】【分析】(1)根据椭圆方程直接求出离心率与焦点坐标;(2)根据直线1l 与椭圆E 相切求出P 坐标并得到134k k=-,法一:设直线2l 的方程为y kx n =+,由韦达定理求出234k k=-证得结论.法二:记1122(,),(,)A x y B x y ,由点差法求2k k ⋅可证得结论.【小问1详解】由题意得2222243a b c a b ⎧=⎪=⎨⎪=-⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆E 的离心率为12c e a ==,焦点坐标分别为(1,0)-,(1,0).【小问2详解】由22,143y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222()4384120k x kmx m +++-=①其判别式Δ0=得222(8)4(43)(412)0km k m -+-=,化简为2243m k =+.此时方程①可化为2228160m x kmx k ++=,解得4kx m=-,(由条件知,k m 异号).记00(,)P x y ,则04k x m=-,所以220443()k m k y k m m m m -=-+==,即点43(,)k P m m -.所以OP 的斜率13344m k k k m==--.法一:因为12//l l ,所以可设直线2l 的方程为(0,)y kx n n n m =+≠≠.由22,143y kx n x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222(43)84120k x knx n +++-=.当其判别式大于零时,有两个不相等的实根,设1122(,),(,)A x y B x y ,则21212228412,4343kn n x x x x k k -+=-=++.因为C 是A 关于原点O 的对称点,所以点C 的坐标为11(,)C x y --.所以直线BC 的斜率22121221212122243384443y y kx n kx n n n k k k k k kn x x x x x x k k k +++++===+=+=-=-+++-+.所以121k k =.法二:记1122(,),(,)A x y B x y ,因为点C 与点A 关于原点对称,所以11(,)C x y --.因为12//l l ,所以直线AB 的斜率为k ,所以22212121222212121y y y y y y k k x x x x x x -+-⋅=⋅=-+-.因为点,A B 在椭圆上,所以2211143x y +=,2222143x y+=.两式相减得:22222121043x x y y --+=.所以2221222134y yx x-=--,即234k k⋅=-,所以234kk=-.所以121kk=.【点睛】方法点睛:将P视为1l与椭圆相交弦中点,由中点弦定理得212bk ka⋅=-,设AB中点为M,由中点弦定理得22OMbk ka⋅=-,由2OMk k=得222bk ka⋅=-,故12k k=.21.对于数列{}n a,如果存在正整数T,使得对任意*()n n∈N,都有n T na a+=,那么数列{}na就叫做周期数列,T叫做这个数列的周期.若周期数列{}n b,{}n c满足:存在正整数k,对每一个*(,)i i k i∈N≤,都有i ib c=,我们称数列{}n b和{}n c为“同根数列”.(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;①sinπna n=;②121,1,3,2,, 3.nn nnb nb b n--=⎧⎪==⎨⎪-≥⎩(2)若{}n a和{}n b是“同根数列”,且周期的最小值分别是3和5,求证:6k≤;(3)若{}n a和{}n b是“同根数列”,且周期的最小值分别是2m+和4m+*()m∈N,求k的最大值.【答案】(1){}n a、{}n b均是周期数列,数列{}n a周期为1(或任意正整数),数列{}n b周期为6(2)证明见解析(3)答案见解析【解析】【分析】(1)由周期数列的定义求解即可;(2)由“同根数列”的定义求解即可;(3)m是奇数时,首先证明25k m+≥不存在数列满足条件,其次证明24k m=+存在数列满足条件.当m 是偶数时,首先证明24k m+≥时不存在数列满足条件,其次证明23k m=+时存在数列满足条件.【小问1详解】{}n a 、{}n b 均是周期数列,理由如下:因为1sin (1)π0sin πn n a n n a +=+===,所以数列{}n a 是周期数列,其周期为1(或任意正整数).因为32111n n n n n n n b b b b b b b +++++=-=--=-,所以63n n n b b b ++=-=.所以数列{}n b 是周期数列,其周期为6(或6的正整数倍).【小问2详解】假设6k ≤不成立,则有7k ≥,即对于17i ≤≤,都有i i a b =.因为71a a =,722b b a ==,所以12a a =.又因为63a a =,611b b a ==,所以13a a =.所以123a a a ==,所以1=n n a a +,与1T 的最小值是3矛盾.所以6k ≤.【小问3详解】当m 是奇数时,首先证明25k m +≥不存在数列满足条件.假设25k m +≥,即对于125i m +≤≤,都有i i a b =.因为()54m t m t a b t m ++=≤≤+,所以()24454t t t a b a t m ---==≤≤+,即1352m a a a a +==== ,及2461m a a a a +==== .又5t m =+时,12(2)12511m m m m a a b b a +++++====,所以1=n n a a +,与1T 的最小值是2m +矛盾.其次证明24k m =+存在数列满足条件.取(2)31,=21(1)212,2(1)2m l im i k k a m i k k +++⎧-≤≤⎪⎪=⎨+⎪=≤≤⎪⎩()l ∈N及()431,=21(1)212,2(1)21,32,4m l i m i k k m i k k b i m i m +++⎧-≤≤⎪⎪+⎪=≤≤=⎨⎪=+⎪⎪=+⎩()l ∈N ,对于124i m +≤≤,都有i i a b =.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件.假设24k m +≥,即对于124i m +≤≤,都有i i a b =.因为()53m t m t a b t m ++=≤≤+,所以()24453t t t a b a t m ---==≤≤+,即1351m a a a a +==== ,及246m a a a a ==== .又4t m =+时,2m m m a b a +==,所以2=n n a a +,与1T 的最小值是2m +矛盾.其次证明23k m =+时存在数列满足条件.取()221,=21(1)22,2(1)23,2m l i m i k k a m i k k i m +++⎧-≤≤⎪⎪=⎨=≤≤⎪⎪=+⎩()l ∈N 及()421,=21(1)22,2(1)23,21,32,4m l im i k k m i k k b i m i m i m +++⎧-≤≤⎪⎪⎪=≤≤⎪=⎨⎪=+⎪=+⎪⎪=+⎩()l ∈N ,对于123i m +≤≤,都有i i a b =.综上,当m 是奇数时,k 的最大值为24m +;当m 是偶数时,k 的最大值为23m +.【点睛】关键点睛:本题(3)的突破口是利用“同根数列”的定义分类讨论,当m 是奇数时,首先证明25k m +≥不存在数列满足条件,其次证明24k m =+存在数列满足条件.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件,其次证明23k m =+时存在数列满足条件.。
山东省威海市2023-2024学年高三上学期期末考试 数学含答案

高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。
河南省郑州市2023-2024学年高三上学期1月期末考试 数学含解析

绝密★启用前2023—2024学年郑州市高三(上)期末考试数学(答案在最后)考生注意:1.答题前,考生务必用黑色签字笔将自己的姓名、准考证号、座位号在答题卡上填写清楚;2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,在试卷上作答无效;3.考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知各项均为正数的等比数列{}n a 满足10986a a a +=.若存在两项m a ,n a ,使得14a =,则14m n+的最小值为()A.4 B.23C.32D.92.已知函数()()223x x f x a bx -=-++,且0ab ≠.若()2019f h =-,则()f h -=()A.2024B.2023C.2022D.20253.已知函数()sin()f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭上单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条相邻对称轴,则512f π⎛⎫-= ⎪⎝⎭()A.32-B.12-C.12D.324.在ABC △中,下列各式正确的是()A.sin sin a B b A=B.sin sin a C c B=C.2222cos()c a b ab A B =+-+D.sin()sin a A B c A+=5.满足下列条件的两条直线1l 与2l ,其中可以推出12//l l 的条件是()①1l 的斜率为2,2l 过点(1,2)A ,(4,8)B ;②1l 经过点(3,3)P ,(5,3)Q -,2l 平行于x 轴,但不经过P 点;③1l 经过点(1,0)M -,(5,2)N --,2l 经过点(4,3)R -,(0,5)S .A.①②B.②③C.①③D.①②③6.在三棱锥P ABC -中,CP ,CA ,CB 两两互相垂直,1AC CB ==,2PC =,建立如图所示的空间直角坐标系,则平面PAB 的法向量可以是()A.11,1,2⎛⎫ ⎪⎝⎭B.C.(1,1,1)D.(2,2,1)-7.已知数列{}n a 满足:6(3)3,7,,7n n a n n a a n ---≤⎧=⎨>⎩()n +∈N ,且数列{}n a 是递增数列,则实数a 的取值范围是()A.9,34⎛⎫⎪⎝⎭B.9,34⎡⎫⎪⎢⎣⎭C.(1,3)D.(2,3)8.一个物体做直线运动,位移s (单位:m)与时间t (单位:s )之间的函数关系为()25s t t mt =+,且这一物体在23t ≤≤这段时间内的平均速度为26m /s ,则实数m 的值为()A.2B.1C.1- D.6二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设一元二次方程220x ax a ++=的两个实根为,1x ,()212x x x ≠,则()A.1216x x >B.当17a >时,12117x x a +-的最小值为34+C.1211x x +为定值D.当21127x x x x +=时,16a =10.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R的水车,一个水斗从点3)A -出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过t 秒后,水斗旋转到点P ,设点P 的坐标为(),x y ,其纵坐标满足()sin()y f t R t ωϕ==+(0t ≥,0ω>,π||2ϕ<),则下列叙述正确的是()A.6R =,π30ω=,π6ϕ=-B.当[35,55]t ∈时,点P 到x 轴的距离的最大值为6C.当[10,25]t ∈时,函数()y f t =单调递减D.当20t =时,||PA =三、填空题:本大题共4个小题,每小题5分,共20分.13.已知样本数据1x ,2x ,…,2022x 的平均数与方差分别是m 和n ,若i i 2(i 1,2,,2022)y x =-+= ,且样本数据的1y ,2y ,…,2022y 平均数与方差分别是n 和m ,则222122022x x x +++= ________.14.已知过不同两点()222,3A m m +-,()23,2B m m m --的直线l 的一个方向向量(1,1)=a ,则实数m =_________.15.若直线l 的斜率k 的取值范围是,则该直线的倾斜角α的取值范围是__________.16.商场对某种产品的广告费用支出x (元)与销售额y (元)之间的关系进行调查,通过回归分析,求得x 与y 之间的关系式为ˆ 6.517.5yx =+,则当广告费用支出为10元时,销售额y 的预报值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球, .球数构成一个数列{}n a ,满足1n n a a n -=+,1n >且*n ∈N .(1)求数列{}n a 的通项公式;(2)求证:121112na a a +++< .(1)求sin ABD ∠的值;(2)求ABD △的面积.19.(12分)已知函数()cos )sin f x x x =+-,在ABC △中,AB =,()f C =ABC △的面积为2.(1)求C 的值;(2)求sin sin A B +的值.20.(12分)“现值”与“终值”是利息计算中的两个基本概念,终值是现在的一笔钱按给定的利息率计算所得到的在未来某个时间点的价值.现值是未来的一笔钱按给定的利息率计算所得到的现在的价值.例如,在复利计息的情况下,设本金为A ,每期利率为r ,期数为n ,到期末的本利和为S ,则()1n S A r =+其中,S 称为n 期末的终值,A 称为n 期后22.(12分)已知0a >,设函数()(2)ln f x x a x x =-+,()f x '是()f x 的导函数.(1)若2a =,求曲线()f x 在点(1,(1))f 处的切线方程;(2)若()f x 在区间(1,)+∞上存在两个不同的零点1x ,()212x x x <.①求实数a 的取值范围;②证明:()222e 2e 2a ax f x '<--.2023—2024学年郑州市高三(上)期末考试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:设等比数列{}n a 的公比为(0)q q >.由各项均为正数的等比数列{}n a 满足10986a a a +=,可得28886a q a q a +=,即260q q +-=,解得2q =或3q =-(舍).14a =,2216m n +-∴=,6m n ∴+=,141141413()5(56662n m m n m n m n m n ⎛⎫⎛⎫∴+=++=++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当4n m m n =,即2m =,4n =时,等号成立.故14m n +的最小值为32.故选C.2.答案:D解析:由()()223x x f x a bx -=-++,得()()223x x f x a bx --=--+,()()6f x f x -+∴=,()()62025f h f h ∴-=-=.故选:D.3.答案:D解析:由题意得122236ωπππ⨯=-,解得2ω=,易知6x π=是()f x 的最小值点,所以322()62k k ϕππ⨯+=+π∈Z ,得72()6k k ϕπ=+π∈Z ,于是77()sin 22sin 266f x x k x ππ⎛⎫⎛⎫=++π=+ ⎪ ⎪⎝⎭⎝⎭,则557sin 2sin 1212632f ππππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭,故选D.4.答案:D解析:对于选项A:由正弦定理有sin sin sin a b c A B C ==,故sin sin a Ab B=,故选项A 错误;对于选项B :因为sin sin a c A C=,故sin sin a C c A =,故选项B 错误;对于选项C:()cos cos A B C +=-,由余弦定理2222cos c a b ab C =+-得()2222cos c a b ab A B =+++;故选项C 错误;对于选项D:由正弦定理可得sin sin a c A C=,再根据诱导公式可得:()sin sin a c A A B =+,即()sin sin a A B c A +=,故选项D 正确;故选:D 5.答案:B解析:根据两点间的斜率公式知①中2l 的斜率为2,但是不能保证12//l l ,因为有可能直线1l 与2l 重合;②③中的两条直线斜率相等但不重合,可以保证12//l l .故选B.6.答案:A解析:由题意,得(1,0,0)A ,(0,1,0)B ,(0,0,2)P ,则(1,1,0)AB =- ,(1,0,2)AP =-,设平面PAB 的一个法向量是(,,)x y z =n ,则0,0,AB AP ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩令1x =,则1y =,12z =,所以11,1,2⎛⎫= ⎪⎝⎭n ,故选A.7.答案:D解析:根据题意,6(3)3,7,,7n n a n n a a n ---≤⎧=⎨>⎩()n +∈N ,要使{}n a 是递增数列,必有8630,1,(3)73,a a a a -->⎧⎪>⎨⎪-⨯-<⎩即3,1,29,a a a a <⎧⎪>⎨⎪><-⎩或可得23a <<.故选D.8.答案:B 解析:由已知,得()()322632s s -=-,()()2253352226m m ∴⨯+-⨯+=,解得1m =,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.答案:BC解析:因为方程220x ax a ++=的两个实根为1x ,()212x x x ≠,所以280a a ∆=->,解得()(),08,a ∈-∞+∞ ,由12x x a +=-,122x x a =,所以()()12,016,x x ∈-∞+∞ ,所以A 错误;则()1211123421734342171717x x a a a a a ⋅+=+=+-+++--- ,当172a =+时,等号成立,所以12117x x a +-的最小值为34+B 正确;由1212121112x x x x x x ++==-,所以C 正确;当21127x x x x +=时,()22221212121212242722x x x x x x a a a x x x x a +-+-===-=,得18a =,所以D 错误.故选:BC.10.答案:ABD解析:由题意可知60T =,所以2π60ω=,解得π30ω=,又从点3)A -出发,所以6R =,6sin 3ϕ=-,又π||2ϕ<,所以π6ϕ=-,A 正确;ππ6sin()306y t =-,当[35,55]t ∈时,ππ5π[π,]3063t -∈,则ππsin([1,0]306t -∈-,[6,0]y ∈-,点P 到x 轴的距离为||y ,所以点P 到x 轴的距离的最大值为6,B 正确;当[10,25]t ∈时,πππ2π[,30663t -∈,所以函数ππ6sin(306y t =-在[10,25]上不单调,C 不正确;当20t =时,πππ3062t -=,则π6sin 62y ==,且π6cos 02x ==,所以()0,6P ,则||PA ==正确.故选ABD.三、填空题:本大题共4个小题,每小题5分,共20分.解析:分析知2223m m m +≠--,即1m ≠-且12m ≠.又由题意,得()()222231132m m m m m --=---+,所以2m =-.15.答案:0,3π⎡⎫⎪⎢⎣⎭解析:0k ≤< 0tan α∴≤<.又[0,)α∈π,0,3απ⎡⎫∴∈⎪⎢⎣⎭.16.答案:82.5解析:x 与y 之间的关系式为ˆ 6.517.5yx =+,则当广告费用支出为10元时,销售额的预报值为6.51017.582.5⨯+=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.答案:(1)π3A =(2)见解析解析:(1)因为1n n a a n -=+,1n >,所以1n n a a n --=,1n >,所以当1n >时,()()()112211n n n n n a a a a a a a a ---=-+-+-+()()11212n n n n +=+-+++= ,当1n =时,上式也成立,所以()12n n n a +=;(2)由()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,所以121111111112121222311n a a a n n n ⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪++⎝⎭⎝⎭.19.答案:(1)3C =(2)32解析:(1)π()cos )sin 2cos()6f x x x x =+-=++由()f C =,得π2cos(6C +=,π2cos(06C +=()0,πC ∈ ππ7π(,)666C ∴+∈π3C ∴=.(2)由(1)知π3C =,又1sin 2ABC S ab C = △31πsin 223ab ∴=2ab ∴=由余弦定理得2222π32cos23a b ab a b ==+-+-225a b ∴+=,3a b +=由正弦定理得sin sin sin 12A B C a b c ===13sin sin ()22A B a b +=+=∴.(2)①a >;②证明见解析解析:(1)由题设()2(1)ln f x x x x =-+,则2(1)2()2ln 12ln 3x f x x x x x-'=++=-+,且0x >,所以(1)1f =,(1)1f '=,则在点(1,(1))f 处的切线方程为11y x -=-,即0x y -=.(2)①当1x >时()0f x =等价于20ln x x a x +-=,设()2ln x g x x a x =+-,则22ln 1(ln 1)(2ln 1)()2ln ln x x x g x x x -+-=+'=.当1x <<时()0g x '<,()g x 单调递减;当x >()0g x '>,()g x 单调递增;所以,当1x >时min ()g x g a ==,因为()f x 在(1,)+∞上存在两个不同的零点1x ,2x ,则min ()0g x <,解得a >.当a >时,取1a a x a =∈-,则1ln 11a a x x a <-=-,故()221201ln 111a a a a a x a a a g x x a a x a a a -=+->+-=>---,又2002ln 2a a g a⎛⎫=>= ⎪⎝⎭,所以()f x在和2a ⎫⎪⎭上各有一个零点,故a >.②因为()2ln 3a f x x x-'=+,所以22222()2ln 3x f x x x a x '=-+,结合()()22222ln 0f x x a x x =-+=知:()()2222222222232222a x a x f x a x a x x a a x -=-+=---+--'.设ln 1y x x =-+,则11y x'=-,在(0,1)上0y '>,在(1,)+∞上0y '<,所以y 在(0,1)上递增,在(1,)+∞上递减,故ln1110y ≤-+=,即ln 1x x ≤-,所以ln 1e ex x ⎛⎫≤- ⎪⎝⎭,即ln e x x ≤,当e x =时取等号,所以e e e e e e ln e 02222e 2a a a a a f -----⎛⎫=-+>-⋅+= ⎪⎝⎭.由①知,()f x 在[)2,x +∞上单调递增,且()20f x =,所以2e 2a x -≤,即22e a x -≥.因为22()2a a t t tϕ=--+在[e,)+∞上是减函数,且22e a x -≥,所以()()22222(e)e 22e a a x f x a x ϕϕ=-≤=--+',得证.。
北京市海淀区2024届高三上学期期末练习数学试题含答案

海淀区2023-2024学年第一学期期末练习高三数学2024.01(答案在最后)本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则()U A B =ð()A.{}2,4,5,6 B.{}4,6 C.{}2,4,6 D.{}2,5,6【答案】A 【解析】【分析】由集合的交集运算、补集运算即可求解.【详解】由题意集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则{}1,3A B = ,(){}2,4,5,6U A B = ð.故选:A.2.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i- B.1- C.3i - D.3-【答案】D 【解析】【分析】由复数对应的点求出复数1z ,2z ,计算12z z ⋅,得复数12z z ⋅的虚部.【详解】在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则112z i =+,22z i =-+,得()()1212i 2i 43i z z ⋅=+-+=--,所以复数12z z ⋅的虚部为3-.故选:D3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则=a ()A.1 B.1- C.4D.4-【答案】B 【解析】【分析】由直线平行的充要条件列方程求解即可.【详解】由题意直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,所以()11202a ⨯--⨯=,解得1a =-.故选:B.4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A. B.4C.5D.【答案】D 【解析】【分析】先由抛物线的焦半径公式求出点M 的坐标,再利用两点间的距离公式求出MO .【详解】设()00,Mxy ,2008y x =,又因为024MF x =+=,所以2002,16x y ==,故MO ===故选:D.5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为π4,则该四棱锥的体积为()A.4B.2C.43D.23【答案】C 【解析】【分析】作出辅助线,得到PQH ∠为二面角P CD A --的平面角,所以π4PQH ∠=,从而求出四棱锥的高,由棱锥体积公式求出答案.【详解】连接,AC BD ,相交于点H ,则H 为正方形ABCD 的中心,故PH ⊥底面ABCD ,取CD 的中点Q ,连接,HQ PQ ,则,HQ CD PQ CD ⊥⊥,112HQ AD ==,故PQH ∠为二面角P CD A --的平面角,所以π4PQH ∠=,故1PH HQ ==,所以该四棱锥的体积为21433AB PH ⨯⋅=.故选:C6.已知圆22:210C x x y ++-=,直线()10mx n y +-=与圆C 交于A ,B 两点.若ABC 为直角三角形,则()A.0mn =B.0-=m nC.0m n +=D.2230m n -=【答案】A 【解析】【分析】由直线与圆相交的弦长公式AB =.【详解】因为圆22:210C x x y ++-=,圆心为()1,0C -,半径为r =CA CB ==因为ABC为直角三角形,所以2AB ==,设圆心()1,0C -到直线()10mx n y +-=的距离为d,d ==由弦长公式AB =1d =1=,化简得0mn =.故选:A.7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A.10B.eC.2D.54【答案】D 【解析】【分析】根据反函数的性质以及导数的几何意义,只需函数()xf x a =与直线y x =相交即可.【详解】对比选项可知我们只需要讨论1a >时,关于x 的方程log 0xa x a -=的解的情况,若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,即()xf x a =与()log a g x x =的图像有交点,因为()xf x a =与()log a g x x =互为反函数,所以()xf x a =与()log a g x x =的图像关于直线对称,如图所示:设函数()xf x a =与直线y x =相切,切点为()00,P x y ,()ln xf x a a '=,则有000ln 1xx a a a x ⎧=⎪⎨=⎪⎩,解得:0ex a =⎧⎪⎨=⎪⎩,由图像可知,当(a ∈时,曲线()x f x a =与直线y x =有交点,即()xf x a =与()log a g x x =的图像有交点,即方程log 0xa x a -=有解.故选:D.8.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0αα->”是“120k k >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由题意首项得12ππ,0,,π22αα⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,再结合必要不充分条件的定义、斜率与倾斜角的关系,两角差的余弦公式即可得解.【详解】由题意两直线均有斜率,所以12ππ,0,,π22αα⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,若取122ππ,33αα==,则有()1202ππ1332cos cos αα⎛=⎫-= ⎪⎭->⎝,但122ππtan tan 3033k k ==-<;若12121212sin sin tan tan 0cos cos k k αααααα==>,又12sin sin 0αα>,所以12cos cos 0αα>,而()121212cos cos cos sin sin 0αααααα-=+>,综上所述,“()12cos 0αα->”是“120k k >”的必要而不充分条件.故选:B.9.已知{}n a 是公比为()1q q ≠的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A.{}n a 是递增数列B.{}n a 是递减数列C.{}n S 是递增数列D.{}n S 是递减数列【答案】B 【解析】【分析】先根据等比数列前n 项和()111nn a q S q-=-,结合11na Sq<-恒成立,得出,a q 的取值范围,得到{}n a 是递减数列.【详解】{}n a 是公比为()1q q ≠的等比数列,n S 为其前n 项和()111nn a q S q-=-,()1111111n n n a q a a S S q q q-<∴=<--- ,恒成立,101n a q q ⨯>-恒成立,若0q <,则n q 可能为正也可能为负,不成立所以10,01na q q>>-,当{}10,01,n a q a ><<是递减数列,当10,1,a q {}n a 是递减数列,故选:B .10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,10928GPI IPK KPG θ'∠=∠=∠=≈ ,则上顶的面积为()(参考数据:1cos 3θ=-,tan 2θ=A. B.332C.922D.924【答案】D 【解析】【分析】根据蜂房的结构特征,即可根据锐角三角函数以及三角形面积公式求解.【详解】由于10928GPI IPK KPG θ'∠=∠=∠=≈ ,所以10928GHI θ'∠=≈ ,连接G I ,取其中点为O ,连接OH ,所以2224tan2GO OH θ===,由1BC =,且多边形ABCDEF为正六边形,所以2sin 60AC AB == ,由于GI AC =,所以=44OH =,故一个菱形的面积为163222244GHI S GI OH =⨯⨯⋅= =,因此上顶的面积为344⨯=,故选:D第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x x ⎫-⎪⎭的展开式中,x 的系数为__________.【答案】5-【解析】【分析】由二项式的展开式的通项进行求解即可.【详解】51x x ⎫-⎪⎭的展开式的通项为()53521551C 1C rrrr rrr T x x x --+⎛⎫=-=-⋅ ⎪⎝⎭令5312r-=得1r =,所以125C 5T x x =-⋅=-,x 的系数为5-.故答案为:5-.12.已知双曲线221x my -=30y -=,则该双曲线的离心率为__________.【答案】2【解析】【分析】由双曲线方程可得其渐近线方程,从而得关于m 的方程,再结合离心率公式求解即可.【详解】由题意得0m >,易知双曲线221x my -=,即2211y x m-=的渐近线方程为1,y m =13,m=得13,m =所以该双曲线的离心率11 2.c e a m==+=故答案为:2.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=__________;点C 到直线AB 的距离为__________.【答案】①.1-②.55755【解析】【分析】建立适当的平面直角坐标系,由向量数量积的坐标运算公式以及点到直线的距离公式即可求解.【详解】以B 为原点建立如图所示的平面直角坐标系,由题意()()()2,1,0,0,1,3A B C -,所以()()2,11,3231AB BC ⋅=-⋅=-=-,而直线AB 的表达式为12y x =-,即20x y +=所以点C 到直线AB 的距离为21235512d +⨯==+.故答案为:1-,55.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和()1,2,n = 的一组1a ,d 的值为1a =__________,d =__________.【答案】①.1②.1(答案不唯一)【解析】【分析】设等差数列{}n b 的前n 项和为n S ,根据题意可得123,,b b b .根据2132,b b b =+结合等差数列的通项公式,可得关于1,a d 的方程,解方程即可.【详解】设等差数列{}n b 的前n 项和为n S ,则1,n n n S a a +=112223334,,.S a a S a a S a a ∴===又{}n a 是公差为d 的等差数列,11122212312233234233,2,2,b S a a b S S a a a a da b S S a a a a da ∴===-=-==-=-=2132,b b b =+ 即()()()21231111222,422,da a a da d a d a a d d a d ⨯=+∴+=+++整理得()110,a a d -=由题知110,.a a d >∴=故满足题意的一组1a ,d 的值为11a =,1d =.(答案不唯一)故答案为:1;1(答案不唯一)15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2+-=f x f x a ;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意Z n ∈,都有()()00f x f x nT =+.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】取0a =可判断①,取1a =化简后可判断②,先化简,取πx =可判断③,取π2T =可判断④.【详解】对于①,当0a =时()cos f x x =,其最大值为1,最小值为0,()f x 的最大值与最小值的差为1,故①错误;对于②,当1a =时,()cos 11cos =+=+f x x x ,()()π-cos π-11cos 1cos =+=-=-f x x x x ,因此对任意x ∈R ,()()π22+-==f x f x a ,故②正确;对于③,ππcos sin 22⎛⎫⎛⎫+=++=- ⎪ ⎪⎝⎭⎝⎭f x x a a x ,ππcos sin 22⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭f x x a a x ,当πx =时ππ22⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭f x f x a ,故③错误;对于④,当0a =时()cos f x x =,取π2T =,0π=4x ,使得对任意Z n ∈,都有()()00f x f x nT =+,故正确.故答案为:②④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(1)求证:1//C M 平面11ADD A ;(2)求直线1AC 与平面11MB C 所成角的正弦值.【答案】(1)证明见解析(2)69【解析】【分析】(1)连接1AD ,由四棱柱性质可得11MAD C 为平行四边形,利用线面平行的判定定理即可证得1//C M 平面11ADD A ;(2)由面面垂直的性质以及线面垂直判定定理可求得1,,AD AB AA 三条棱两两垂直,建立空间直角坐标系利用空间向量即可求得结果.【小问1详解】连接1AD ,如下图所示:在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =,因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =,所以11C D AM ∥,11C D AM =,所以四边形11MAD C 为平行四边形,所以11MC AD ∥,因为1C M ⊄平面11ADD A ,所以1//C M 平面11ADD A ,【小问2详解】在正方形11ABB A 中,1AA AB ⊥,因为平面11ABB A ⊥平面ABCD ,平面11ABB A ⊥⋂平面ABCD AB =;所以1AA ⊥平面ABCD ,而AD ⊂平面ABCD ,即可得1AA AD ⊥,因为1AD B M ⊥,11,AA B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A ,而AB ⊂平面11ABB A ,即AD AB ⊥;如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z =,则111020n C B x z n MC x y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令2x =,则1y =-,2z =,于是()2,1,2n =-;因为111cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C所成角的正弦值为9.17.在ABC 中,2cos 2c A b a =-.(1)求C ∠的大小;(2)若c =ABC 存在,求AC 边上中线的长.条件①:ABC的面积为;条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】17.π318.不能选①,选②或③,答案均为1【解析】【分析】(1)由正弦定理及sin sin cos cos sin B A C A C =+得到1cos 2C =,结合()0,πC ∈,得到π3C =;(2)选①,由三角形面积和余弦定理得到2211a b +=,由222a b ab +≥推出矛盾;选②,根据三角恒等变换得到π6A =,ABC 是以AC 为斜边的直角三角形,由正弦定理得到AC ,求出中线;选③,由余弦定理得到223a b ab +-=,设AC 边上的中线长为d ,再由余弦定理得到AC 边上的中线的长为1.【小问1详解】由正弦定理sin sin sin a b c A B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin cos sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.【小问2详解】选①,ABC 的面积为即1sin 2ab C =,即4ab =8ab =,因为c =222cos 2a b c C ab +-=,即2231162a b +-=,解得2211a b +=,由基本不等式得222a b ab +≥,但1128<⨯,故此时三角形不存在,不能选①,选条件②:1sin sin 2B A -=.由(1)知,π33ππ2B A A ∠=--∠=-∠.所以2π1sin sin sin sin sin sin 322B A A A A A A⎛⎫-=--=+-⎪⎝⎭31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以π3π6A -=,即π6A =.所以ABC 是以AC 为斜边的直角三角形.因为c =所以32πsin sin 3AB AC C ===.所以AC 边上的中线的长为112AC =.选条件③:2222b a -=.由余弦定理得223122a b ab +-=,即223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(1)从上述10场比赛中随机选择一场,求甲获胜的概率;(2)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(3)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.【答案】(1)310(2)分布列见解析,43(3)()()()213D Y D Y D Y >>【解析】【分析】(1)从表格中可以发现甲获胜的场数为3场,从而得到甲获胜的概率;(2)从表格中可以发现在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场。
福建省高中名校2024学年高三年级第一学期期末数学试卷(附答案)

福建省高中名校2024学年高三年级第一学期期末试卷数 学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数2i1i z =+,则z z -=( )A 2B. 2i -C. 2-D. 2i2. 已知集合{}2680A x x x =-+>,{}30B x x =-<,则A B = ( ) A. (2,3)B. (3),-∞C. (,2)-∞D. (4,)+∞3. 已知向量(3,5)a =r,(1,21)b m m =-+,若//a b,则m =( )A. 8B.8- C. 213-D. 87-4. 已知0.3log 2a =,0.23b =,0.30.2c =,则( ) A. b c a >>B. b a c >>C. c b a >>D. c a b >>5. 已知函数()ππcos 44f x x x ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,要得到函数2()sin 22cos 1g x x x =-+的图象,只需将()f x 的图象( ) A. 向左平移π8个单位长度 B. 向左平移3π4个单位长度 C. 向右平移3π4个单位长度D. 向右平移3π8个单位长度6. 抛物线2:2(0)C y px p =>的焦点为F ,M 是抛物线C 上的点,O 为坐标原点,若OFM △的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =( )A 4B. 8C. 6D. 107. 已知ABC 是边长为8的正三角形,D 是AC 的中点,沿BD 将BCD △折起使得二面角A BD C --为π3,则三棱锥C ABD -外接球的表面积为( ) A. 52π B. 52π3 C. 208π3D.103π38. 在数列{}n a 中,11a =,且1n n a a n +=,当2n ≥时,1231112n n na a a a a λ++++≤+- ,则实数λ的..取值范围为( )A. (,1]-∞B. [1,)+∞C. (0,1]D. (,4]-∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列结论正确的是( ) A. 若0a b <<,则22a ab b >> B. 若x ∈R ,则22122x x +++最小值为2 C. 若2a b +=,则22a b +的最大值为2 D. 若(0,2)x ∈,则1122x x+≥- 10. 《黄帝内经》中的十二时辰养生法认为:子时(23点到次日凌晨1点)的睡眠对一天至关重要.相关数据表明,入睡时间越晚,沉睡时间越少,睡眠指数也就越低.根据某次的抽样数据,对早睡群体和晚睡群体的睡眠指数各取10个.如下表:编号 1 2 3 4 5 6 7 8 9 10 早睡群体睡眠指数 65 68 75 85 85 85 88 92 9295 晚睡群体睡眠指数35405555556668748290根据样本数据,下列说法正确的是( )A. 早睡群体的睡眠指数一定比晚睡群体的睡眠指数高B. 早睡群体的睡眠指数的众数为85C. 晚睡群体的睡眠指数的第60百分位数为66D. 早睡群体的睡眠指数的方差比晚睡群体的睡眠指数的方差小 11. 已知点()0,5A,()5,0B -,动点P 在圆C :()()22348x y ++-=上,则( )A. 直线AB 截圆C 所得的弦长为B. PAB 的面积的最大值为15C. 满足到直线AB 的P 点位置共有3个D. PA PB ⋅的取值范围为22⎡---+⎣12. 已知定义在R 上的函数()f x 满足(2)()(2026)f x f x f ++=,且(1)1f x +-是奇函数.则( )的A. (1)(3)2f f +=B. (2023)(2025)(2024)f f f +=C. (2023)f 是(2022)f 与(2024)f 等差中项D.20241()2024i f i ==∑三、填空题:本题共4小题,每小题5分,共20分.13. 若函数21()2e 2x f x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴,则=a _________. 14. 如图,在长方体1111ABCD A B C D -中,8AB =,6AD =,异面直线BD 与1AC所成角的余弦值为10,则1CC =_________.15. 某美食套餐中,除必选菜品以外,另有四款凉菜及四款饮品可供选择,其中凉菜可四选二,不可同款,饮品选择两杯,可以同款,则该套餐的供餐方案共有_________种.16. 法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现椭圆的两条互相垂直的切线的交点的轨迹是以该椭圆的中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆2222:1(0)x y C a b a b+=>>的蒙日圆为22273x y b +=,则C 的离心率为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和n S 满足210n n S a +-=. (1)求{}n a 的通项公式;(2)设27log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 18. 已知某公司生产的风干牛肉干是按包销售的,每包牛肉干的质量M (单位:g )服从正态分布()2250,N σ,且(248)0.1P M <=.(1)若从公司销售的牛肉干中随机选取3包,求这3包中恰有2包质量不小于248g 的概率;(2)若从公司销售的牛肉干中随机选取K (K 为正整数)包,记质量在248g ~252g 内的包数为X ,且的()320D X >,求K 的最小值.19. 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =,πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭. (1)求角A ;(2)作角A 的平分线与BC 交于点D ,且AD =,求b c +.20. 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PO ⊥平面ABCD ,垂足为O ,E 为PC 的中点,//OE 平面PAD .(1)证明:PC PD =;(2)若24==A D A B ,OC OD ⊥,PC 与平面ABCD 所成的角为60°,求平面PBC 与平面PCD 夹角的余弦值.21. 已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为6,且其焦点到渐近线的距离为1.(1)求C 的方程;(2)若动直线l 与C 恰有1个公共点,且与C 的两条渐近线分别交于,P Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.22. 已知函数ln ()x af x x+=,[1,)x ∈+∞. (1)讨论()f x 的单调性.(2)是否存在两个正整数1x ,2x ,使得当12x x >时,()12121212x x x x x x x x -=?若存在,求出所有满足条件1x ,2x 的值;若不存在,请说明理由.的答案解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数2i1i z =+,则z z -=( )A. 2B. 2i -C. 2-D. 2i【答案】D 【答案解析】【详细分析】根据条件,利用复数的运算即可求出结果. 【答案详解】因为2i 2i(1i)1i 1i (1i)(1i)z -===+++-,所以1i z =-,故2i z z -=, 故选:D.2. 已知集合{}2680A x x x =-+>,{}30B x x =-<,则A B = ( ) A. (2,3)B. (3),-∞C. (,2)-∞D.(4,)+∞【答案】C 【答案解析】【详细分析】解一元二次不等式化简集合A ,结合交集的概念即可得解.【答案详解】因为{4A x x =>或}2x <,{}3B x x =<,所以{}2A B x x ⋂=<. 故选:C.3. 已知向量(3,5)a =r ,(1,21)b m m =-+ ,若//a b ,则m =( )A. 8B.8- C. 213-D. 87-【答案】B 【答案解析】【详细分析】由平面向量平行的充要条件即可得解.【答案详解】因为//a b ,所以3(21)5(1)m m +=-,所以8m =-.故选:B.4. 已知0.3log 2a =,0.23b =,0.30.2c =,则( ) A. b c a >>B. b a c >>C. c b a >>D.c a b >>【答案】A 【答案解析】【详细分析】引入中间量,利用函数的单调性,进行大小的比较.【答案详解】因为0.30.3log 2log 10a =<=,0.20331b =>=,0.30.2(0,1)=∈c ,所以b c a >>.故选:A5. 已知函数()ππcos 44f x x x ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,要得到函数2()sin 22cos 1g x x x =-+的图象,只需将()f x 的图象( )A. 向左平移π8个单位长度 B. 向左平移3π4个单位长度 C. 向右平移3π4个单位长度D. 向右平移3π8个单位长度【答案】D 【答案解析】【详细分析】先把()f x ,()g x 的答案解析式都化成()sin y A x ωϕ=+或()cos y A x ωϕ=+的形式,再用图象的平移解决问题.【答案详解】()πππππcos sin 2244442f x x x x x x x⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-=++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()2π3πsin 22cos 1sin 2cos 22244g x x x x x x x ⎛⎫⎛⎫=-+=-=-=- ⎪ ⎪⎝⎭⎝⎭,故将()f x 的图象向右平移38π个单位长度可得3π3π2284y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,即为()g x 的图象. 故选:C6. 抛物线2:2(0)C y px p =>的焦点为F ,M 是抛物线C 上的点,O 为坐标原点,若OFM △的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =( ) A. 4 B. 8C. 6D. 10【答案】B 【答案解析】【详细分析】综合应用三角形外接圆的性质和抛物线的性质即得答案. 【答案详解】因为OFM △的外接圆与抛物线C 的准线相切, 所以OFM △的外接圆的圆心到准线的距离等于圆的半径. 因为圆的面积为36π,所以圆的半径为6, 又因为圆心在OF 的垂直平分线上,||2pOF =, 所以OFM △的外接圆的圆心到准线的距离624p p+=,可得8p =.故选:B.7. 已知ABC 是边长为8的正三角形,D 是AC 的中点,沿BD 将BCD △折起使得二面角A BD C --为π3,则三棱锥C ABD -外接球的表面积为( ) A. 52πB. 52π3 C. 208π3D.103π3【答案解析】【详细分析】根据给定条件,结合球的截面圆性质确定球心位置,再求出球半径即得. 【答案详解】在三棱锥C ABD -中,,,,,BD AD BD CD AD CD D AD CD ⊥⊥=⊂ 平面ACD ,由二面角A BD C --为π3,4AD CD ==,得ACD 是正三角形,令其外接圆圆心为O ',则2πsin 333O D AD '==,令三棱锥C ABD -外接球的球心为O ,球半径为R , 则OO '⊥平面ACD ,即有//OO BD ',显然球心O 在线段BD 的中垂面上,令线段BD 的中垂面交BD 于E ,则OE BD ⊥,显然O D BD '⊥,于是//OE O D ',四边形OEDO '是平行四边形,且是矩形,而12==DE BD22222252(33R OD OE DE ==+=+=, 所以三棱锥C ABD -外接球的表面积22084ππ3S R ==. 故选:C8. 在数列{}n a 中,11a =,且1n n a a n +=,当2n ≥时,1231112n n na a a a a λ++++≤+- ,则实数λ的取值范围为( ) A. (,1]-∞B. [1,)+∞C. (0,1]D.(,4]-∞【答案解析】【详细分析】先根据递推关系得到111n n na a a +-=-,把条件转化为22λ≤,从而可得答案. 【答案详解】因为1n n a a n +=,11a =,所以21a =,且当2n ≥时,11n n a a n -=-, 所以111n n n n a a a a +--=,所以111n n na a a +-=-, 所以3142531123111n n na a a a a a a a a a a +-+++=-+-+-++-= 12112n n n n a a a a a a ++--++=+-.因为1231112n n na a a a a λ++++≤+- , 所以1122n n n n a a a a λ+++-≤+-,所以22λ≤,故1λ≤. 故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列结论正确的是( ) A. 若0a b <<,则22a ab b >> B. 若x ∈R ,则22122x x +++的最小值为2 C. 若2a b +=,则22a b +最大值为2 D. 若(0,2)x ∈,则1122x x+≥- 【答案】AD 【答案解析】【详细分析】利用作差法比较大小判断A ,利用基本(均值)不等式判断BCD ,要注意“一正二定三相等”.【答案详解】因为2()0a ab a a b -=->,所以2a ab >, 的因为2()0=->-b a b ab b ,所以2ab b >,所以22a ab b >>,故A 正确; 因为221222x x ++≥+的等号成立条件22122x x +=+不成立,所以B 错误; 因为222122a b a b ++⎛⎫≥= ⎪⎝⎭,所以222a b +≥,故C 错误;因为11111121(2)2(22)2222222xx x x x x x x x x -⎛⎫⎛⎫+=+-+=++≥+= ⎪ ⎪---⎝⎭⎝⎭,当且仅当112x x=-,即1x =时,等号成立,所以D 正确. 故选:AD10. 《黄帝内经》中的十二时辰养生法认为:子时(23点到次日凌晨1点)的睡眠对一天至关重要.相关数据表明,入睡时间越晚,沉睡时间越少,睡眠指数也就越低.根据某次的抽样数据,对早睡群体和晚睡群体的睡眠指数各取10个.如下表:编号 1 2 3 4 5 6 7 8 9 10 早睡群体睡眠指数 65 68 75 85 85 85 88 92 92 95 晚睡群体睡眠指数35405555556668748290根据样本数据,下列说法正确的是( )A. 早睡群体的睡眠指数一定比晚睡群体的睡眠指数高B. 早睡群体的睡眠指数的众数为85C. 晚睡群体的睡眠指数的第60百分位数为66D. 早睡群体的睡眠指数的方差比晚睡群体的睡眠指数的方差小 【答案】BD 【答案解析】【详细分析】由样本数据可判断A ;样本数据的集中程度可判断D ;由众数的概念可判断B ;由百分位数的概念可判断C.【答案详解】因为早睡群体的睡眠指数不一定比晚睡群体的睡眠指数高,所以A 错误; 因为早睡群体的睡眠指数的10个样本数据中85出现次数最多,所以B 正确;因为晚睡群体的睡眠指数的第60百分位数为6668672+=,所以C 错误; 由样本数据可知,早睡群体的睡眠指数相对比较稳定,所以方差小,故D 正确. 故选:BD. 11. 已知点()0,5A,()5,0B -,动点P 在圆C :()()22348x y ++-=上,则( )A. 直线AB 截圆C所得的弦长为 B. PAB 的面积的最大值为15C. 满足到直线AB的P 点位置共有3个 D. PA PB ⋅的取值范围为22⎡---+⎣【答案】BCD 【答案解析】【详细分析】根据点到直线的距离公式,结合勾股定理即可求解弦长判断A ,根据三角形的面积公式,结合圆的性质即可求解B ,根据圆上的点到直线的距离的范围,即可求解C ,根据向量的数量积的运算量,结合坐标运算即可求解D.【答案详解】对于A ,因为()0,5A ,()5,0B -,所以直线AB 的方程为50x y -+=,圆心()3,4C -到直线AB 的距离为d ==,又因为圆C 的半径r =所以直线AB 截圆C所得的弦长为2=A 错误.对于B,易知AB =PAB 的面积最大,只需点P 到直线AB 的距离最大,而点P到直线AB的距离的最大值为r d +==, 所以PAB的面积的最大值为1152⨯=,B 正确. 对于C ,当点P 在直线AB 上方时,点P到直线AB 的距离的范围是(0,r +,即(,由对称性可知,此时满足到直线AB 的P 点位置有2个.当点P 在直线AB 下方时,点P到直线AB 的距离的范围是(0,r,即(,此时满足到直线AB的P 点位置只有1个.综上所述,满足到直线AB的P 点位置共有3个,C 正确.对于D ,由题意知()()()2PA PB PC CA PC CB PC PC CA CB CA CB ⋅=+⋅+=+⋅++⋅.又因为()0,5A ,()5,0B -,()3,4C -,所以()3,1CA = ,()2,4CB =--, 故()()321410CA CB ⋅=⨯-+⨯-=- ,()1,3CA CB +=-.设点()00,D x y 满足CA CB CD +=,则()003,4CD x y =+- ,故0031,43,x y +=⎧⎨-=-⎩解得002,1,x y =-⎧⎨=⎩即()2,1D -,CD =所以()28cos ,10PA PB PC PC CA CB CA CB PC CD PC CD ⋅=+⋅++⋅=+⋅⋅-2,2,PC CD PC CD =-+=-+ .又因为,PC CD ⎡∈-⎣,所以2,22PC CD ⎡-+∈---+⎣ ,即PA PB ⋅取值范围为[2--,2-+,D 正确.故选:BCD12. 已知定义在R 上的函数()f x 满足(2)()(2026)f x f x f ++=,且(1)1f x +-是奇函数.则( )A. (1)(3)2f f +=B. (2023)(2025)(2024)f f f +=的C. (2023)f 是(2022)f 与(2024)f 的等差中项D.20241()2024i f i ==∑【答案】ACD 【答案解析】【详细分析】由(2)()(2026)f x f x f ++=,可推出()f x 的周期为4,由(1)1f x +-是奇函数可推出(1)1f =,通过赋值及函数的周期性可逐个判断各个选项. 【答案详解】因为(2)()(2026)f x f x f ++=, 所以(4)(2)(2026)f x f x f +++=, 两式相减得(4)()f x f x +=, 所以()f x 的周期为4. 因为(1)1f x +-是奇函数,所以(1)1(1)1f x f x -+-=-++,所以(1)(1)2f x f x -+++=, 即()(2)2f x f x -++=, 令=1x -,得(1)1f =.因为(2)()(2026)(2)f x f x f f ++==, 令2x =,得(4)(2)(2)f f f +=, 所以(4)0f =,即(0)0f =. 因为()(2)2f x f x -++=, 令0x =,得(0)(2)2f f +=, 所以(2)2f =,所以(2)()2f x f x ++=, 所以(3)(1)2f f +=,故A 正确. 因为()(2)2f x f x -++=,所以(1)(3)2f f -+=,即(3)(3)2f f +=,所以(3)1f =.因为(2023)(2025)(3)(1)2f f f f +=+=,(2024)(0)0f f ==,所以B 错误. 因为(2022)(2024)(2)(0)2f f f f +=+=,(2023)(3)1f f ==, 所以(2022)(2024)2(2023)f f f +=,所以(2023)f 是(2022)f 与(2024)f 的等差中项,故C 正确.因为(1)(2)(3)(4)f f f f +++()(1)(3)(2)(4)f f f f =+++2204=++=,所以20241()506[(1)(2)(3)(4)]50642024i f i f f f f ==+++=⨯=∑,故D 正确故选:ACD【点评】关键点评:本题的关键是通过其奇偶性得到其周期性,再结合等差中项的含义以及赋值法一一详细分析选项即可.三、填空题:本题共4小题,每小题5分,共20分.13. 若函数21()2e 2x f x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴,则=a _________. 【答案】2- 【答案解析】【详细分析】求出函数的导数,根据导数的几何意义,即可求得答案. 【答案详解】由题意得()2e x f x x a '=--, 由函数21()2e 2x f x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴, 可得(0)20f a '=--=,得2a =-, 故答案为:-214. 如图,在长方体1111ABCD A B C D -中,8AB =,6AD =,异面直线BD 与1AC 所成角的余弦值为10,则1CC =_________. .【答案】【答案解析】【详细分析】利用直线的平移,把两条异面直线所成的角转化为平面角,再解三角形求角. 【答案详解】连接AC ,交DB 于点O ,取1CC 的中点E ,连接OE ,BE . 因为1//AC OE ,所以BD 与1AC 所成的角为∠BOE (或其补角). 令EC x =,在BEO △中,由8AB =,6AD =,得5OB =.又OE =,BE =cos 10BOE ∠=, 由余弦定理得22222225536210x x OE OB BE OE OB ++-++-==⋅,解得x =1CC =.故答案为:15. 某美食套餐中,除必选菜品以外,另有四款凉菜及四款饮品可供选择,其中凉菜可四选二,不可同款,饮品选择两杯,可以同款,则该套餐的供餐方案共有_________种. 【答案】60 【答案解析】【详细分析】先选菜品,再选饮品,结合分步计数原理可得答案.【答案详解】由题意可知凉菜选择方案共有24C 6=种,饮品选择方案共有2144C C10+=种,因此该套餐的供餐方案共有61060⨯=种. 故答案为:6016. 法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现椭圆的两条互相垂直的切线的交点的轨迹是以该椭圆的中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆2222:1(0)x y C a b a b+=>>的蒙日圆为22273x y b +=,则C 的离心率为_________. 【答案】12##0.5 【答案解析】【详细分析】根据蒙日圆的定义得出点(,)a b 一定在其蒙日圆上,从而可得离心率. 【答案详解】由题意可知点(,)a b 一定在其蒙日圆上,所以22273a b b +=, 所以234b a ⎛⎫= ⎪⎝⎭,故椭圆C的离心率为12c e a ===. 故答案为:12四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和n S 满足210n n S a +-=. (1)求{}n a 的通项公式; (2)设27log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)13nn a ⎛⎫= ⎪⎝⎭(2)91n nT n =+ 【答案解析】【详细分析】(1)根据条件,利用n a 与n S 间的关系,得到13n n a a -=,从而得出数列{}n a 为等比数列,即可求出结果;(2)由(1)得出3n nb =-,从而得出111191n n b b n n +⎛⎫=- ⎪+⎝⎭,再利用裂项相消法即可求出结果.【小问1答案详解】因为210n n S a +-=,所以当1n =时,113a =, 当2n ≥时,11210n n S a --+-=,两式相减得13n n a a -=,又1103=≠a , 所以数列{}n a 是以13为首项,13为公比的等比数列, 则1111333n nn a -⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭. 【小问2答案详解】因为27271log log (33nn n n b a ===-, 所以119119(1)1n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 所以1111111119991122334111n n T n n n n ⎛⎫⎛⎫=-+-+-++-=-=⎪ ⎪+++⎝⎭⎝⎭ . 18. 已知某公司生产的风干牛肉干是按包销售的,每包牛肉干的质量M (单位:g )服从正态分布()2250,N σ,且(248)0.1P M <=.(1)若从公司销售的牛肉干中随机选取3包,求这3包中恰有2包质量不小于248g 的概率; (2)若从公司销售的牛肉干中随机选取K (K 为正整数)包,记质量在248g ~252g 内的包数为X ,且()320D X >,求K 的最小值. 【答案】(1)0.243 (2)2001 【答案解析】【详细分析】(1)根据正态分布的性质求出(248)P M ≥的值,再结合二项分布的概率计算,即可得答案;(2)根据正态分布的对称性求出(248252)P M <<的值,确定~(,0.8)X B K ,结合正态分布的方差公式,列出不等式,即可求得答案. 【小问1答案详解】由题意知每包牛肉干的质量M (单位:g)服从正态分布()2250,N σ,且(248)0.1P M <=, 所以(248)10.10.9P M ≥=-=,则这3包中恰有2包质量不小于248g 的概率为223C 0.90.10.243⨯⨯=.【小问2答案详解】因为(248)0.1P M <=,所以(248252)(0.50.1)20.8P M <<=-⨯=, 依题意可得~(,0.8)X B K ,所以()0.8(10.8)0.16D X K K =⨯⨯-=, 因为()320D X >,所以0.16320,2000K K >>, 又K 为正整数,所以K 的最小值为2001.19. 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,a =,πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭. (1)求角A ;(2)作角A 的平分线与BC 交于点D,且AD =,求b c +.【答案】(1)π3(2)6 【答案解析】【详细分析】(1)由正弦定理边角互化,化简后利用正切值求角即得;(2)充分利用三角形的角平分线将三角形面积进行分割化简得b c cb +=,再运用余弦定理解方程即得. 【小问1答案详解】 因πsin sin 3a B b A ⎛⎫=+⎪⎝⎭,由正弦定理可得:1sin sin cos sin sin 022B A A A B ⎛⎫+-= ⎪ ⎪⎝⎭,即1sin cos sin 022B A A ⎛⎫-= ⎪ ⎪⎝⎭.因(0,π)B ∈,故sin 0B ≠,则有1cos sin 22A A =,即tan A =, 因(0,π)A ∈,故π3A =. 【小问2答案详解】因为AD 为角平分线,所以DAB DAC ABC S S S += , 所以111sin sin sin 222AB AD DAB AC AD DAC AB AC BAC ⋅∠+⋅∠=⋅∠. 因π3BAC ∠=,6πDAB DAC ∠=∠=,AD =,则444AB AC AB AC +=⋅, 即AB AC AB AC +=⋅,所以b c cb +=. 又由余弦定理可得:2222π2cos()33a b c bc b c bc =+-=+-,把a =,b c cb +=分别代入化简得:2()3()180b c b c +-+-=, 解得:6b c +=或3b c +=-(舍去),所以6b c +=.20. 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PO ⊥平面ABCD ,垂足为O ,E 为PC 的中点,//OE 平面PAD .(1)证明:PC PD =;(2)若24==A D A B ,OC OD ⊥,PC 与平面ABCD 所成的角为60°,求平面PBC 与平面PCD 夹角的余弦值. 【答案】(1)证明见答案解析(2)17. 【答案解析】【详细分析】(1)根据线线平行可得面面平行,进而根据面面平行的性质可得//OF AD ,线线垂直可求证线面垂直,进而根据线面垂直的性质即可求证, (2)建立空间直角坐标系,利用法向量的夹角即可求解. 【小问1答案详解】证明:取CD 的中点F ,连接EF ,PF ,OF ,因为E 为PC 的中点,所以//EF PD . 又EF ⊄平面PAD ,PD ⊂平面PAD ,所以//EF 平面APD . 因为//OE 平面PAD ,OE EF E = ,,OE EF ⊂平面OEF , 所以平面//OEF 平面PAD .因为平面ABCD ⋂平面OEF OF =,平面ABCD ⋂平面PAD AD =,所以//OF AD . 因为AD CD ⊥,所以OF CD ⊥.由PO ⊥平面ABCD ,CD ⊂平面ABCD ,可得PO CD ⊥.又PO OF O ⋂=,,PO OF ⊂平面POF ,所以CD ⊥平面POF ,PF ⊂平面POF , 从而PF CD ⊥.因为PF 是CD 的中垂线,所以PC PD =.【小问2答案详解】因为PO ⊥平面ABCD ,所以PC 与平面ABCD 所成的角为60PCO ∠=︒, 又OC OD ⊥,OC OD =,2AB CD ==,所以OC OD PO ====.作OG BC ⊥,垂足为G ,分别以OG,OF ,OP 的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,则()1,1,0D -,()1,3,0B -,()1,1,0C,(P ,()0,4,0BC =,(1,1,PC = ,()2,0,0DC =uuu r .设平面PBC 的法向量为()111,,m x y z =,则111140,0,m BC y m PC x y ⎧⋅==⎪⎨⋅=+=⎪⎩ 令11z =,得)m = .设平面PCD 的法向量为()222,,x n y z =,则222220,0,n DC x n PC x y ⎧⋅==⎪⎨⋅=+-=⎪⎩令2y =,得()n = .所以1cos ,7m n m n n m ⋅===,即平面PBC 与平面PCD 夹角的余弦值为17.21. 已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为6,且其焦点到渐近线的距离为1.(1)求C 的方程;(2)若动直线l 与C 恰有1个公共点,且与C 的两条渐近线分别交于,P Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.【答案】(1)2216x y -=(2)证明见答案解析 【答案解析】【详细分析】(1)由点到直线的距离公式、离心率公式以及平方关系再结合已知即可求解. (2)当直线l 的斜率存在时,不妨设:l y kx m =+,且6k ≠±.动直线l 与C 相切可得Δ0=即2261k m =+,再由弦长公式、点到直线的距离公式表示出三角形面积,结合2261k m =+即可得解.【小问1答案详解】设右焦点为(),0F c ,一条渐近线方程为0bx ay -=,1b ==.因为222,6c e c a b a ===+,所以a c ==. 故C 的方程为2216x y -=.【小问2答案详解】当直线l 的斜率不存在时,l的方程为x =,此时12,22OPQ PQ S ==⨯= . 当直线l 的斜率存在时,不妨设:l y kx m =+,且6k ≠±. 联立方程组22,1,6y kx m x y =+⎧⎪⎨-=⎪⎩得()2221612660k x mkx m ----=. 由()()2222Δ144416660m k km=+-+=,得2261k m =+.联立方程组6y kx m y x =+⎧⎪⎨=⎪⎩,得x =. 不妨设l与,66y x y x ==-的交点分别为,P Q,则P x =同理可求Q x =P Q PQ x =-=因为原点O 到l的距离d =,所以221216OPQS PQ d k=⋅=- . 因为2261k m =+,所以OPQ S =.故OPQ △.22 已知函数ln ()x af x x+=,[1,)x ∈+∞. (1)讨论()f x 的单调性.(2)是否存在两个正整数1x ,2x ,使得当12x x >时,()12121212x x x x x x x x -=?若存在,求出所有满足条件的1x ,2x 的值;若不存在,请说明理由. 【答案】(1)答案见答案解析 (2)14x =,22x = 【答案解析】【详细分析】(1)求得()f x ',分 1a ≥,1a <讨论()f x 的单调性. (2)将问题转化为()121212ln ln ln x x x x x x -=+,根据ln ()x f x x=的值域确定122x x -=,分别就13,4,x =⋅⋅⋅详细分析是否满足题意. 【小问1答案详解】21ln ()a xf x x'--=, 当1a ≥时,()0f x '≤,()f x 在[1,)+∞上单调递减. 当1a <时,令()0f x '=,得1e a x -=.)11,e a x -⎡∈⎣,()0f x '>,则()f x 在)11,e a-⎡⎣上单调递增, ()1e ,a x ∞-∈+,()0f x '<,则()f x 在()1e ,a ∞-+上单调递减.【小问2答案详解】由(1)知,令0a =,得ln ()xf x x=在[1,e)上单调递增,在(e,)+∞上单调递减,则11()(e)e 2f x f ≤=<. 因为121x x >≥,所以()12211212x x x x x x x x -=,即()12122112ln ln ln x x x x x x x x -=+, 即()121212ln ln ln x x x x x x -=+, .因为1x ,2x 为正整数,所以121x x -≥.当121x x -=时,21121x xx x =,因为21x ≥,12x ≥,所以21121x x x x >,这与21121x xx x =矛盾,不符合题意.当121x x ->时,因11ln 12x x <,22ln 12x x <,所以()121212ln ln ln 1x x x x x x -=+<, 所以12e x x -<,得122x x -=,即1212ln ln ln 2x x x x =+. 经检验,当21x =,13x =时,不符合题意, 当22x =,14x =时,符合题意,当23x =,15=x 时,因为53153037532763528<==⨯,所以ln3ln5ln 235+<, 当24x ≥时,11ln ln 6ln565x x ≤<,22ln ln 4ln343x x ≤<, 所以1212ln ln ln5ln3ln 253x x x x +<+<. 综上,仅存在14x =,22x =满足条件.【点评】关键点评:本题关键点在于根据ln ()xf x x =的值域确定12x x -的范围,再根据12,x x 为正整数得122x x -=,从而就12,x x 的取值讨论即可为。
2024北京东城区高三(上)期末数学试卷及答案

东城区2023—2024学年度第一学期期末统一检测高三数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题4分,共40分)(1)C (2)D (3)C(4) D (5) B (6) A (7)C (8)B(9) A (10)D 二、填空题(共5小题,每小题5分,共25分)(11)()()0,11,∞+ (12) y = (13) π3(答案不唯一 ) (14)①2− ② (],1∞−- (15)②③三、解答题(共6小题,共85分)(16)(共14分)解:(Ⅰ)取11A C 中点G ,连接,FG AG . 在直三棱柱111ABC A B C −中,因为,,E F G 分别为1111,A C B B A C ,的中点,所以1111,AE B GF A A B ,111=2A GFB ,1112A A E B =. 所以GF AE ,GF AE =.所以四边形EFGA 为平行四边形,所以EF AG .又因为EF ⊄平面11ACC A ,AG ⊂平面11ACC A ,所以//EF 平面11ACC A . ................................6分 (Ⅱ)在直三棱柱111ABC A B C −中,1BB ⊥平面ABC .而BA ⊂平面ABC ,BC ⊂平面ABC ,所以1BB BA ⊥,1BB BC ⊥因为90ABC ∠=︒,BA BC ⊥,所以BA BC ,,1BB 两互相垂直.如图,建立空间直角坐标系B xyz −.则A (0,2,0),B (0,0,0),C (2,0,0),E (0,1,0),F(1,0,2). 设[]00,2Pm m ∈(0,,),, 则()0,2,AP m =−,()0,1,0BE =,()1,0,2BF = .设平面BEF 的一个法向量为(),,x y z =n ,所以0,0,BE BF n n ⎧⋅=⎪⎨⋅=⎪⎩即0,20.y x z =⎧⎨+=⎩设1z =−,则()2,0,1n =−设AP 与平面BEF 所成的角为θ, 则221sin cos ,552)AP m AP AP m nn n θ⋅−=〈〉===⋅−+(.解得21,1m m ==±.因为[]0,2m ∈,所以1m =.于是,1BP =...............................................................................14分(17)(本小题13分)解:(Ⅰ)在ABC △中,由余弦定理得222cos 2BC AB AC B BC AB+−=⋅又因为4BC =,AC =1AB =,所以cos B 2224112412+−==⨯⨯. 又()0,πB ∈,所以π3B ∠=. ......................................... (5)分 (II )选择条件①:π4ADB ∠=. 在ADB △中,由正弦定理 sin sin AD AB B ADB =∠,得=, 所以AD =所以sinsin()BAD B ADB∠=∠+∠sin cos cos sin B ADB B ADB =∠+∠12222=+⨯4=.所以1sin 2ABD S AB AD BAD ∆=⋅∠. 112=⨯38+= . ......................................................................13分选择条件③:由余弦定理 2222cos AD AB BD AB BD B =+−⋅,AB BD AD ++=得()2221BD BD BD =+−,解得 2BD =,所以11sin 122222ABD S AB BD B ∆=⋅=⨯⨯⨯=. ........................ ...............13分 (18)(本小题13分)解:(Ⅰ)由表格中的数据可知:2022年100名参加第一次考试的考生中有60名通过考试,所以估计考生第一次考试通过的概率为5310060=; 2023年100名参加第一次考试的考生中有50名通过考试,所以估计考生第一次考试通过的概率为2110050=; 从2022年、2023年第一次参加考试的考生中各随机抽取一位考生,这两位考生都通过考试的概率为1032153=⨯ . .......................................................4分 (Ⅱ)记“2022年考生在第i 次考试通过”为事件1,2,3)i A i =(,“小明2022年参加考试,他通过不超过两次考试该科目成绩合格”为事件A , 则1233707804(),(),().5100101005P A P A P A ===== 小明一次考试该科目成绩合格的概率13()5P A =, 小明两次考试该科目成绩合格的概率12377()151025P A A =−⨯=(), 所以小明不超过两次考试该科目成绩合格的概率1121123722()()()()52525P A P A A A P A P A A ==+=+= . ................................10分 (III )88. .................................................................................... .........13分(19)(本小题15分)解:(Ⅰ)由题意得 22222,a b c a c a c ⎧⎪⎨⎪=++=+−=⎩−解得2,1,c a b ⎧===⎪⎨⎪⎩所以椭圆C 的标准方程为2214x y +=. ............... ...............................................5分(Ⅱ)证明:由(Ⅰ)得,()2,0A −,()2,0B .设(),M m n ,则(),N m n −,且满足2244m n +=.因为E 为线段OM 的中点,所以,22m n E ⎛⎫ ⎪⎝⎭. 所以直线():24n AE y x m =++. 设()11,D x y , 由()222444n y x m x y ⎧=+⎪+⎨⎪+=⎩得 ()()222222441616440m n x n x n m ⎡⎤++++−+=⎣⎦. 因为2244m n +=,所以 ()22225(4)(2812)0m x m x m m ++−−++=. 所以212812225m m x m ++−=−+, 解得214625m m x m ++=+,则()1425n m y m +=+, 所以()2446,2525n m m m D m m +⎛⎫++ ⎪++⎝⎭. 因为G 为线段MB 的中点,所以2,22m n G +⎛⎫ ⎪⎝⎭. 所以直线GN 的方程为()32n y n x m m +=−−−, 代入D 点坐标,得左式=()()4332525n m n m n m m +++=++,右式=2346225n m m m m m ⎛⎫++− ⎪−+⎝⎭()3325n m m +=+. 所以左式=右式.所以,,D G N 三点共线..................................................... .......................15分 (20)(本小题15分)解:(Ⅰ)若1k =,则1()1x x f x e x −=−+, 所以22'()(1)x f x e x =−+, 所以022'(0)1(01)f e =−=+, 又因为001(0)201f e −=−=−+, 所以曲线()y f x =在(0,(0))f 处的切线方程为(2)(0)y x −−=−,即2y x =−. ............. .......................................................................6分 (Ⅱ)若12k ≤<,因为22'()(1)x f x ke x =−+, 设函数22()(1)=−+x g x ke x , 则34'()0(1)=−−<+xg x ke x ((0))x ∈+∞, 所以22'()(1)=−+x f x ke x 为(0)+∞,上的减函数. 当时12k ≤<时,022'(0)20(01)f ke k =−=−≤+, 11122221288'()01299(1)2f ke ke e =−=−<−<+,所以存在01(0,)2x ∈,使得0'()0=f x ,即02020(1)−=+x ke x .x所以当12k ≤<时,函数()y f x =在(0)+∞,上有极大值. 00001()1−==−+x x m f x ke x , 由2020(1)−=+x ke x ,得0200121(1)−=−++x m x x 200221(1)1x x =−−+++. 因为00x >,所以()010,11x ∈+. 得31−<<m . ..................................................15分(21)(本小题15分)解:(Ⅰ)由于数列23226A a a −:,,,,具有性质c P , 所以15264a a c +=−+==.由244a a +=以及42a =,得22a =.由334a a +=,得32a =. .....................4分 (Ⅱ)由于数列A 具有性质0P ,且12n a a a <<<,n 为奇数,令21n k =+,可得10k a +=,设12123210k k k k k a a a a a a a ++++<<<<=<<<<.由于当0(1)i j a a i j n >≤≤,,时,存在正整数k ,使得j i k a a a −=,所以324252212k k k k k k k k a a a a a a a a ++++++++−−−−,,,,这1k −项均为数列A 中的项, 且324252212210k k k k k k k k k a a a a a a a a a +++++++++<−<−<−<<−<,因此一定有3224235242122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,,即:3224325422122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,, 这说明:2321k k k a a a +++,,,为公差为2k a +的等差数列,再由数列A 具有性质0P ,以及10k a +=可得,数列A 为等差数列. ..................................................................9分(III )(1)当*42()n k k =+∈N 时,设122122+1222+3244+142:k k k k k k k k A a a a a a a a a a a −+++,,,,,,,,,,,. 由于此数列具有性质c P ,且满足2122k k a a m +++=, 由2122k k a a m +++=和2122k k a a c +++=得c m =±.① c m =时,不妨设12a a m +=,此时有:21a m a =−,411k a a +=,此时结论成立. ② c m =−时,同理可证. 所以结论成立.(2)当*4()n k k =∈N 时,不妨设01c m ==,. 反例如下:22122231122322212k k k k k k k k −−−+−−−+−−+,,,,,,,,,,,,.(3)当*23()n k k =+∈N 时,不妨设01c m ==,. 反例如下:112(1)(1)(1)(1)(1)1012(1)(1)k k k k k k k k +−−−⋅+−⋅−⋅−−−−⋅−,,,,,,,,,,1(1)(1)(1)k k k k −−⋅−⋅+,综上所述,*42()n k k =+∈N 符合题意. ...........................................15分.。
安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

六安市2024年高三教学质量检测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1,A x x x =≤∈Z,{}220B x xx =+-<,则A B = ()A.{}0,1 B.{}2,1-- C.{}1,0- D.{}1-【答案】D 【解析】【分析】解出对数不等式和一元二次不等式,再根据交集含义即可.【详解】2log ||1x ≤,即22log ||log 2x ≤,则22x -≤≤且0x ≠,则{}2,1,1,2A =--,{}21B x x =-<<,所以{}1A B ⋂=-.故选:D .2.已知复数z 的共轭复数在复平面内对应的点为()2,2-,则复数1z的虚部为()A.1-B.i- C.14-D.1i 4-【答案】C 【解析】【分析】得到22i z =+,利用复数除法法则得到111i 44z =-,求出虚部.【详解】由已知得22i z =+,()()122i 1i 11i 22i 22i 444z --===-+-,则复数1z 的虚部为14-.故选:C3.已知向量a =,向量(1,b =- ,则a 与b 的夹角大小为()A.30︒B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量a =,(1,b =-,则cos ,222a b 〈〉==-⨯ ,而0,180a b ︒≤〈〉≤︒ ,所以a,b的夹角为150︒.故选:D4.等差数列{}n a 的公差不为0,其前n 项和为n S ,若()83124m S a a a =++,则m =()A.11B.12C.13D.14【答案】C 【解析】【分析】由等差数列的前n 项和公式与通项公式转化为基本量计算即可.【详解】设等差数列{}n a 的公差为d ,所以81828S a d =+,则有()11118282214a d a d a m d a +=+++-+⎡⎤⎣⎦,即()141d m d =+,又0d ≠,所以114m +=,所以13m =.故选:C.5.函数()e 4,1ln ,1x x x f x x x ⎧+-<=⎨≥⎩,若()()()21105f a f a f +≤--,则实数a 的取值范围是()A.{}1- B.(],1-∞-C.[)1,-+∞ D.11,e⎡⎫--⎪⎢⎣⎭【答案】A 【解析】【分析】原不等式变形为()()25110f a f a ⎡⎤+≤-⎣⎦,再利用分段函数的单调性即可得到不等式,解出即可.【详解】当1x <时,()e 4xf x x =+-,因为e ,4x y y x ==-在(),1∞-上单调递增,此时()f x 单调递增,当1x ≥时,易知()ln f x x =单调递增,且当1x =时,1e 14e 30ln1+-=-<=,则()f x 在R 上单调递增,因为211a +≥,则()()()()()222215ln 1ln5ln5151f a f a a f a ⎡⎤++=++=+=+⎣⎦,所以由()()()21105f a f a f +≤--得()()25110f a f a ⎡⎤+≤-⎣⎦,所以()25110a a +≤-,解得1a =-.故选:A .6.已知ππcos 2cos 63αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.35 B.45C.45-D.35-【答案】B 【解析】【分析】根据诱导公式结合二倍角公式,利用齐次式计算可得.【详解】因为πππ632αα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以ππcos sin 63αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则ππsin 2cos 33αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即πtan 23α⎛⎫+= ⎪⎝⎭,所以222πππ2sin cos 2tan 2πππ4333sin 22sin cos πππ3335sin cos tan 1333ααααααααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.7.圆()222:0O x y r r +=>上一点1,22A r r ⎛⎫⎪⎝⎭关于x 轴的对称点为B ,点E ,F 为圆O 上的两点,且满足EAB FAB ∠=∠,则直线EF 的斜率为()A.B.3C.3D.13【答案】B 【解析】【分析】根据圆的性质以及斜率乘积与直线垂直的关系即可.【详解】由EAB FAB ∠=∠知BOE BOF ∠=∠,所以OB EF ⊥,而212OB OArk k r =-=-=,∴3EF k =.故选:B.8.某种生命体M 在生长一天后会分裂成2个生命体M 和1个生命体N ,1个生命体N 生长一天后可以分裂成2个生命体N 和1个生命体M ,每个新生命体都可以持续生长并发生分裂.假设从某个生命体M 的生长开始计算,记n a 表示第n 天生命体M 的个数,n b 表示第n 天生命体N 的个数,则11a =,10b =,则下列结论中正确的是()A.413a = B.数列{}nnb a 为递增数列C.5163ni b==∑ D.若{}n n a b λ+为等比数列,则1λ=【答案】B 【解析】【分析】根据给定条件,求出递推公式,进而求出数列{},{}n n a b 的通项公式,再逐项分析判断即得.【详解】依题意,12n n n a a b +=+,12n n n b b a +=+,则113()n n n n a b a b +++=+,而111a b +=,因此数列{}n n a b +是首项为1,公比为3的等比数列,13n n n a b -+=,又11n n n n a b a b ++=--,因此111n n a a b b -=-=,于是1312n n a -+=,1312n n b --=,对于A ,3431142a +==,A 错误;对于B ,11131213131n n n n n b a ----==-++,显然数列12{}31n -+是递减数列,因此{}n n b a 为递增数列,B 正确;对于C ,51014134058ni b==++++=∑,C 错误;对于D ,1122331,2,54a b a b a b λλλλλ==+=++++,由{}n n a b λ+为等比数列,得2(2)54λλ+=+,解得1λ=或1λ=-,当1λ=时,13n n n b a λ-+=,显然数列{}n n a b λ+是等比数列,当1λ=-时,1n n a b λ+=,显然数列{}n n a b λ+是等比数列,因此当数列{}n n a b λ+是等比数列时,1λ=或1λ=-,D 错误.故选:B【点睛】思路点睛:涉及求数列单调性问题,可以借助作差或作商的方法判断单调性作答,也可以借助函数单调性进行判断.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,既是偶函数,又在区间()0,∞+上单调递增的是()A.ln y x =B.ln y x= C.2y x -= D.e e x xy -=+【答案】AD 【解析】【分析】A 选项,根据函数奇偶性得到()ln f x x =为偶函数,且在()0,∞+单调递增,A 正确;B 不满足奇偶性,C 不满足单调性;D 选项,满足为偶函数,且求导得到函数在()0,x ∈+∞上单调递增,得到答案.【详解】A 选项,()ln f x x =定义域为()(),00,x ∈-∞⋃+∞,且()()ln ln f x x x f x -=-==,故()ln f x x =为偶函数,且()0,x ∈+∞时,ln y x =单调递增,故A 正确;B 选项,ln y x =的定义域为()0,∞+,故不是偶函数,故B 项错误;C 选项,()0,x ∈+∞时,2y x -=单调递减,故C 项错误;D 选项,()e exxg x -=+的定义域为R ,且()()e e x xg x g x --=+=,故()e exxg x -=+是偶函数,且()0,x ∈+∞时,()e e0xxg x -'=->,函数单调递增,故D 项正确.故选:AD10.地震释放的能量E 与地震震级M 之间的关系式为lg 4.8 1.5E M =+,2022年9月18日我国台湾地区发生的6.9级地震释放的能量为1E ,2023年1月28日伊朗西北发生的5.9级地震释放的能量为2E ,2023年2月6日土耳其卡赫拉曼马拉什省发生的7.7级地震释放的能量为3E ,下列说法正确的是()A.1E 约为2E 的10倍B.3E 超过2E 的100倍C.3E 超过1E 的10倍D.3E 低于1E 的10倍【答案】BC 【解析】【分析】根据题意,结合对数运算公式,即可判断.【详解】A.()12lg lg 1.5 6.9 5.9E E -=⨯-,所以 1.51210E E =,故A 错误;B.()32lg lg 1.57.7 5.9E E -=⨯-, 2.73210100E E =>,故B 正确;C.()31lg lg 1.57.7 6.9E E -=⨯-, 1.2311010E E =>,故C 项正确,D 项错误.故选:BC11.已知函数()f x 的导函数为()f x ',对任意的正数x ,都满足()()()22f x xf x f x x <<-',则下列结论正确的是()A.()1122f f ⎛⎫< ⎪⎝⎭B.()()1122f f <C.()11422f f ⎛⎫<- ⎪⎝⎭D.()()11214f f <+【答案】BC 【解析】【分析】设()()()0f x g x x x=>,利用导数求出()g x 的单调性,据此即可判断A 和B 选项,设()()()220f x x h x x x-=>,根据导数求出()h x 的单调性,据此即可求解C 和D 选项.【详解】设()()()0f x g x x x=>,则()()()20xf x f x g x x'-='>,所以()g x 在()0,∞+上单调递增,由()112g g ⎛⎫>⎪⎝⎭得()1122f f ⎛⎫> ⎪⎝⎭,故A 项错误;由()()12g g <得()()1122f f <,故B 项正确;设()()()220f x x h x x x-=>,则()()()()()()()()243222220f x x f x x x xf x f x x h x x x ---⋅--=''=<',所以()h x 在()0,∞+上单调递减,由()112h h ⎛⎫<⎪⎝⎭得()11422f f ⎛⎫<- ⎪⎝⎭,故C 项正确:由()()12h h >得()()11214f f >+,故D 项错误.故选:BC.12.在棱长为1的正方体1111ABCD A B C D -中,P 为棱上一点,满足1PA PC d +=(d 为定值),记P 点的个数为n ,则下列说法正确的是()A.当d =2n =B.1d <<+时,6n =C.当d =时,15n =D.n 的最大值为18【答案】AD 【解析】【分析】由点P 的位置进行分类讨论判断求解即可.【详解】当点P 位于A 或1C 处时,d当P 在AB 棱上由A 到B 移动时,d 1,当P 在AD ,1AA ,1C C ,11C B ,11C D 等棱上移动时,d 1+当P 在1BB 棱上由B 到1B 移动时,d 由11+;当P 在BC ,DC ,1D D ,11A B ,11A D 等棱上移动时,d 也是由1+再由增大到1+.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.抛物线24y x =的焦点F 与x 轴上一点A 的连线的中点P 恰在抛物线上,则线段AF 的长为______.【答案】316##0.1875【解析】【分析】根据题意求线段AF 的中点坐标,结合抛物线的定义分析求解.【详解】因为24y x =,即214x y =,可知抛物线的焦点10,16F ⎛⎫⎪⎝⎭,准线为116y =-,设(),0A a ,则线段AF的中点为1,232a ⎛⎫⎪⎝⎭,则113321632PF =+=,所以3216AF PF ==.故答案为:316.14.如图,在四边形ABCD 中,AD AB ⊥,120ADC ∠=︒,AB =,1AD =,2CD =,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积为______.【答案】(12π+【解析】【分析】作出辅助线,求出各边长度,求出以AB 为半径的圆的面积,以CD 为母线和CE 为半径的圆锥的侧面积,以BC 为母线的圆台的面积,相加后得到答案.【详解】作CE AD ⊥,CFAB ⊥,E ,F 为垂足,因为120ADC ∠=︒,所以60EDC ∠=︒,因为2CD =,所以1DE =,CE =,故==AF CE ,又AB =1AD =,故2CF AE AD DE ==+=,BF AB AF =-=,由勾股定理得CB ==,四边形ABCD 绕直线AD 旋转一周所成几何体的表面积分为三部分,以AB 为半径的圆的面积(2π12π=,以CD 为母线和CE 为半径的圆锥的侧面积πrl =,以BC 为母线的圆台的侧面积+=所以该几何体的表面积为(12π+.故答案为:(12π+15.已知函数()()()22cos0f x x ωω=>的最小正周期为π,将函数()y f x =的图象上的所有点向右平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到()y g x =的图象,则()y g x =在ππ,124⎡⎤⎢⎥⎣⎦上的值域为______.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】【分析】化简()f x 的解析式,根据()f x 的最小正周期求得ω,根据三角函数图象变换的知识求得()g x ,进而求得()g x 在ππ,124⎡⎤⎢⎣⎦上的值域.【详解】()cos21f x x ω=+,2ππ2ω=,22ω=,()cos21f x x =+,将函数()y f x =的图象上的所有点向右平移π6个单位长度,得到ππcos 21cos 2163y x x ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上各点的横坐标缩短为原来的12,得到()πcos 413g x x ⎛⎫=-+ ⎪⎝⎭,因为ππ,124x ⎡⎤∈⎢⎥⎣⎦,所以π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,所以π1cos 4,132x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()y g x =在ππ,124⎡⎤⎢⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦16.已知2F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆222:O x y a +=与双曲线C 的渐近线在第一象限交于点A ,点B 在双曲线C 上,222BF F A =-,则双曲线C 的渐近线方程为______.【答案】2y x =±【解析】【分析】求出点A 的坐标及2AF 长,由222BF F A =-可得点A 为2BF 的中点,再结合双曲线定义求解即得.【详解】由222BF F A =-,得点A 为2BF 的中点,记1F 为C 的左焦点,连接1BF ,令半焦距为c ,则122BF OA a ==,由222b y x ax y a ⎧=⎪⎨⎪+=⎩,解得2a x cab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2(,)a ab A c c ,而2(,0)F c ,因此2222()()a ab AF c b c c=-+=,由双曲线定义得222b a a -=,即2b a =,所以双曲线C 的渐近线方程为2y x =±.故答案为:2y x=±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,()()140n n S a λλλ-=->.(1)求证:数列{}n a 为等比数列;(2)当2λ=时,设1221log log n n n a n a n b a a ++++=+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析(2)261939n n nT n +=+【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩作差得到1n n a a λ+=,即可得证;(2)由(1)可得12n n a +=,则321122323n n n b n n n n ++=+=+-++++,再利用裂项相消法计算可得.【小问1详解】证明:因为()()140n n S a λλλ-=->,当1n =时,()1114S a λλ-=-,解得14a =,由()14n n S a λλ-=-得()1114n n S a λλ++-=-,两式作差得()()()111144n n n n S S a a λλλλ++---=---,即()111n n n a a a λλλ++-=-,则1n n a a λ+=,又0λ>,所以数列{}n a 是首项为4,公比为λ的等比数列.【小问2详解】当2λ=时,由(1)得11422n n n a -+=⨯=,又223121322232log log log log 2322n n n n n n n a n a n n n b a a n n ++++++++++=+=+=+++,所以322131112232323n n n n n b n n n n n n +++++-=+=+=+-++++++,所以1111112344523n T n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1111112344523n n n ⎛⎫=+-+-+⋅⋅⋅+- ⎪++⎝⎭21161923339n n n n n +⎛⎫=+-=⎪++⎝⎭.18.在ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c .(1)若12b a =,6sin sin B A -=,求角A 的值;(2)若π3A =,且b 是a 和3c 的等差中项,求cos B 的值.【答案】(1)π3A =或2π3(2)1cos 7B =-【解析】【分析】(1)根据题意利用正弦定理边化角即可得结果;(2)由等差中项可得23a b c =-,结合余弦定理解得83b c =,73a c =,代入余弦定理即可得结果.【小问1详解】因为12b a =,由正弦定理sin sin b a B A=得1sin sin 2B A =,又因为6sin sin B A -=sin 2A =,且()0,πA ∈,所以π3A =或2π3.【小问2详解】显然0,0,0a b c >>>,由b 是a 和3c 的等差中项得23b a c =+,即230a b c =->,可得32b c >,因为π3A =,由余弦定理2222cos a b c bc A =+-可得()22223b c b c bc -=+-,化简得2231180b bc c -+=,即()()380b c b c --=,解得83b c =或b c =(舍去),由23a b c =-,可得73a c =,由余弦定理222cos 2a c b B ac +-=,得22278133cos 7723c c c B c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⎛⎫⨯ ⎪⎝⎭.19.已知函数()()36R f x x ax a =+-∈.(1)若函数()f x 的图象在2x =处的切线与x 轴平行,求函数()f x 的图象在3x =-处的切线方程;(2)讨论函数()f x 的单调性.【答案】19.15480x y -+=20.答案见解析【解析】【分析】(1)先求导函数再求斜率最后写出切线方程;(2)分类讨论列表根据导函数求单调性.【小问1详解】()23f x x a ='+.由题意()2120f a ='+=,解得12a =-,所以()3126f x x x =--,()33f -=,()315f '-=()f x 在3x =-处的切线方程为15480x y -+=【小问2详解】()23f x x a ='+.①当0a ≥时,()0f x '≥,()f x 在R 上单调递增.②当0a <时,由()0f x '=得x =,()f x 在R 上的变化情况如下表:由上表可得()f x 在,∞⎛- ⎝上单调递增,在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.综上,当0a ≥时,增区间为(),∞∞-+,无减区间;当0a <时,增区间为,∞⎛- ⎝和∞⎫+⎪⎪⎭,减区间为⎛ ⎝.20.如图,在三棱锥A BCD -中,CE BD ⊥,垂足为点E ,AH ⊥平面BCD ,垂足H 在CE 上,点F 在AC 上,且CEF CAH ∠=∠.(1)证明:AC ⊥平面BDF ;(2)若22BE DE ==,22CH EH ==,三棱锥A BCD -的体积为BF 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)5.【解析】【分析】(1)利用线面垂直得到线线垂直,由CEF CAH ∠=∠,可得出AC EF ⊥,利用线面垂直的判定定理可以证得AC ⊥平面BDF ;(2)通过三棱锥A BCD -的体积,可以求出AH ,进一步求AC ,由两个三角形AHC ,EFC 相似,得出F 为AC 的中点,然后建立空间直角坐标系,求平面ABD 的法向量,进而可以求得直线与平面所成角的正弦值.【小问1详解】由AH ⊥平面BCD ,BD ⊂平面BCD ,得AH BD ⊥,又CE BD ⊥,而AH ⊂平面ACE ,CE ⊂平面ACE ,AH CE H = ,所以BD ⊥平面ACE ,又AC ⊂平面ACE ,所以BD AC ⊥.再由AH ⊥平面BCD ,EC ⊂平面BCD ,得AH EC ⊥,得90AHC ∠=︒,又CEF CAH ∠=∠,ACH ECF ∠=∠,得90EFC AHC ︒∠=∠=,即AC EF ⊥.又EF ⊂平面BDF ,BD ⊂平面BDF ,EF BD E = ,所以AC ⊥平面BDF .【小问2详解】由条件知11133322A BCD BCD V S AH BD CE AH AH -=⋅=⨯⨯⨯⨯==所以AH =,在Rt AHC 中,2228412AC AH CH =+=+=,所以AC =由(1)知Rt Rt AHC EFC ~△△,所以FC ECHC AC =,即2FC =,得FC =,可知F 为AC 的中点,过点H 作HG BD ∥交BC 于点G由(1)易得HG ,HC ,HA 两两垂直,以{HG 、HC 、}HA正交基底,建立空间直角坐标系H xyz -,如图所示由题意可知,(0,0,A ,()2,1,0B -,()0,1,0E -,()0,2,0C,(F .则(0,1,EA = ,()2,0,0EB =,(2,BF =- ,设平面ABD 的一个法向量为(),,n x y z =,则020EA n y EB n x ⎧⋅=+=⎪⎨⋅==⎪⎩,令1z =-,则y =,所以平面ABD的一个法向量()0,1n =-,设直线BF 与平面ABD 所成角θ,则sin =cos<,5n BF n BF n BFθ⋅>===⋅.故直线BF 与平面ABD所成角的正弦值为5.21.平面内一动点P 到直线:4l y =的距离,是它到定点()0,1F 的距离的2倍.(1)求动点P 的轨迹Γ的方程;(2)经过点F 的直线(不与y 轴重合)与轨迹Γ相交于M ,N 两点,过点M 作y 轴平行线交直线l 于点T ,求证:直线NT 过定点.【答案】(1)22143y x +=(2)证明见解析【解析】【分析】(1)由题意得4y -=,化简即可得解;(2)设直线MN 的方程以及,,M N T 的坐标,联立若椭圆方程,由韦达定理得()121232kx x x x =+,表示出NT 的方程,令0x =,证明此时y 为定值即可得证.【小问1详解】由题意,设动点P 的坐标为(),x y,则4y -=,平方整理得22143y x +=,所以点P 的轨迹Γ方程为22143y x+=.【小问2详解】由题意,设直线MN 的方程为1y kx =+,()11,M x y ,()22,N x y ,则()1,4T x .将1y kx =+代入22143y x +=得()2234690k x kx ++-=,所以122634k x x k -+=+,122934x x k -=+,显然0∆>,所以()121232kx x x x =+.因为直线NT 的方程为()212144y y x x x x --=--,令0x =,则()21221221122121214144x x kx x x y x x kx x y x x x x x x -+---===---()()21122121213545222x x x x x x x x x x --+-===--,因此,直线NT 过定点50,2⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题第二问的关键是采用设线法,设直线MN 的方程为1y kx =+,再将其椭圆方程联立得到韦达定理式,再化积为和得到()121232kx x x x =+,再得到直线NT 的方程,令0x =计算即可.22.已知函数()()()22ln 211R 2m f x x x m x m =+-++∈.(1)求函数()f x 的极值;(2)设函数()f x 有两个极值点12,x x ,求证:()()122f x f x f m ⎛⎫+< ⎪⎝⎭.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,对导函数因式分解,分0m ≤,12m =,12m >,102m <<,得到函数的单调性,进而得到函数的极值情况;(2)由(1)得110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭,并得到()()12212ln 222f x f x m m m +=---,2222ln 44f m m ⎛⎫=-+ ⎪ ⎪⎝⎭,作差法得到()()21222f x f x f m ⎛⎫⎫+-=-- ⎪⎪ ⎪⎭⎝⎭,结合m 的范围得到结论.【小问1详解】()()22ln 2112m f x x x m x =+-++的定义域为()0,∞+,()()()()()()2212212210mx m x x mx f x mx m x x x x-++--'=+-+==>①若0m ≤,则()20f '=,()0,2x ∈时()0f x '>,()2,x ∞∈+时()0f x '<,故()f x 在()0,2x ∈上单调递增,在()2,x ∞∈+上单调递减,所以函数的极大值为()22ln221f m =--,无极小值,②若12m =,则()()2202x f x x'-=≥,()f x 在()0,∞+上单调递增,无极值.③若12m >,由()()()210x mx f x x--'==得2x =或1x m =,10,x m ⎛⎫∈ ⎪⎝⎭时()0f x '>,1,2x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,()2,x ∞∈+时()0f x '>,故()f x 在10,m ⎛⎫ ⎪⎝⎭,()2,∞+上单调递增,在1,2m ⎛⎫⎪⎝⎭上单调递减,所以极大值为112ln 12f m m m ⎛⎫=---⎪⎝⎭,极小值为()22ln221f m =--.④若102m <<,由()()()210x mx f x x--'==得2x =或1x m =,()0,2x ∈时()0f x '>,12,x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,1,x m ∞⎛⎫∈+ ⎪⎝⎭时()0f x '>,故()f x 在()0,2,1,m ∞⎛⎫+⎪⎝⎭上单调递增,在12,m ⎛⎫⎪⎝⎭上单调递减,所以极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=---⎪⎝⎭.综上,当0m ≤时,极大值为()22ln221f m =--,无极小值;当102m <<时,极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭;当12m =时,()f x 无极值;当12m >时,极大值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭,极小值为()22ln221f m =--.【小问2详解】由(1)知函数()f x 有两个极值点时,110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.()()()121122ln2212ln 12f x f x f f m m m m ⎛⎫+=+=----- ⎪⎝⎭212ln222m m m=---,()222224ln 222122ln 44f m m m m m ⎛⎫=+-++=-++ ⎪ ⎪⎝⎭,所以()()122122462f x f x f m m m ⎛⎫+-=--++- ⎪⎪⎝⎭22442⎫=-+-=-⎪⎭,因为110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭2≠,所以()()212220f x f x f m ⎛⎫⎫+-=-+< ⎪⎪ ⎪⎭⎝⎭,即()()1222f x f x f m ⎛⎫+<- ⎪ ⎪⎝⎭.【点睛】方法点睛:在导数解答题中,单调性问题是绕不开的一个问题,因为单调性是解决后续问题的关键,利用导函数求解函数单调性步骤,先求定义域,再求导,导函数能因式分解的要进行因式分解,根据导函数的正负号,确定函数的单调区间,若不能直接求出,可能需要多次求导.。
江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。
浙江省杭州市2023-2024学年高三上学期期末数学试题含答案

2023-2024学年浙江省杭州市高三(上)期末数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230A x x x =--≤,311B x x ⎧⎫=≤⎨⎬-⎩⎭,则A B = ()A.[]1,3 B.(]1,3 C.[]1,1- D.[)1,1-【答案】D 【解析】【分析】先求出集合,A B ,再由交集的定义求解即可.【详解】由2230x x --≤可得:()()130x x +-≤,解得:13x -≤≤,由311x ≤-可得3101x -≤-,即3101x x -+≤-,即()()1401x x x ⎧--≥⎨≠⎩,解得:1x <或4x ≥,故[]1,3A =-,()[),14,B ∞∞=-⋃+,所以A B = [)1,1-.故选:D .2.已知复数z 满足i z z =-(i 为虚数单位),且z =,则2z =()A.2iB.2i-C.D.【答案】B 【解析】【分析】设i z a b =+,结合共轭复数的定义和复数的模公式求出即可.【详解】设i z a b =+,(),R a b ∈,则i z a b =-,因为i z z =-,则()()i i i i 0a b a b a b a b a b +=--⨯⇒+++=⇒=-,又z =,则222a b +=,解得1,1a b ==-或1,1a b =-=,所以1i z =-或1i z =-+,所以()221i 2i z =-=-或()221i 2i z =-+=-,故选:B.3.已知随机变量1X ,2X 分别满足二项分布111~,3X B n ⎛⎫ ⎪⎝⎭,221~,3X B n ⎛⎫ ⎪⎝⎭,则“12n n >”是“()()12D X D X >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由二项分布的方差公式求出()()12,D X D X ,再由充分条件和必要条件的定义求解即可.【详解】因为111~,3X B n ⎛⎫ ⎪⎝⎭,221~,3X B n ⎛⎫ ⎪⎝⎭,所以()()1112221121121,1339339D X n n D X n n ⎛⎫⎛⎫=⋅⋅-==⋅⋅-= ⎪ ⎪⎝⎭⎝⎭,所以12n n >,则()()12D X D X >,若()()12D X D X >,则12n n >.所以“12n n >”是“()()12D X D X >”的充要条件.故选:C .4.若102x <<,则1112x x+-的最小值是()A.3+B.6C. D.9【答案】A 【解析】【分析】由2(12)1x x +-=,得到1111[2(12)]()1212x x x x x x+=+-+--,结合基本不等式,即可求解.【详解】因为102x <<,可得120x ->,且2(12)1x x +-=,则1111122[2(12)]()3121212x x x x x x x x x x -+=+-+=++---33≥+=+,当且仅当12212x x x x -=-时,即22x =时,等号成立,所以1112x x+-的最小值是3+.故选:A.5.冬季是流行病的高发季节,大部分流行病是由病毒或细菌引起的,已知某细菌是以简单的二分裂法进行无性繁殖,在适宜的条件下分裂一次(1个变为2个)需要23分钟,那么适宜条件下1万个该细菌增长到1亿个该细菌大约需要(参考数据:lg 20.3≈)()A.3小时 B.4小时C.5小时D.6小时【答案】C 【解析】【分析】设适宜条件下1万个该细菌增长到1亿个该细菌大约需要x 分钟,则231210000x⋅=,两边同时取对数得,结合对数的运算性质求解即可.【详解】设适宜条件下1万个该细菌增长到1亿个该细菌大约需要x 分钟,则231210000x ⋅=,两边同时取对数得,lg 2lg10000423x⋅==,所以42392306.7lg 20.3x ⨯=≈≈,所以大约需要306.7560≈小时.故选:C .6.已知定义在R 上的函数()f x 满足()()sin cos 0xf x xf x '+>,则()A.ππ36f ⎫⎫⎛⎛< ⎪ ⎪⎝⎝⎭⎭B.ππ63f f ⎫⎫⎛⎛< ⎪ ⎪⎝⎝⎭⎭C.ππ36f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ D.ππ63f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】【分析】构造函数()()cos f x F x x=,ππ,Z 2x k k ≠+∈,求导得到其单调性,从而得到ππ63F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,化简后得到答案.【详解】令()()cos f x F x x=,ππ,Z 2x k k ≠+∈,故()()()2cos sin 0cos f x x f x xF x x+='>'恒成立,故()()cos f x F x x=在πππ,π,Z 22k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,故ππ63F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即ππππππ6363ππ163cos cos6322f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭<⇒⇒< ⎪ ⎪⎝⎭⎝⎭.故选:B7.已知数列{}n a ,{}n b 满足111a b ==,1n n n a a b +=+,1n n n b a b +=-,则n a =()A.12n - B.122n - C.122n + D.()21142nn -+-【答案】D 【解析】【分析】根据递推关系,归纳出数列{}n a 的奇数项与偶数项分别为公比为2的等比数列,进而可得数列{}n a 的通项公式.【详解】因为1n n n a a b +=+,1n n n b a b +=-,则112n n n a b a +++=,又211n n n a a b +++=+,则22n n a a +=,所以数列{}n a 的奇数项与偶数项分别为公比为2的等比数列,由111a b ==可得2112a a b =+=,则数列{}n a 的各项为1,2,2,4,4,8,8, ,其中奇数项的通项公式为1122122n n n a a --=⋅=,偶数项的通项公式为122222n n n a a -=⋅=,所以数列{}n a 的通项公式为()21142nn n a -+-=.故选:D8.已知四面体ABCD ,ABC 是边长为6的正三角形,DA DB ==,二面角D AB C --的大小为2π3,则四面体ABCD 的外接球的表面积为()A.40πB.52πC.72πD.84π【答案】B 【解析】【分析】画出图形,找出外接球球心的位置,利用OD OC r ==以及图形几何关系表示出相应的线段长度,结合勾股定理列方程求出外接球半径即可得解.【详解】如图,取AB 中点E ,连接,CE DE ,因为ABC 是边长为6的正三角形,DA DB ==,则由三线合一可知,AB CE AB DE ⊥⊥,所以二面角D AB C --的平面角为2π3CED ∠=,取三角形ABC 的外心1O ,设外接球的球心为O ,则1OO ⊥平面ABC ,且OA OB OC OD r ====,其中r 为四面体ABCD 外接球的半径,过点D 作DG 垂直平面ABC ,垂足为点G ,由对称性可知点G 必定落在1O E 的延长线上面,由几何关系,设DF x =,而由正弦定理边角互换得112sin 60AB C O =⨯=进而1162O E CE CO =-=⨯-,由勾股定理得DE ==从而()πcos πcos 3EG DE CED DE =⋅-∠=⋅=,()π3sin πsin 32DG DE CED DE =⋅-∠=⋅=,所以132OO FG x ==-,12OF O G ==,所以由OD OC r ==得,2222231222r x r x ⎧⎛⎫=+-⎪ ⎪⎝⎭⎪⎨⎛⎫⎪=+ ⎪⎪ ⎪⎝⎭⎩,解得5,2x r ==,所以四面体ABCD 的外接球的表面积为24π52πr =.故选:B.【点睛】关键点点睛:关键是合理转换二面角D AB C --的大小为2π3,并求出外接球半径,由此即可顺利得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知平面向量)a =,(),3b x =- ,则下列命题正确的是()A.若a b∥,则x =- B.若a b ⊥,则x =C.若a b +=,则0x = D.若5π,6a b =,则x =【答案】ABD 【解析】【分析】A.由共线向量定理求解判断;B.利用向量的数量积运算求解判断;C.利用向量的模公式求解判断;D.由向量的夹角公式求解判断.【详解】A.若a b∥,则13x ⨯=-,解得x =-,故正确;B .若a b ⊥()130+⨯-=,解得x =C.若a b +=,0x =或x =-D.若5π,6a b =,则5πcos ,cos 62a b ===- ,解得x =故选:ABD 10.已知四棱柱1111ABCD A B C D -的底面ABCD 为菱形,且π3DAB ∠=,12A A AB =,11A AB A AD ∠=∠,O 为11AC 的中点,P 为线段1AB 上的动点,则下列命题正确的是()A.{}1,,OA BD AB可作为一组空间向量的基底B.{},,OA OD AB可作为一组空间向量的基底C.直线//OP 平面1C BDD.向量CP 在平面11AB D 上的投影向量为OP【答案】BCD 【解析】【分析】选项A ,找到11BD B D =,容易判断{}111,,OA B D AB 共面,从而做出判断即可;选项B ,先找到含有两个向量,OA OD 的平面OAD ,判断AB与平面OAD 的关系即可;选项C ,证明平面11//AB D 平面1C BD 即可;选项D ,证明OC 垂直平面11AB D 即可.【详解】如图所示,四棱柱1111ABCD A B C D -,对于选项A ,11BD B D =,三个向量{}111,,OA B D AB 都在平面11AB D ,即三个向量{}111,,OA B D AB 共面,则{}1,,OA BD AB也共面,{}1,,OA BD AB不可作为一组空间向量的基底,选项A 错误;对于选项B ,两个向量,OA OD都在平面OAD ,显然直线AB 与平面OAD 是相交关系,AB不与平面OAD 平行,故三个向量{},,OA OD AB不共面,可作为一组空间向量的基底,选项B 正确;对于选项C ,由于11//BD B D ,11//AB DC ,易得11//B D 平面1C BD ,1//AB 平面1C BD ,从而有平面11//AB D 平面1C BD ,且OP ⊂平面11AB D ,所以直线//OP 平面1C BD ,选项C 正确;对于选项D ,取{}1,,AB AD AA作为一组空间向量的基底,1111()2OC OC C C AB AD AA =+=+- ,111()2B D BD AD AB ==- ,1111()2OA OA A A AB AD AA =+=-+-,其中22111111()()42OC B D AD AB AA AB AA AD ⋅=-+⋅-⋅ ,因为底面ABCD 为菱形,且π3DAB ∠=,12A A AB =,11A AB A AD ∠=∠,得22AD AB = ,11AA AB AA AD ⋅=⋅,所以110OC B D ⋅= ,即11OC B D ⊥,11OC B D ⊥,其中2211[()]2OC OA AA AB AD ⋅=-+ ,显然22134AA AB = ,2222222111π3[()](2)(2cos )24434AB AD AB AD AB AD AB AB AB AB +=++⋅=++= ,所以0OC OA ⋅=,即OC OA ⊥ ,OC OA ⊥,因为11OC B D ⊥,OC OA ⊥,且11B D ⊂平面11AB D ,OA ⊂平面11AB D ,11B D OA O ⋂=,所以OC ⊥平面11AB D ,所以向量CP 在平面11AB D 上的投影向量为OP,选项D 正确;故选:BCD.11.已知函数()cos 2f x x =,()πsin 23g x x ⎛⎫=+ ⎪⎝⎭,则()A.将函数()y f x =的图象右移π12个单位可得到函数()y g x =的图象B.将函数()y f x =的图象右移π6个单位可得到函数()y g x =的图象C.函数()y f x =与()y g x =的图象关于直线π24x =对称D.函数()y f x =与()y g x =的图象关于点7π,024⎛⎫⎪⎝⎭对称【答案】ACD【解析】【分析】由三角函数的平移变换可判断A ,B ;由()π12g x f x ⎛⎫=- ⎪⎝⎭可判断C ;由()7π12g x f x ⎛⎫-=-⎪⎝⎭可判断D .【详解】因为()ππππsin 2cos 2cos 23236g x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=-++=- ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,将函数()y f x =的图象右移π12个单位可得到ππcos 2cos 2126y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,将函数()y f x =的图象右移π6个单位可得到ππcos 2cos 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确,B 错误;由A 选项可知,()π12g x f x ⎛⎫=- ⎪⎝⎭,所以函数()y f x =与()π12y g x f x ⎛⎫==- ⎪⎝⎭的图象关于直线π24x =对称,故C 正确;若函数()y f x =与()y g x =的图象关于点7π,024⎛⎫⎪⎝⎭对称,则在()y f x =上取点()11,A x y 关于7π,024⎛⎫ ⎪⎝⎭的对称点117π,12A x y ⎛⎫-- ⎪⎝⎭必在()y g x =上,所以11cos 2y x =,所以1117π7ππ7ππsin 2sin 21212363g x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1113πsin 2cos 22x x y ⎛⎫=-=-=- ⎪⎝⎭,故D 正确.故选:ACD .12.(多选)已知数据1234567x x x x x x x <<<<<<,若去掉4x 后剩余6个数的平均数比7个数的平均数大,记1x ,2x ,3x ,4x 的平均数与方差为1x ,21s ,记4x ,5x ,6x ,7x 的平均数与方差为2x ,22s ,则()A.1242x x x +>B.1242x x x +<C.()()47222212441414k k k k s s x x x x ==⎡⎤->---⎢⎥⎣⎦∑∑D.()()47222212441414k k k k s s x x x x ==⎡⎤-<---⎢⎥⎣⎦∑∑【答案】AC 【解析】【分析】根据平均数的大小列出不等式变形即可判断AB ,根据方差公式作差后变形,利用1242x x x +>,即可判断CD.【详解】因为123567123456767x x x x x x x x x x x x x +++++++++++>,所以12356746x x x x x x x +++++>,所以()()1234456748x x x x x x x x x +++++++>,所以1242x x x +>,故A 正确,B 错误;2222222222212346412724123455674444 x x x x x x x x x x x x x s x s x x ⎡⎤+++++++++⎛⎫-=--⎢⎥⎪⎝⎭⎢⎥⎡⎤+++⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦()()()2222222212356217144x x x x x x x x ⎡⎤=++-+++-⎢⎥⎣⎦()()()()2222221235621217144x x x x x x x x x x ⎡⎤=++-+++-⎣+⎦()()()222222123564271184x x x x x x x x x ⎡⎤>++-++-⎣+⎦()()4722441414k k k k x x x x ==⎡⎤---⎢⎥⎣⎦∑∑,故C 正确,D 错误.故选:AC三、填空题:本题共4小题,每小题5分,共20分.13.直线y =的倾斜角是___________.【答案】0【解析】【分析】根据斜率得到倾斜角.【详解】y =的斜率为0,设倾斜角为[)0,πα∈,则tan 0α=,解得0α=,故倾斜角为0故答案为:014.已知二项式()12nx +的展开式中含2x 的项的系数为84,则n =___________.【答案】7【解析】【分析】应用二项展开式的通项公式求解即可.【详解】二项式()12nx +中含2x 的项为:223C (2)n T x =,该项的系数为22(1)2C 42(1)2n n n n n -=⨯=-,由于该项的系数为84,得方程2(1)84n n -=,即2420n n --=,解得7n =或6-(舍去),故答案为:7.15.位于奥体核心的杭州世纪中心总投资近100亿元,总建筑面积约53万平方米,由两座超高层双子塔和8万平方米商业设施构成,外形为杭州的拼音首字母“H”,被誉为代表新杭州风貌、迎接八方来客的“杭州之门”.如图,为测量杭州世纪中心塔高AB ,可以选取与塔底B 在同一水平面内的两个测量基点C 与D ,现测得70BCD ∠=︒,30BDC ∠=︒,108CD =米,在点C 测得塔顶A 的仰角为80°,则塔高AB 为___________米.(结果保留整数,参考数据:cos800174︒≈.)【答案】310【解析】【分析】设AB h =米,进而可得tan80h BC =︒,在BCD △中由正弦定理求出BC ,求解即可得出答案.【详解】设AB h =米,因为在点C 测得塔顶A 的仰角为80°,所以80BCA ∠=︒,在ABC 中,tan 80AB hBC BC=︒=,所以tan80h BC =︒,在BCD △中,因为70BCD ∠=︒,30BDC ∠=︒,所以180703080CBD ∠=︒-︒-︒=︒,由正弦定理得sin sin 30CD BC CBD =∠︒,所以1081sin 802BC=︒,则1108542sin 80sin 80BC ⨯==︒︒,所以545454tan 80tan 80310sin 80cos800.174h BC =︒=⋅︒=≈≈︒︒米.故答案为:310.16.已知点P 是双曲线C :()22221,0x y a b a b-=>与圆222213x y a c +=+在第一象限的公共点,若点P 关于双曲线C 其中一条渐近线的对称点恰好在y 轴负半轴上,则双曲线C 的离心率e =___________.【答案】62【解析】【分析】根据题意,联立双曲线与圆的方程,求得点P 的坐标,再求得其对称点Q 的坐标,再由1PQ b k a ⎛⎫⋅-=- ⎪⎝⎭,化简即可得到,a b 的关系,再由离心率公式,即可得到结果.【详解】联立22222222113x y a b x y a c ⎧-=⎪⎪⎨⎪+=+⎪⎩,取0,0x y >>,解得2333x a y b ⎧=⎪⎪⎨⎪=⎪⎩,即,33P a b ⎛⎫ ⎪ ⎪⎝⎭,设点P 关于双曲线C 的渐近线by x a=-的对称点为Q ,则Q 恰好在y 轴负半轴上,且OQ OP ==0,Q ⎛ ⎝,由点P 与点Q 关于渐近线b y x a =-对称,所以直线PQ 的斜率为a b,233a b =,即3233b a b =,化简可得222a b =,所以2c e a ====.故答案为:2四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,4a =,8b =,角C 为锐角,已知ABC 的面积为.(1)求c ;(2)若CD 为AB 上的中线,求BDC ∠的余弦值.【答案】(1)c =(2)34.【解析】【分析】(1)由三角形的面积公式和余弦定理求解即可;(2)因为CD 为AB 上的中线,所以()12CD CA CB =+,对其两边同时平方可求出CD = ,再由余弦定理求解即可.【小问1详解】由ABC 的面积为可得:1sin 2ab C =因为4a =,8b =,解得:得sin 4C =,由角C 为锐角得3cos 4C =,故2222cos 32c a b ab C =+-=,解得c =【小问2详解】因为CD 为AB 上的中线,所以()12CD CA CB =+,所以()22212cos 4CD CA CB CA CB ACB =++⋅,()2212cos 4b a b a ACB =++⋅1364162483244⎛⎫=++⨯⨯⨯= ⎪⎝⎭,解得:CD =.故22222222243cos 2422242BD DC a BDC BD DC +-+-∠===⋅⋅⋅.18.已知n S 为公差为2的等差数列{}n a 的前n 项和,若数列n n S a ⎧⎫⎨⎬⎩⎭为等差数列.(1)求n a ;(2)求数列{}2n S 的前n 项和.【答案】(1)2n a n=(2)11410233n n +++-.【解析】【分析】(1)由等差中项的性质可得3212132S S S a a a ⋅=+,再由等差数列的通项公式和前n 项和公式代入化简可求得12a =,即可求出答案;(2)由(1)得2n S n n =+,则242n nnS =+,再由等比数列的前n 项和公式和分组求和法求解即可.【小问1详解】因为数列n n S a ⎧⎫⎨⎬⎩⎭为等差数列,所以3212132S S S a a a ⋅=+,因为n S 为公差为2的等差数列{}n a 的前n 项和,则111122362124a a a a ++⋅=+++,解得12a =.故()2212n a n n =+-=.【小问2详解】由(1)得()122n n n a a S n n +==+,故242n n nS =+,故数列{}2n S 的前n 项和为()()114142124102141233n nn n ++--=+=+---.19.已知直三棱柱111ABC A B C -,1122AB AC AA ===,AB AC ⊥,D ,E 分别为线段1CC ,1BB 上的点,1CD =.(1)证明:平面BDA ⊥平面1ECA ;(2)若点1B 到平面1ECA 的距离为47,求直线BD 与平面1ECA 所成的角的正弦值.【答案】(1)证明见解析(2)1121.【解析】【分析】(1)建系,分别求出平面BDA 和平面1ECA 的法向量,利用两法向量垂直,两面垂直即可证明;(2)设出E 点坐标,由已知点面距离利用向量法解出点E 坐标,再代入线面角的向量公式求出即可.【小问1详解】证明:在直三棱柱中,AB AC ⊥,1AA ⊥平面ABC ,所以以A 为原点,AB ,AC ,1AA 为x ,y ,z 轴建立空间直角坐标系,则点()10,0,4A ,()2,0,0B ,()12,0,4B ,()0,2,0C ,()0,2,1D ,则()2,2,1BD =- ,()2,0,0AB = ,()10,2,4A C =-,设BE t =,则()2,0,E t ,()2,2,EC t =--设平面BDA 和平面1ECA 的法向量分别为()()11112222,,,,,n x y z n x y z ==,则11111122020n BD x y z n AB x ⎧⋅=-++=⎪⎨⋅==⎪⎩,取11y =,则()10,1,2n =- ;22222122220240n EC x y mz n A C y z ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩,取21z =,则24,2,12m n -⎛⎫= ⎪⎝⎭ ,因为120n n ⋅=,所以平面BDA ⊥平面1ECA .【小问2详解】设点()2,0,E t ,由()10,2,4A C =- ,()12,0,4A E t =- 得平面1ECA 的法向量()4,4,2n t =-,由()112,0,0A B =得点1B 到平面1ECA 的距离1147A B n d n⋅===,解得83t =,由()2,2,1BD =- ,4,4,23n ⎛⎫= ⎪⎝⎭得,直线BD 与平面1ECA 所成的角的正弦值为11cos ,21BD n BD n BD n ⋅==⋅ .20.已知点1F ,2F 为椭圆C :2212x y +=的左,右焦点,椭圆C 上的点P ,Q 满足12//F P F Q ,且P ,Q在x 轴上方,直线1FQ ,2F P 交于点G .已知直线1PF 的斜率为()0k k >.(1)当1k =时,求12PF QF +的值;(2)记1PFG ,2QF G △的面积分别为1S ,2S ,求12S S -的最大值.【答案】(1(2)2.【解析】【分析】(1)由椭圆的性质可得1211PF QF PF Q F =+'+,再利用弦长公式求解即可;(2)利用已知条件将12S S -表示出来,在利用基本不等式即可求解.【小问1详解】设直线1PF 与椭圆的另一个交点为Q ',由椭圆的对称性得Q ,Q '关于原点对称.设点()11,P x y ,()22,Q x y '.因为C :2212x y +=中222,1,1a b c ====,所以()11,0F ,所以当1k =时,直线1PF 的方程为:1y x =+,联立直线1y x =+与椭圆22220x y +-=的方程得2340x x +=,所以12124,03x x x x +=-=,所以1243x x -==,所以12111212PF QF PF Q F x x +=+=-=-='【小问2详解】由题可设直线1PF 的方程为:1yx k=-,联立直线1y x k =-与椭圆22220x y +-=得:2212210y y k k ⎛⎫+--= ⎪⎝⎭,所以122221122ky y k k k+==++,1212121212F F P F F Q F F P F F Q S S S S S S '-=-=- ,()()1211221212111222122222F F y F F y y y y y kk=⋅-⋅-=⨯+=+=≤+,所以当12k k =即2k =时等号成立,12S S -取到最大值2.【点睛】思路点睛:本题考查直线与椭圆综合应用中的面积问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于y 的一元二次方程的形式,得到韦达定理;②表示出12S S -的面积,将韦达定理代入,再借助基本不等式即可求出面积的最大值.21.我国有天气谚语“八月十五云遮月,正月十五雪打灯”,说的是如果中秋节有降水,则来年的元宵节亦会有降水.某同学想验证该谚语的正确性,统计了40地5年共200组中秋节与来年元宵节的降水状况,整理如下:中秋天气元宵天气合计降水无降水降水194160无降水5090140合计69131200(1)依据0.05α=的独立性检验,能否认为元宵节的降水与前一年的中秋节降水有关?(2)从以上200组数据中随机选择2组,记随机事件A 为二组数据中中秋节的降水状况为一降水一无降水,记随机事件B 为二组数据中元宵节的降水状况为一降水一无降水,求()P B A .参考公式与数据:()()()()()22n ad bc a b c d a c b d χ-=++++.α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828【答案】(1)无关(2)47105【解析】【分析】(1)计算2χ的值,与临界值比较得出结论;(2)利用条件概率公式求解.【小问1详解】零假设为0H :元宵节的降水与中秋节的降水无关.()222200199041502003400.3 3.84169131601406913160140χ⨯⨯-⨯⨯==≈<⨯⨯⨯⨯⨯⨯,因为20.05x χ<,所以没有充分证据推断0H 不成立,故元宵节的降水与中秋节的降水无关.【小问2详解】中秋节的降水状况为一降水一无降水概率为()220014060C P A ⨯=,中秋节、元宵节的降水状况均为一降水一无降水概率为()220019904150C P AB ⨯+⨯=,故()()()47105P AB P B A P A ==.22.定义满足()()00f x f x '=的实数0x 为函数()y f x =的然点.已知()()ln e xf x x a -=+.(1)证明:对于a ∀∈R ,函数()y f x =必有然点;(2)设0x 为函数()y f x =的然点,判断函数()()()0g x f x f x =-的零点个数并证明.【答案】(1)证明见解析(2)2个零点,证明见解析【解析】【分析】(1)根据函数零点存在原理,结合导数的性质、题中定义进行运算证明即可;(2)根据(1)的结论,结合函数零点存在原理、结合放缩法进行求解即可.【小问1详解】()1ln e x f x x a x -⎛⎫'=-- ⎪⎝⎭,由()()f x f x '=得1ln 02x a x -+=.令()1ln 2h x x a x=-+,因为()h x 在()0,∞+上单调递增,故()h x 至多一个零点,又因为()1e02e aah --=-<,()2222221e 2102e a ah a a a a ++=++->++>,所以()220e ,ea ax -+∃∈使()00h x =,故对于a ∀∈R ,函数()y f x =有唯一然点0x .【小问2详解】由(I )得001ln 2a x x =-,()1ln e xg x x a x -⎛⎫'=-- ⎪⎝⎭令()1ln G x x a x =--,因为()G x 在()0,∞+上单调递减,且()00102G x x =>,()2222221e 210eaa G a a a a ++=---<---<,故()220,e at x +∃∈使()0G t =,()g x 在(]0,t 上单调递增,在[),t +∞上单调递减.因为()00g x =,故()()00g t g x >=,将001ln 2a x x =-代入,得()00001e ln ln e 22x x g x x x x x --⎛⎫=-+- ⎪⎝⎭()002000020010c 211ln 1e 2211e e e 22e x x x x x x g x x x --+-⎛⎫+++⎪-⎛⎫⎝⎭++=⋅-⋅ ⎪-⎝⎭()000020011e 221e 12e e 2x x x x x x -⎛⎫++ ⎪- ⎪<-⎛⎫ ⎪⋅+ ⎪ ⎪-⎝⎭⎝⎭()0000000e 2e 21e 02e e 222(e 2)x x x x x x x -⎛⎫+ ⎪- ⎪=-< ⎪⎛⎫⋅+ ⎪ ⎪ ⎪-⎝⎭⎝⎭,所以()g x 有2个零点.【点睛】关键点睛:根据题中定义,运用零点存在原理是解题的关键.。
高三上学期期末考试数学试卷-附答案解析

高三上学期期末考试数学试卷-附答案解析班级:___________姓名:___________考号:___________一、单选题 1.设全集{6}Ux N x =∈<∣,集合{1,2,3},{1,4}A B ==,则()UA B ⋃等于( )A .{1,2,3,4}B .{5}C .{2,4}D .{0,5}2.生物入侵指生物由原生存地入侵到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q ,一年四季均可繁殖,繁殖间隔T 为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型()ln K n n λ=来描述该物种累计繁殖数量n 与入侵时间K (单位:天)之间的对应关系,且1TQ λ=+,在物种入侵初期,基于现有数据得出9Q =和80T =.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为(ln 20.69≈,ln3 1.10≈)( ) A .6.9天B .11.0天C .13.8天D .22.0天3.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,偶函数()f x 满足()()2f x f x +=,当[]0,1x ∈时()f x x =,则( )A .()sgn 0f x >⎡⎤⎣⎦B .202112f ⎛⎫= ⎪⎝⎭C .()()sgn 211k f k +=⎡⎤⎣⎦∈ZD .()()sgn sgn f k k k =∈⎡⎤⎣⎦Z5.已知函数()f x 是定义在R 上的奇函数()()20f x f x --+=,当(]0,1x ∈时()2log f x x =,则4039924f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .3- B .1- C .2 D .36.已知函数()2log 2f x ax =-的图象关于直线x=2对称,则函数f (x )图象的大致形状为( )A .B .C .D .7.已知函数()41xf x x=+,则不等式()3213f x -<+<的解集是( ) A .1,2B .()2,1-C .()(),12,-∞-+∞D .()(),21,-∞-+∞8.下列关于命题的说法错误的是9.曲线(2)x y ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .810.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()()20xf x f x '->,()21f -= 则不等式()214f x x <的解集是( ) A .()2,2- B .()(),22,-∞-+∞C .()()2,00,2-⋃D .()(),00,2-∞11.关于函数()222e xx x f x +-=,有如下列结论:①函数()f x 有极小值也有最小值;②函数()f x 有且只有两个不同的零点;③当2262e e k -<<时()f x k =恰有三个实根;④若[]0,x t ∈时()2max 6ef x =,则t 的最小值为2.其中正确..结论的个数是( )A .1B .2C .3D .412.已知函数221552sin ,544()5log (1),4x x f x x x π⎧-≤≤⎪⎪=⎨⎪-⎪⎩>,若存在实数满足1234()()()()f x f x f x f x m ====,则()A .01m ≤≤B .1252x x += C .34340x x x x --= D .340x x >二、填空题13.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是______.14.在△ABC 中,点O 是BC 的三等分点2OC OB =,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB mAE =,AC nAF =(0m >,0n >),若()210t t m n+>的最小值为3,则正数t 的值为___________.15.已知函数()322sin x x x f x =+-,则不等式()()2650f x f x -+≤的解集为___________.16.已知()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x a =有3个不同实根,则实数a 取值范围为______.三、解答题 17.化简求值:(1)2302427216log log 839π-⎛⎫++- ⎪⎝⎭; (2)已知tan 2α,求2sin()sin 2cos()sin(3)ππααααπ⎛⎫-++ ⎪⎝⎭-+-的值.18.已知定义域为R 的函数()122xx b f x a+-=+是奇函数.(1)求实数a 、b 的值;(2)判断函数()f x 在R 的单调性并给予证明; (3)求函数()f x 的值域.19.已知函数()1xf x e ax =--.(1)当1a =时求()f x 的单调区间与极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.20.已知:函数()(1)ln()f x ax x ax =+-. (1)当1a =时讨论函数()f x 的单调性;(2)若()f x 在(0,)x ∈+∞上单调递增,求实数a 的取值范围.21.已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.22.已知函数()()2ln 2f x x ax a x =+++和a ∈R .(1)当2a =-时讨论()f x 的单调性;(2)当a<0时若关于x 的不等式()21f x b a≤-+-恒成立,求实数b 的取值范围;(3)设*n ∈N 时证明:()1111ln 12ln 22341n n n ⎛⎫+≥++++- ⎪+⎝⎭.参考答案与解析1.【答案】D故选:D . 2.【答案】C 【分析】根据1TQ λ=+,9Q =与80T =,求得λ,进而得到()ln K n n λ=求解. 【详解】因为1TQ λ=+,9Q =与80T =所以8091λ=+解得10λ=.设初始时间为1K ,初始累计繁殖数量为n ,累计繁殖数量增加3倍后的时间为2K 则()21442213.80K K ln n lnn ln ln λλλ-=-==≈天. 故选:C 3.【答案】A【分析】求出当12l l //时实数a 的值,再利用集合的包含关系判断可得出结论. 【详解】当12l l //时()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //; 当4a =时直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //. 因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件. 故选:A. 4.【答案】C【分析】利用特殊值法可判断AD 选项;利用函数的周期性以及题中定义可判断BC 选项. 【详解】对于A 选项 ()sgn 0sgn 00f ==⎡⎤⎣⎦,A 错; 对于B 选项 202111110102222f f f ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 错;对于C 选项,对任意的Z k ∈,()()2111f k f +== 则()sgn 21sgn11f k +==⎡⎤⎣⎦,C 对; 对于D 选项 ()()sgn 2sgn 0sgn 00f f ===⎡⎤⎡⎤⎣⎦⎣⎦,而sgn 21=,D 错. 故选:C. 5.【答案】D【分析】由函数()f x 是定义在R 上的奇函数,结合()()20f x f x --+=,可得函数的周期为4,然后利用周期和()()20f x f x --+=及奇函数的性质,分别对40399,24f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭化简,使其自变量在区间(]0,1上,然后代入解析式中求解即可【详解】解:因为函数()f x 是定义在R 上的奇函数,所以()()0f x f x +-= 因为()()20f x f x --+=,所以()(2)f x f x -=+ 所以()(2)f x f x =-+,所以(2)(4)f x f x +=-+所以()(4)f x f x =+,所以()f x 的周期为4所以403911711201945043222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=⨯++==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭911124444f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭因为当(]0,1x ∈时()2log f x x = 所以40399112424f f ff ⎛⎫⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211log log 24=--22log 2log 43=+=故选:D 6.【答案】A【分析】根据函数图象的变换和()2log 2f x ax =-的图象关于2x =对称得到220a -=,即1a =,然后再根据对数函数的图象和图象的变换判断即可.【详解】因为()2log 2f x ax =-的图象关于2x =对称,所以220a -=,解得1a =,则()2log 2f x x =- 所以()f x 的图象可由函数2log y x =的图象沿y 轴翻折,再向右平移2个单位得到. 故选:A. 7.【答案】B【分析】先判断函数()f x 的奇偶性和单调性,再利用函数的单调性化简得3213x -<+<,解不等式即得解. 【详解】因为()()f x f x -=-,所以()f x 是奇函数 当0x >时()44411x f x x x==-++是增函数,此时()0f x > 又(0)0f =所以()f x 在R 上是增函数.又因为()33f -=- ()33f = 所以()3213f x -<+<可化为()(3)21(3)f f x f -<+< 所以3213x -<+< 解得2<<1x -. 故选:B 8.【答案】D【分析】利用原命题与逆否命题的关系可判断出A 选项的正误;根据充分必要性判断出B 选项的正误;利用特称命题的否定可判断出C 选项的正误;利用作商法和指数函数的单调性可判断出D 选项的正误. 【详解】对于A 选项,命题的逆否命题,只需把原命题的结论否定当条件,条件否定当结论即可,A 选项正确;对于B 选项,若函数()log a f x x =在区间()0,∞+上为增函数,则1a >,所以,“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件,B 选项正确; 对于C 选项,特称命题的否定为全称,C 选项正确;对于D 选项,当0x <时由于函数32x y ⎛⎫= ⎪⎝⎭为增函数,则03331222x x x ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭ 23x x ∴>,D 选项错误.故选D.【点睛】本题考查四种命题的关系、充分不必要条件的判断、特称命题的否定以及特称命题真假的判断,考查逻辑推理能力,属于中等题. 9.【答案】B【解析】求函数导数,利用切线斜率求出a ,根据切线过点(0,2)求出b 即可. 【详解】因为(2)x y ax e =+ 所以(2)x y e ax a '=++ 故0|22x k y a ='==+=- 解得4a =- 又切线过点(0,2)所以220b =-⨯+,解得2b = 所以8ab =- 故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题. 10.【答案】C【解析】构造函数令2()()f x g x x =,依题意知()g x 为偶函数且在区间(0,)+∞单调递增;不等式2()1()(2)4f x g x g x <⇔<,利用单调性脱去“g ”即可求得不等式2()14f x x <的解集. 【详解】解:令2()()f xg x x=,则243()2()()2()()x f x xf x xf x f x g x x x '-'-'==因为()2()0xf x f x '->所以,当0x >时()0g x '>,即()g x 在区间(0,)+∞单调递增; 又()f x 是R 上的偶函数又()2f ()21f =-=; 故()2g 2(2)124f == 于是,不等式2()14f x x <化为()()2g x g < 故||2x <解得22x -<<,又0x ≠ 故选:C .【点睛】本题考查利用导数研究函数的单调性,考查函数奇偶性,考查化归思想与运算能力,属于难题. 11.【答案】C【分析】求导后,根据()f x '正负可确定()f x 的单调性;根据()0f x >在()2,+∞上恒成立,结合极值和最值的定义可知①正确;利用零点存在定理可说明②正确;作出()f x 图象,将问题转化为()f x 与y k =的交点个数问题,采用数形结合的方式可确定③错误;根据图象和函数值域可确定④正确. 【详解】()()()2224e e x xx x x f x +--'==∴当()(),22,x ∈-∞-+∞时()0f x '<;当()2,2x ∈-时0fx ;f x 在(),2-∞-,()2,+∞上单调递减,在()2,2-上单调递增;对于①,()f x 在2x =-处取得极小值,极小值为()222e 0f -=-<当2x >时2220x x +->恒成立,()0f x ∴>在()2,+∞上恒成立()2f ∴-为()f x 的最小值,则()f x 既有极小值也有最小值,①正确; 对于②()33e 0f -=> ()222e 0f -=-< ()110f =>ef x 在()3,2--和()2,1-上各有一个零点又当2x >时()0f x >恒成立,f x 有且只有两个不同的零点,②正确;对于③()262e f =,f x 图象如下图所示由图象可知:当22e 0k -<≤时()f x 与y k =有且仅有两个不同交点 即当22e 0k -<≤时()f x k =有且仅有两个不等实根,③错误; 对于④,若[]0,x t ∈时()2max 6e f x =,结合图象可知:2t ≥,即t 的最小值为2,④正确. 故选:C.【点睛】方法点睛:本题考查利用导数研究函数的相关性质的问题,其中考查了方程根的个数问题,解决此类问题的基本方法有:(1)直接法:直接求解方程得到方程的根来确定根的个数;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 12.【答案】C【分析】根据题意分段函数的定义,逐个分析即可. 【详解】由15544x -≤≤得3π2ππ252x -≤≤ ()[]2π2sin 2,25f x x ∴=∈- 由54x >得114x ->()()20log 1f x x ∴=-≥对应函数图像如图所示若1234()()()()f x f x f x f x m ==== 则2m <,A 错;1x ,2x 关于54x =-对称 1252x x ∴+=-,B 错;由()()34221log lo 1g x x -=-()()23420log l 11og x x ∴-+-=()()342110log x x ∴--=⎡⎤⎣⎦,得()()34111x x --=即34340x x x x --=,C 对; 由34340x x x x --=,得34111x x +=>(31x 41x ≠) 344x x ∴>,D 错.故选:C 13.【答案】【详解】2230ax ax --≤恒成立,当0a =时30-≤成立;当0a ≠时 20{4120a a a <∆=+≤得30a -≤< 30a ∴-≤≤ 14.【答案】3【分析】由平面向量基本定理可得2133AO mAE nAF =+,进而又由点E ,O ,F 三点共线,则21133m n +=,根据“1”的作用由基本不等式的性质,可解得t 的值.【详解】解:在ABC 中,点O 是BC 的三等分点 ||2||OC OB = ∴1121()3333AO AB BO AB BC AB AC AB AB AC =+=+=+-=+AB mAE = AC nAF = ∴2133AO mAE nAF =+ O ,E ,F 三点共线 ∴21133m n += ∴2222222112122222()()233333393333t t n mt t t t t m n m n m n m n +=++=+++++=++当且仅当2233n mt m n =,即2222m t n =时取等号,∴21t m n +的最小值为2233t +即22333t += 0t > 3t ∴=故答案为:3 15.【答案】[2,3]【分析】由奇偶性定义、导数判断()f x 的奇偶性及单调性,再应用奇函数、单调性求解不等式即可.【详解】由题设,()322sin ()f x x x f x x =-+=---且定义域为R ,故()f x 为奇函数又()()2321cos 0f x x x =+-≥',()f x 在定义域上递增 ∴()()2650f x f x -+≤,可得()2(65)(56)f x f x f x ≤--=-∴256(2)(3)0x x x x -+=--≤,解得23x ≤≤ ∴原不等式解集为[2,3]. 故答案为:[2,3]. 16.【答案】10,e ⎛⎫⎪⎝⎭【分析】利用导函数研究出函数()y f x =的单调性,极值情况,画出函数图象,并将函数的根的问题转化为两函数交点个数问题,数形结合求出实数a 的取值范围. 【详解】当0x ≥时()e xx f x = ()1e x xf x -'=当[)0,1x ∈时()10e x xf x -'=>,当()1,x ∈+∞时()10e xx f x -'=< 故()f x 在[)0,1x ∈上单调递增,在()1,x ∈+∞上单调递减 且()11e f =,当0x >时()ex xf x =恒为正当0x <时()33=-f x x x ()()()233311f x x x x '=-=+-当(),1x ∈-∞-时()2303'=-<f x x ,当()1,0x ∈-时()2303'=->f x x故()f x 在(),1x ∈-∞-上单调递减,在()1,0x ∈-上单调递增且()1312f -=-+=-画出()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩的图象如下:要想关于x 的方程()f x a =有3个不同实根,则要函数()y f x =与y a =有3个不同的交点即可显然当10,e a ⎛⎫∈ ⎪⎝⎭时符合要求.故答案为:10,e ⎛⎫⎪⎝⎭17.【答案】(1)49;(2)1-.【分析】(1)根据指数与对数的运算公式求解即可; (2)根据诱导公式,转化为其次问题进行求解即可.【详解】(1)原式2222241log log 333⎛⎫=++- ⎪⎝⎭2411log 92=++ 49=. (2)原式2sin cos cos sin αααα+=-2tan 11tan αα+=-1=-.18.【答案】(1)2,1a b == (2)单调递减,证明见详解 (3)11,22⎛⎫- ⎪⎝⎭【分析】(1)利用()00f =,()()011f f +-=列方程求出a 、b 的值,然后验证函数()f x 为奇函数即可; (2)任取12x x >,然后通过计算()()12f x f x -的正负来判断证明单调性; (3)以120x +>为基础,利用不等式的性质计算121222x +-+的范围,即为函数()f x 的值域.【详解】(1)定义域为R 的函数()122xx b f x a +-=+是奇函数∴()00f = ()()011f f +-=即110222041b ab b a a --⎧=⎪⎪+⎨--⎪+=⎪++⎩,解得21a b =⎧⎨=⎩ 即()11222x x f x +-=+又()()111112121221022222222x x x x x x x x f x f x -+-+++----+-=+=+=++++ ()11222xx f x +-∴=+是奇函数2,1a b ∴==;(2)由(1)得()11122222122x x x f x ++-=+=-++,其为定义域在R 上的单调减函数 任取12x x >()()()()()2112121112111122121222222222222x x x x x x f x f x ++++++⎛⎫⎛⎫∴-=---= ⎪ ⎪++++⎝+⎭-+⎝⎭ 12x x > 1211x x ∴+>+1211220x x ++∴>>()()120f x f x ∴-<,即()()12f x f x <∴函数()f x 是R 上单调递减函数;(3)120x +>1222x +∴+>1110222x +∴<<+120122x +∴<<+1121122222x +∴-<-<+即函数()f x 的值域为11,22⎛⎫- ⎪⎝⎭19.【答案】(1)在(),0∞-上单调递减,在()0,∞+上单调递增,函数()f x 有极小值0,无极大值 (2)2a e ≥-【分析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分0x =和0x >两种情况分析求解,当0x >时不等式变形为1()x e a x x x-+在[0x ∈,)∞+上有解,构造函数1()()x e g x x x x=-+,利用导数研究函数()g x 的单调性,求解()g x 的最小值,即可得到答案.(1)当1a =时()1x f x e x =--,所以()1xf x e '=-当0x <时()0f x '<;当0x >时0fx所以()f x 在(),0∞-上单调递减,在()0,∞+上单调递增 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,∞+上有解所以210x e x ax ---≤在[)0,∞+上有解 当0x =时不等式成立,此时a R ∈ 当0x >时1x e a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解令()1x e g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221111xx x e x e x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭由(1)知0x >时()()00f x f >=,即()10xe x -+>当01x <<时()0g x '<;当1x >时()0g x '> 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增 所以当1x =时()min 2g x e =-,所以2a e ≥- 综上可知,实数a 的取值范围是2a e ≥-.【点睛】利用导数研究不等式恒成立问题或有解问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围.20.【答案】(1)()0,∞+单调递增;(2)[]0,e .【解析】(1)由1a =得到()()1ln()f x x x x =+-,求导1ln 1()ln x x f x x x x+'=+=,再讨论其正负即可. (2)根据()f x 在(0,)x ∈+∞上单调递增,则1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立,转化ln 10ax x +≥,(0,)x ∈+∞恒成立,令()ln 1h x ax x =+求其最小值即可.【详解】(1)当1a =时()()1ln()f x x x x =+- 所以1ln 1()ln x x f x x x x+'=+= 令()ln 1g x x x =+,则()1ln g x x '=+ 当10x e<<时()0g x '<,()g x 递减; 当1x e>时()0g x '>,()g x 递增; 所以()g x 取得最小值1110g e e ⎛⎫=-> ⎪⎝⎭所以()0f x '>在()0,∞+上成立 所以()f x 在()0,∞+上递增; (2)因为()f x 在(0,)x ∈+∞上单调递增 所以1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立 即ln 10ax x +≥,(0,)x ∈+∞恒成立 令()ln 1h x ax x =+,则()()1ln h x a x '=+ 当0a >时当10x e<<时()0h x '<,()h x 递减; 当1x e>时()0h x '>,()h x 递增; 所以()h x 取得最小值11a h e e ⎛⎫=- ⎪⎝⎭所以10ae-≥ 0a e <≤当a<0时易知()ln 11ah x ax x e=+≤-,不成立 当a=0时()10h x =>成立综上:0a e ≤≤所以实数a 的取值范围[]0,e .【点睛】方法点睛:1、利用导数研究函数的单调性,当f(x)不含参数时关键在于准确判定导数的符号;当f(x)含参数时需依据参数取值对不等式解集的影响进行分类讨论.2、可导函数f(x)在指定的区间D 上单调递增(减),求参数范围问题,转化为f ′(x)≥0(或f ′(x)≤0)恒成立问题,构建不等式求解,要注意“=”是否取到.21.【答案】(1)1332y x =-;(2)直线l 的方程为13y x =,切点坐标为(226)--,. 【分析】(1)求导,由导数在切点处的导数值可求切线斜率,根据点斜式即可求解;(2)设切点,求出切线方程,根据切线方程经过()00,,代入切线方程即可求解. 【详解】(1)∵()3222166f =+-=- ∴点()26-,在曲线上. ∵()321631()f x x x x ''=+-=+ ∴在点()26-,处的切线的斜率为()2232113.k f '⨯==+= ∴切线的方程为)132(6)(y x =-+-. 即1332y x =-.(2)设切点为00()x y ,则直线l 的斜率为()2003 1f x x '=+∴直线l 的方程为:2300003116()()y x x x x x =+-++-.又∵直线l 过点(0,0)∴2300000 3 116()()x x x x =+-++-整理得308=-x∴3002221626()()x y =-,=-+--=-∴23()3211k ⨯=-+=∴直线l 的方程为13y x =,切点坐标为(226)-,-. 22.【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减(2)[)1,-+∞ (3)证明见解析【分析】(1)将2a =-代入()f x ,对其求导,利用导数与函数的单调性的关系即可得解;(2)先利用导数求得()f x 的最大值,再将问题转化为()max 21f x b a ≤-+-,从而得到11ln b a a⎛⎫≥-+ ⎪⎝⎭,构造函数()()ln 0g t t t t =->,求得()max g t 即可得解;(3)结合(2)中结论取特殊值得到2ln 21x x ≤-恒成立,进而得到()2ln 1ln ln 2n n n--≤-,利用累加法即可得证,注意1n =的验证.【详解】(1)当2a =-时()2ln 2f x x x =-,()0,x ∈+∞则()21144x f x x x x-'=-=. 当10,2x ⎛⎫∈ ⎪⎝⎭时0fx;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(2)当a<0时()()()1121212a x x ax x a f x x x ⎛⎫⎛⎫++ ⎪⎪++⎝⎭⎝⎭'==. 当10,x a ⎛⎫∈- ⎪⎝⎭时0f x ;当1,x a ∈-+∞⎛⎫⎪⎝⎭时()0f x '<所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.所以()max 111211ln ln 1a f x f a a a a a a+⎛⎫⎛⎫⎛⎫=-=-+-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由不等式()21f x b a ≤-+-恒成立,得112ln 11b a aa ⎛⎫---≤-+- ⎪⎝⎭恒成立即11ln b a a⎛⎫≥-+ ⎪⎝⎭在a<0时恒成立令1t a =-,()()ln 0g t t t t =->则()111tg t t t-'=-=.当()0,1t ∈时()()0,g t g t '>单调递增;当()1,t ∈+∞时()()0,g t g t '<单调递减. 所以()g t 的最大值为()11g =-所以1b ≥-,即实数b 的取值范围是[)1,-+∞.【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<. (2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔->⎡⎤⎣⎦;()()f x g x <恒成立()()max 0f x g x ⇔-<⎡⎤⎣⎦; (4)1x M ∀∈,2x N ∀∈与()()()()1212min max f x g x f x g x >⇔>.。
浙江省宁波市镇海中学2023-2024学年高三上学期期末考试数学试题

镇海中学2023学年第一学期期末考试高三数学试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卷上.一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A =x x 2-5x +6≤0 ,B =x -1≤x <3 ,则A ∩B =A.x -1≤x <3B.x -1≤x ≤3C.x 2≤x <3D.x 2≤x ≤32.函数f x =2x +x 3-9的零点所在区间为A.0,1 B.1,2C.2,3D.3,43.设函数f x =a -1a x -1+b (a >0,a ≠1),则函数f x 的单调性A.与a 有关,且与b 有关 B.与a 无关,且与b 有关C.与a 有关,且与b 无关D.与a 无关,且与b 无关4.已知等差数列a n ,则k =2是a 1+a 11=a k +a 10成立的()条件A.充要B.充分不必要C.必要不充分D.既不充分也不必要5.已知直线a ,m ,n ,l ,且m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若l 满足l ⊥m ,l ⊥n ,则下列说法中正确的是A.l ∥αB.l ⊥βC.若α∩β=a ,则a ∥lD.α⊥β6.已知e 1 ,e 2 是单位向量,且它们的夹角是60°.若a =e 1 +2e 2 ,b =λe 1 -e 2 ,且a =b ,则λ=A.2 B.-2C.2或-3D.3或-27.函数f x =5sin xex+x cos x 在-2π,2π 上的图象大致为AB C D8.设实数x ,y 满足x >32,y >3,不等式k 2x -3 y -3 ≤8x 3+y 3-12x 2-3y 2恒成立,则实数k 的最大值为A.12B.24C.23D.43二、选择题:本题共3小题,每小题6分,共18分。
广东省揭阳市普通高中2023届高三上学期期末数学试题(解析版)

8.如图,四边形ABCD是边长为 的正方形,P是圆弧 上的动点,且 ,Q是线段BC上的动点.当点P固定时,点Q将运动到使 取到最小值时的位置;当点Q固定时,点P将运动到使 取到最大值时的位置.当某一时刻,点P,Q都不再运动,且满足上述条件时,则 ( )
A. B. C.2D.不存在
【答案】A
9.在正方体 中,下列结论正确的是()
A. 平面 B. 平面
C.点D到平面 的距离为 D. 与平面 所成角的正弦值为
【答案】ABC
【解析】
【分析】构建空间直角坐标系,用向量法根据线面平行的判定定理和线面垂直的判定定理判断A、B正确,根据空间向量法求取面的法向量,求得点D到平面 的距离为 ,故C正确,求得 与平面 所成角的正弦值为 ,选项D错误.
A. B.
C. D.
【答案】D
【解析】
【分析】由 ,得 ,取 可判断A,C;根据函数 在R上单调递减,可判断B;根据幂函数 在R上单调递增可判断D.
【详解】由 ,得 ,取 ,则 ,选项A不正确;
因为 ,由于函数 在R上单调递减,故 ,选项B不正确;
因为 ,取 , ,选项C不正确;
由于幂函数 在R上单调递增,故选项D正确.
连接 交 于 ,
因为四边形ABCD是边长为 的正方形,
所以 , 为 的中点,
又因 , 为 的中点,
所以 , ,
所以 ,
因为 为 的中点,
所以 ,
所以 .
故选:A.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
【详解】解:设该圆锥内切球的半径为 ,则 ,所以 .
2023届河南省驻马店市高三上学期期末统一考试数学(理)试题(解析版)

2023届河南省驻马店市高三上学期期末统一考试数学(理)试题一、单选题1.设集合{}{}22|120,Z |450A x x x B x x x =--<=∈+-<,则A B =( )A .{}|31x x -<<B .{}|13x x -<<C .{}2,1,0--D .{}0,1,2【答案】C【分析】由题知{}|34A x x =-<<,{}4,3,2,1,0B =----,再求交集即可.【详解】解:{}()(){}{}2|120|430|34A x x x x x x x x =--<=-+<=-<<,{}()(){}{}2Z |450Z |5104,3,2,1,0B x x x x x x =∈+-<=∈+-<=----, 所以,{2,1,0}A B =-- 故选:C2.已知a ,b 为实数,复数2i z a =+,若2i z ba z+=,则||a b -=( ) A .2- B .1-C .1D .2【答案】A【分析】由已知利用复数相等列出方程组,求出||,||a b 即可得答案. 【详解】因为2i z a =+,所以2i z a =-, 则2i2i 2i z b a b a a z+++==-,即22i 2i(2i)42i a b a a a a ++=-=+,从而2422a a ba =+⎧⎨=⎩,即231b a a =⎧⎨=⎩,解得||1,||3==a b ,故|||| 2.a b -=-故选:A.3.已知函数()22123x f x x +=--,则()3f =( )A .4-B .2-C .2D .4【答案】B【分析】整体代换,令213x +=求得x 后代入已知式可求值. 【详解】令213x +=,得1x =,则(3)f 2132=--=- 故选:B .4.蒙古包是蒙古族牧民居住的一种房子,建设和搬迁很方便,适用于牧业生产和游牧生活.小明对蒙古包非常感兴趣,于是做了一个蒙古包的模型,其三视图如图所示,现在他需要买一些油毡纸铺上去(底面不铺),则至少要买油毡纸( )A .0.99π2mB .0.9π2mC .0.66π2mD .0.81π2m【答案】D【分析】根据题意可知:该蒙古包的模型是一个圆锥与圆柱的组合体.要求该几何体的表面积(除去底面面积),利用圆锥和圆柱的侧面积公式即可求解.【详解】由题三视图可知该蒙古包的模型是一个圆锥与圆柱的组合体. 其中圆锥的母线长为220.3(1.5 1.1)0.5m l +-, 则圆锥的侧面积2110.52π0.3=0.15πm 2S =⨯⨯⨯,圆柱的侧面积22 1.12π0.3=0.66πm S =⨯⨯,故总面积为2120.15π0.66π0.81πm S S S =+=+=,所以至少要买油毡纸20.81πm , 故选:D .5.在正项等比数列{n a }中,若3a ,7a 是关于x 的方程240x mx -+=的两实根,则21222329log log log log a a a a ++++=( )A .8B .9C .16D .18【答案】B【分析】由韦达定理可得374a a =,由等比数列性质可得912392a a a a =,由对数运算性质可得答案.【详解】由韦达定理可得374a a =,由等比数列性质可得254a =,则52a =,由等比数列性质可知31922874654a a a a a a a a a =====,则912392a a a a =,故212223292192392log log log log log ()log 92a a a a a a a a ++++===.故选:B.6.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,CD ⊥平面 PAD .6AB =,60BAD ∠=︒,224PC AD PD BC ====,则异面直线PA 与BC 所成角的余弦值为( )A .155B .105C .255D .55【答案】D【分析】根据线面垂直以及面面垂直可建立空间直角坐标系,利用空间向量的夹角即可求解. 【详解】由CD ⊥平面PAD ,,PD AD ⊂平面PAD ,故CD AD ⊥,CD PD ⊥,又平面PCD ⊥平面ABCD ,其交线为CD , AD ⊂平面ABCD ,因此AD ⊥平面PCD ,PD ⊂平面PCD ,故AD PD ⊥,故DA DC DP 、,两两垂直,则以D 为原点,.DA DC DP ⋅的方向分别为x y z ,,轴的正方向,建立如图所示的空间直角坐标系,400002A P ,,,,,13300230B ,,,C ,,,则(4,0,2),(1,3,0).PA BC =-=--.设异面直线PA 与BC 所成的角为θ,则||45cos |cos ,|.5||||252PA BC PA BC PA BC θ⋅=<>===⨯故选:D7.为了让学生了解环保知识,增强环保意识,某班举行了一次环保知识有奖竞答活动,有20名学生参加活动.已知这20名学生得分的平均数为m ,方差为n .若将m 当成一个学生的分数与原来的20名学生的分数一起,算出这21个分数的平均数为m ',方差为n ',则( ) A .2021m m '=,2120n n '= B .m m '=,2021n n '= C .2021m m '=,2021n n '= D .m m '=,2120n n '=【答案】B【分析】设这20名学生得分分别是1x 、2x 、3x 、、20x ,利用平均数和方差公式可得合适的选项. 【详解】设这20名学生得分分别是1x 、2x 、3x 、、20x ,则122020m x x x =+++,12202121m x x x m m =++++=',故m m '=,因为()()()()22221232020n x m x m x m x m =-+-+-++-,()()()()()222221232021n x m x m x m x m m m ''=-+-+-++-+-,因为m m '=,故2021n n '=. 故选:B.8.在三棱柱111ABC A B C 中,ABC 是等边三角形,12AA AB =,在该三棱柱的外接球内随机取一点P ,则点P 在三棱柱111ABC A B C 内的概率为( ) A .2732B .2732πC .2764D .2764π【答案】D【分析】利用几何概型,设三棱柱的外接球体积为V ,可知P 在三棱柱111ABC A B C 内的概率111ABC A B CV P V-=.【详解】设等边三角形ABC 边长为2a ,124AA AB a ==,()222a ⋅=,则111234ABC A B C V a -=⋅=.如图,因ABC 是等边三角形,则三角形外心O ,也为三角形重心,由重心性质可得:13OD AD a ==.则三角形外接圆半径r OC a ====如图,又设三棱柱的外接球圆心为1O ,则1O 为2OO 中点,则外接球半径222224434233O O a R r a a ⎛⎫=+=+= ⎪⎝⎭.设外接球体积为V ,则3334443256333327πππV R a a ⎛⎫=== ⎪ ⎪⎝⎭.由几何概型,则P 在三棱柱111ABC A B C 内的概率11133432764256327ππABC A B CV a P Va -===.故选:D.9.设0.7 1.2 1.42e e e 1a b c ===-,,,则( ) A .a b c << B .b<c<a C .b a c << D .c b a <<【答案】D【分析】根据不等式的性质可得0.70.7 1.22e e e e >=,令()x f x e =可得曲线()y f x =在 1.4x =处的切线方程为 1.4 1.4e ( 1.4)e y x =-+.根据指数函数的图象可得: 1.4(0.4)(0)e e x x x -≥>,进而得到 1.2 1.4e 0.8e >,然后再利用不等式的性质即可求解.【详解】因为0.70.7 1.22e e e e >=,所以a b >.令()x f x e =,则曲线()y f x =在 1.4x =处的切线方程为1.4 1.4e ( 1.4)e y x =-+.易证 1.4 1.4 1.4(0.4)(0)e e ( 1.4)e e x x x x ≥-+=->,当且仅当 1.4x =时,等号成立,故 1.2 1.4e 0.8e >, 即 1.2 1.4 1.4e 1e 10.2e .+->-因为32e 5<,所以 1.5e 5<,所以 1.4e 5<,则 1.410.2e 0->,即 1.2 1.4e 1e 0+->, 从而b c >.故c b a <<. 故选:D .10.已知函数()sin 2cos2(0f x x a x ωωω=+>)在π12x =处取得最大值,且()f x 图象的两条相邻的对称轴之间的距离小于π2,若π6f ⎛⎫= ⎪⎝⎭ω的取值可能是( ) A .2 B .3C .5D .7【答案】C【分析】由两条相邻的对称轴之间的距离小于π2得1ω>,利用辅助角公式(引入辅助角ϕ)变形后,由最大值点得,ωϕ的关系,再由(π)6f =a ,从而得ϕ的表达式,代入可得ω的表达式,得正确选项.【详解】因为()f x 图象的两条相邻的对称轴之间的距离小于π2,所以12ππ222ω⨯<,所以1ω>.由辅助角公式可得())f x x ωϕ+,其中sin ϕ=cos ϕ=,因为()f x 在π12x =处取得最大值,所以Z πππ2,62k k ωϕ+=+∈,所以6312,Z πk k ϕω=-+∈, Z π4π,3k k ωϕϕπ+=-+∈,()1sin()4)6ππππ3f k a ωϕϕϕ=+=-+===所以sin ϕ=1cos 2ϕ=,则11Z π,π23k k ϕ=-∈,1226312312212125,Z πk k k k k ϕω=-+=-++=+∈,只有C 满足. 故选:C .11.已知抛物线28y x =的焦点为F ,直线l 与抛物线交于,A B 两点,O 为坐标原点,直线,OA OB 的斜率之积为1-,则4||AF BF +|的最小值是( ) A .32 B .36C .42D .46【答案】C【分析】设直线1122:,(,),(,)l x my t A x y B x y =+,进而与抛物线联立方程,结合韦达定理得12121y y x x =-,再根据121212646418y y x x y y t ===--得8t =,1264x x =,最后根据基本不等式和焦半径公式求解即可.【详解】解:设直线1122:,(,),(,)l x my t A x y B x y =+,联立28x my t y x=+⎧⎨=⎩整理得2880y my t --=,所以,264320m t ∆=+>,12128,8y y m y y t +==-. 因为直线,OA OB 的斜率之积为1-,所以12121y y x x =-, 因为2211228,8y x y x ==,所以()2121264y y x x =,所以121212646418y y x x y y t ===--,解得8t =,即()212126464y y x x ==, 所以,1264x x =. 因为1222AF x BF x =+=+,, 所以()12226442424101042AF BF x x x x +=+++=++≥=,当且仅当22644x x =时,等号成立.所以,4||AF BF +|的最小值是42. 故选:C12.已知函数()2,0()ln ,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,若函数()()()()1g x f f x af x =-+恰有两个零点,则a 的取值范围是( ) A .[){}0,21⋃ B .()2,+∞ C .()1,0- D .(),1-∞-【答案】C【分析】设()t f x =,进而考虑()y f t =与1y at =-的交点,分02a ≤<,2a =,2a >,10a -<<,1a <-五种情况讨论求解即可.【详解】设()t f x =,则()()1y h t f t at ==-+,令()0h t =,得()1f t at =-, 我们先来考虑()y f t =与1y at =-的交点, 令224,1at t a -=∆=-,当02a ≤<时,1y at =-与()y f t =只有1个交点,交点横坐标()11,0t ∈-,此时()g x 有1个零点; 当2a =时,1y at =-与()y f t =只有2个交点,交点横坐标()121,0,1t t ∈-=,此时()g x 有3个零点.当2a >时,1y at =-与()y f t =只有3个交点,交点横坐标()()()1231,0,0,1,1,t t t ∞∈-∈∈+,此时()g x 有5个零点.若1y at =-与()()0y f t t =<相切时,设切点()()00,ln P t t -, 所以,切线斜率()000ln 11t a t t -+==,解得01,1t a =-=-, 故当1a <-时,1y at =-与()y f t =没有交点,()g x 没有零点.当10a -<<时,1y at =-与()y f t =有2个交点,交点横坐标()120,,t t ∈-∞,此时()g x 有2个零点. 故选:C【点睛】关键点点睛:本题解题的关键在于通过换元()t f x =,将问题转化为直线1y at =-与()y f t =的交点个数,进而数形结合,分类讨论求解即可.二、填空题13.已知非零向量,a b 满足||2||b a =,且()a a b ⊥+,则向量,a b 的夹角是_______. 【答案】23π【分析】由向量垂直得到()0a a b ⋅+=,即可得到2a b a ⋅=-,再根据cos ,||||a ba b a b ⋅〈〉=及||2||b a =计算可得;【详解】解:因为()a a b ⊥+,所以()0a a b ⋅+=,即20a a b +⋅=,所以2a b a ⋅=-. 因为||2||b a =,所以21cos ,2||||||||a b a a b a b a b ⋅-〈〉===-,因为[],0,a b π〈〉∈,所以2,3a b π〈〉=. 故答案为:23π14.已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,左、右焦点分别为1F ,2F ,若22210B A F B ⋅=,则椭圆C 的离心率为________.【分析】写出点2221,,,B A F B 的坐标,根据22210B A F B ⋅=列出,,a b c 的关系,求解.【详解】因为()()22212221,,,,0B A a b F B c b B A F B =-=--⋅=,所以20ac b -+=,即220a c ac --=,则2e e 10+-=,解得e =e =因为0e 1<<,所以e =15.若()()()()()102910701291021111x x a a x a x a x a x +-=+-+-++-+-,则5a =_________.【答案】231-【分析】将()1072x x +-化为()()7101111x x ⎡⎤⎡⎤-++--⎣⎦⎣⎦,后由二项式定理可得答案.【详解】()1072x x =+-()()7101111x x ⎡⎤⎡⎤-++--⎣⎦⎣⎦,设()711x ⎡⎤-+⎣⎦展开式通项为()7171C rrr T x -+=-,令752r r -=⇒=,则()()552371211C T x x =-=-. 设()1011x ⎡⎤--⎣⎦展开式通项为()()1011011C rrrr T x -+=--,令1055r r -=⇒=,则()()()5555610112521C T x x =--=--.则521252231a =-=-. 故答案为:231-16.对于正整数n 的正整数设为n a ,如131,2a a ==,记n n b n a =+,从全体正整数中除去所有n b ,余下的正整数按从小到大的顺序排列得到数列{}n c ,则数列{}n c 的前8项和为_________. 【答案】204【分析】对于正整数k ,就2214k n k k ≤<++、221214k k n k k ++≤<++分类讨论后可求n b ,从而可求{}n c ,故可求前8项和.【详解】对于正整数n ,必存在正整数k ,使得()221k n k ≤<+.如果2214k n k k ≤<++,则12k k ≤+,故n a k =,故n b n k =+,此时22k n k k ≤≤+,故222k k n k k k +≤+≤+故此时n b 取值为区间22,2k k k k ⎡⎤++⎣⎦中的所有正整数.如果221214k k n k k ++≤<++即22121k k n k k ++≤<++,则112k k +<+, 故1n a k =+,故1n b n k =++,此时2222132k k n k k k ++≤++<++,故此时n b 取值为区间())2211,32k k k ⎡++++⎣中的所有正整数. 所以当2221k n k k ≤<++时,n b 取值为区间())2222,211,32k k k k k k k ⎡⎡⎤++++++⎣⎦⎣中所有的正整数,而()223211k k k k ++=+++,()221122k k k ++=++,故())2222,211,32k k k k k k k ⎡⎡⎤++++++⎣⎦⎣表示())22,11k k k k ⎡++++⎣中除()21k +以外的所有正整数, 取1k =,则14n ≤<,n b 取值为区间[)2,6中除4以外的所有正整数. 取2k =,则49n ≤<,n b 取值为区间[)6,12中除9以外的所有正整数.依次取k m =,则()221m n m ≤<+,n b 取值为区间())22,11m m m m ⎡++++⎣中除()21m +以外的所有正整数. 故1234567891,4,9,16,25,36,49,64,81c c c c c c c c c =========, 故前8项和为:1491625364964204+++++++=, 故答案为:204.【点睛】思路点睛:对于数列的新定义问题,首先要弄清楚数列的形成过程,特别是与数论有关的新数列构建问题,要能根据整数的形式做合理的分类.三、解答题17.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且2sin cos b A a B c +=. (1)求sin A 的值;(2)若点M 在边AC 上,且BCM 是边长为ABC 的面积.【答案】(1)5sin 5A = (2)33182+【分析】(1)由正弦定理进行边角转换可得1tan 2A =,再结合22sin cos 1A A +=即可求解; (2)在ABC 中,由正弦定理可得35c =,然后利用πA C ABC ++∠=求出5215sin 10ABC +∠=,最后用面积公式求解即可【详解】(1)因为2sin cos b A a B c +=,所以结合正弦定理得2sin sin sin cos sin .B A A B C += 因为πA B C ++=,所以()sin sin sin cos cos sin C A B A B A B =+=+, 所以2sin sin cos sin .B A A B =因为0πB <<,所以sin 0B ≠,所以2sin cos A A =,所以sin 1tan cos 2A A A ==. 因为22sin cos 1A A +=,且0πA <<,所以25cos 5A =,5sin 5A =. (2)因为BCM 是边长为23的等边三角形,所以π233BC C ==,. 在ABC 中,由正弦定理可得sin sin a cA C =,则sin 35sin a C c A==. 因为πA C ABC ++∠=,所以()5215sin sin sin cos cos sin 10ABC A C A C A C +∠=+=+=, 则ABC 的面积为15215331835232102++⨯⨯⨯=. 18.某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按[)10,12,[)12,14,[)14,16,[)16,18,[]18,20分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在[)16,18和[]18,20内的该产品中抽取12件,再从这12件产品中随机抽取4件,记抽取到这一质量指数在[]18,20内的该产品的数量为X ,求X 的分布列与期望.【答案】(1)15; (2)分布列见解析,()43E X =.【分析】(1)利用中位数的求解方法列方程即可求解.(2)由题意分析出X 的所有可能取值为0,1,2,3,4.分别求出对应的概率,得到分布列,求出数学期望.【详解】(1)因为()0.0250.12520.30.5+⨯=<,0.30.20020.70.5+⨯=>,所以该产品这一质量指数的中位数在[)14,16内.设该产品这一质量指数的中位数为m ,则()140.20.30.5m -⨯+=,解得15m =.(2)由题意可知抽取的12件产品中这一质量指数在[)16,18内的有8件,这一质量指数在[]18,20内的有4件.由题意可知X 的所有可能取值为0,1,2,3,4.()48412C 70140C 49599P X ====,()3184412C C 2241C 495P X ===,()2284412C C 168562C 495165P X ====,()1384412C C 323C 495P X ===,()44412C 14C 495P X ===,X 的分布列为 X 0 1 2 3 4 P 1499 22449556165324951495()1422456321401234994951654954953E X =⨯+⨯+⨯+⨯+⨯=. 19.如图,在多面体ABCDEF 中,四边形ABCD 是平行四边形,四边形ACEF 是矩形,22BC AB AF ==,60ABC ∠=︒,AF BC ⊥,H 是棱AD 的中点,P 是棱EF 上的动点.(1)证明:AB ⊥平面ACEF ;(2)求平面PBH 与平面CDE 所成锐二面角的余弦值的最大值. 【答案】(1)证明见解析 (2)32【分析】(1)根据线线垂直可证明线面垂直,进而可得线线垂直即可证明, (2)根据空间向量的坐标运算可利用法向量的夹角与平面角的关系,即可求解. 【详解】(1)证明:因为四边形ACEF 是矩形,所以AF AC ⊥. 因为AF BC ⊥,且AC BC ⊂,平面ABCD ,AC BC C =,所以AF ⊥平面ABCD .因为AB ⊂平面ABCD ,所以AF AB ⊥ ,因为2BC AB =,且60ABC ∠=,所以3AC AE =, 所以222AB AC BC +=,所以AB AC ⊥. 因为AF AC ,⊂平面ACEF ,且AFAC A =,所以AB ⊥平面ACEF .(2)由(1)可知AB AC AF ,,两两垂直,则以A 为原点,分别以AB ,AC ,AF 的方向为x y z ,,轴的正方向,建立如图所示的空间直角坐标系.设1AB PF a ,,则10001B P ,a ,,,,,123H ⎛⎫- ⎪ ⎪⎝⎭,故11BP ,a,, 33022BH,,, 设平面PBH 的法向量为(),,m x y z =,则03302m BP x ay z m BH x y ⎧⋅=-++=⎪⎨⋅=-=⎪⎩,令1x =,得1313m ,,a .因为ACCD ACCE ,,CD CE ,⊂平面CDE ,且CD CE C =,所以AC ⊥平面CDE ,则平面CDE 的一个法向量为()0,1,0n =.设平面PBH 与平面CDE 所成的锐角为θ, 则22333cos θcos 21313413m n m nm naa,,即平面PBH 与平面CDE 所成20.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是1F ,2F ,点()2,1P 在双曲线C 上,且12PF PF -=(1)求双曲线C 的标准方程;(2)直线l 与双曲线C 的左支交于A ,B 两点,直线AP ,BP 分别与y 轴交于M ,N 两点,且OM ON =-,试问直线l 是否过定点?若是,求出该定点坐标;若不是,请说明理由. 【答案】(1)2212x y -=(2)过定点,定点坐标为()0,1【分析】(1)由双曲线定义可知2a =()2,1P 在双曲线C 上,求出,a b ,得到双曲线的标准方程;(2)设直线l :x my t =+,与双曲线的方程联立,由韦达定理得1212,y y y y +,写出直线AP ,BP 的方程,求得M ,N 两点的坐标,结合OM ON =-,可求得,m t的关系式,从而得出定点坐标. 【详解】(1)由题意可得224112a b a ⎧-=⎪⎨⎪=⎩,解得1a b ==故双曲线C 的标准方程为2212x y -=.(2)由题意可知直线l 的斜率不为0,设直线l :x my t =+,1122(,),(,)A x y B x y 联立2212x my t x y =+⎧⎪⎨-=⎪⎩,整理得()2222220m y mty t -++-= 则212122222,22mt t y y y y m m -+=-=-- 直线AP 的方程为()111212y y x x -=-+-,令0x =,得11122x y y x -=-,则11120,2x y M x ⎛⎫- ⎪-⎝⎭直线BP 的方程为()221212y y x x -=-+-,令0x =,得22222x y y x -=-,则22220,2x y N x ⎛⎫- ⎪-⎝⎭因为OM ON =-,所以11221222022x y x y x x --+=--, 整理得1212122112()()2()0x x x x x y x y y y -+-+++= 又11x my t =+,22x my t =+,所以()()()2212122220m m y y mt m t y y t t -+--+++-=,则()()2222222222022t mt m m mt m t t t m m -⎛⎫-⋅+--+-+-= ⎪--⎝⎭即222220m t mt m t ++--=,即2()2()0m t m t +-+= 得()()20m t m t +-+=,解得20m t +-=或0m t += 当20m t +-=时,直线l 经过点P ,与题意不符; 当0m t +=时,直线l :x my m =-,则直线l 过定点()0,1. 故直线l 过定点()0,1.21.已知函数()21ln 12f x x x x x =---.(1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围. 【答案】(1)单调递减区间是()0,∞+,无递增区间 (2)51,2⎛⎫ ⎪⎝⎭【分析】(1)求出导函数()f x ',再利用导数确定()f x '的正负,从而得单调区间;(2)求出导函数()g x ',在()g x 定义域内分类讨论()0g x '=的根的情况,得函数单调性、极值,然后结合零点存在定理确定参数范围. 【详解】(1)由题意可得()ln f x x x '=-, 设()()ln h x f x x x '==-,则()111xh x x x-'=-=由()0h x '>,得01x <<,由()0h x '<,得1x >则()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,即()f x '在(0,1)单调递增,在(1,)+∞上单调递减,从而()(1)10f x f ''≤=-<,故()f x 的单调递减区间是(0,)+∞,无递增区间(2)由题意可得21(2)1(1)(1)()2a x a x a x a x g x x a x x x-+-+-+--'=+-+==, ()g x 的定义域是(0,)+∞,①当10a -<,即1a >时,1x >时()0g x '>,01x <<时()0g x '<, 则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 因为0x →时,()g x →+∞,x →+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--<,解得52a <,故152a <<;②当10a -=,即1a =时,由21()102g x x x =--=,解得x 1=±因为0x >,所以1x =+()g x 有且仅有1个零点,故1a =不符合题意; ③当011a <-<,即01a <<时,由()0g x '>,得01x a <<-或1x >, 由()0g x '<,得11a x -<<,则()g x 在(0,1)a -和(1,)+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0,g x x <→+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--=或21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=,若(1)0g =,解得52a =,不符合题意, 若(1)0g a -=,设1(0,1)t a =-∈,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,01t <<时,ln 0t t <,221111(1)0222t t t ---=-+-<,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故01a <<不符合题意;④当11a -=,即0a =时,()0g x '≥恒成立,则()g x 在(0,)+∞上单调递增,从而()g x 最多有1个零点,则0a =不符合题意;⑤当11a ->,即a<0时,由()0g x '>,得01x <<或1x a >-,由()0g x '<,得11x a <<-, 则()g x 在(0,1)和(1),a -+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0g x x <→+∞,时,()g x ∞→+ 所以()g x 要有两个零点,则(1)0g =或(1)0g a -=,若1(1)2102g a =+--=,解得52a =,不符合题意,若21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=.设1(1,)t a =-∈+∞,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,由(1)知21ln 12y t t t t =---在(1,)+∞上单调递减,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故a<0不符合题意. 综上,a 的取值范围是51,2⎛⎫⎪⎝⎭.【点睛】难点与易错点点睛:本题考查用导数研究函数的单调性,函数零点个数问题,难点在于函数定义域是(0,)+∞,因此()0g x '=的根需要根据定义域分类讨论,在定义域内有一个根,还是两个根,有两个根时还需要比较两根的大小,从而得出函数单调性、极值,由于含有参数还需结合函数变化趋势确定零点的存在性,从而得出结论.分类不清易出错.22.在直角坐标系xOy 中,曲线C 的参数方程为1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos 2sin 20ρθρθ-+=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,点(0,1)P ,求11||||PA PB +的值. 【答案】(1)22144x y -=;220x y【分析】(1)消去参数可得C 的普通方程,根据极坐标与直角坐标转化公式可求直线直角坐标方程; (2)将直线的参数方程代入普通方程,消元后根据参数的几何意义求解. 【详解】(1)由1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),得224x y -=,故曲线C 的普通方程为22144x y -=. 由cos 2sin 20ρθρθ-+=,得220x y , 故直线l 的直角坐标方程为220x y .(2)由题意可知直线l的参数方程为,1x y ⎧⎪⎪⎨⎪=⎪⎩(t 为参数).将直线l 的参数方程代入曲线C的普通方程并整理得23250t --=, 设A ,B 对应的参数分别是12,t t ,则1212253t t t t +==-, 从而12t t -===故1212121211||||t t t t PA PB t t t t +-+===. 23.已知函数()233f x x x =-++. (1)求不等式()9f x ≤的解集;(2)若()||f x a x ≥恒成立,求a 的取值范围. 【答案】(1)[]3,3- (2)(],3-∞【分析】(1)将函数表示为分段函数形式,分三类情况讨论求解; (2)将不等式等价转化为|23||3|33|2||1|||x x a x x x -++=-++≥,利用绝对值不等式可求33|2||1|x x-++的最小值,即可求解.【详解】(1)因为3,33()2336,3233,2x x f x x x x x x x ⎧⎪-≤-⎪⎪=-++=-+-<≤⎨⎪⎪>⎪⎩,所以()9f x ≤等价于339x x ≤-⎧⎨-≤⎩,或33269x x ⎧-<≤⎪⎨⎪-+≤⎩或3239x x ⎧>⎪⎨⎪≤⎩, 解得3x =-或332-<≤x 或332x <≤,即33x -≤≤,即不等式()9f x ≤的解集为[]3,3- (2)当0x =时,60≥恒成立,所以a ∈R ;当0x ≠时,|23||3|33|2||1|||x x a x x x-++=-++≥恒成立,因为3333|2||1||21|3x x x x-++≥-++=,当且仅当33(2)(1)0x x -+≤即-<3≤0x 或302x <≤时取得等号,所以3a ≤,综上,a 的取值范围是(],3-∞.。
北京市西城区2023-2024学年高三上学期期末考试 数学含答案

北京市西城区2023—2024学年度第一学期期末试卷高三数学(答案在最后)本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}13A x x =-<<,{}24B x x =≥,则A B = ()A.()1,-+∞B.(]1,2-C.(](),21,-∞--+∞D.(](),21,3-∞-- 2.在复平面内,复数2i i-对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设a ,b ∈R ,且a b >,则()A.11a b< B.tan tan a b> C.32a b-<- D.a a b b>4.已知双曲线C 的一个焦点是()10,2F ,渐近线为y =,则C 的方程是()A.2213y x -= B.2213x y -= C.2213x y -= D.2213y x -=5.已知点()0,0O ,点P 满足1PO =.若点(),4A t ,其中t ∈R ,则PA 的最小值为()A.5B.4C.3D.26.在ABC △中,60B ∠=︒,b =,2a c -=,则ABC △的面积为()A.2B.4 C.32D.347.已知函数()1ln1xf x x+=-,则()A.()f x 在()1,1-上是减函数,且曲线()y f x =存在对称轴B.()f x 在()1,1-上是减函数,且曲线()y f x =存在对称中心C.()f x 在()1,1-上是增函数,且曲线()y f x =存在对称轴D.()f x 在()1,1-上是增函数,且曲线()y f x =存在对称中心8.设a ,b 是非零向量,则“a b <”是“2a b b ⋅< ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.设{}n a 是首项为正数,公比为q 的无穷等比数列,其前n 项和为n S .若存在无穷多个正整数k ,使0k S ≤,则q 的取值范围是()A.(),0-∞ B.(],1-∞- C.[)1,0- D.()0,110.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板111111A B C D E F .若其中三根柱子1AA ,1BB ,1CC 的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为()A.47mB.48mC.49mD.50m第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在(4x -的展开式中,2x 的系数为______.(用数字作答)12.设0ω>,函数()sin f x x ω=.若曲线()y f x =关于直线6x π=对称,则ω的一个取值为______.13.已知函数()()222log log 4f x x x =--,则()f x 的定义域是______;()f x 的最小值是______.14.已知抛物线C :28y x =.①则C 的准线方程为______.②设C 的顶点为O ,焦点为F .点P 在C 上,点Q 与点P 关于y 轴对称若OF 平分PFO ∠,则点P 的横坐标为______.15.设a ∈R ,函数()322,,,.x x a f x x a x a ⎧->⎪=⎨-+≤⎪⎩给出下列四个结论:①()f x 在区间()0,+∞上单调递减;②当0a ≥时,()f x 存在最大值;③当0a <时,直线y ax =与曲线()y f x =恰有3个交点;④存在正数a 及点()()11,M x f x (1x a >)和()()22,N x f x (2x a ≤),使1100MN ≤.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)已知函数()22sin cos 2cos f x a x x x =-的一个零点为6π.(Ⅰ)求a 的值及()f x 的最小正周期;(Ⅱ)若()m f x M ≤≤对0,2x π⎡⎤∈⎢⎥⎣⎦恒成立,求m 的最大值和M 的最小值.17.(本小题13分)生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(Ⅰ)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(Ⅱ)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用跑步软件二的人数,求X 的分布列和数学期望;(Ⅲ)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x ,2x ,3x ,4x ,其方差为21s ;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y ,2y ,3y ,4y ,其方差为22s ;1x ,2x ,3x ,4x ,1y ,2y ,3y ,4y 的方差为23s .写出21s ,22s ,23s 的大小关系.(结论不要求证明)18.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PD ⊥平面ABCD ,平面PAB ⊥平面PAD ,E 为PA 中点,2PD AD ==.(Ⅰ)求证:AB ⊥平面PAD ;(Ⅱ)求直线DE 与平面PBC 所成角的大小;(Ⅲ)求四面体PEBC 的体积.19.(本小题15分)已知椭圆E :22221x y a b+=(0a b >>)的离心率为2,且经过点()2,1C .(Ⅰ)求E 的方程:(Ⅱ)过点()0,1N 的直线交E 于点A ,B (点A ,B 与点C 不重合).设AB 的中点为M ,连接CM 并延长交E 于点D .若M 恰为CD 的中点,求直线AB 的方程.20.(本小题15分)已知函数()e axf x x=,其中0a >.(Ⅰ)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)求()f x 的单调区间;(Ⅲ)当12x x <且120x x ⋅>时,判断()()12f x f x -与1211x x -的大小,并说明理由.21.(本小题15分)给定正整数3N ≥,已知项数为m 且无重复项的数对序列A :()11,x y ,()22,x y ,…,(),m m x y 满足如下三个性质:①{},1,2,,i i x y N ∈⋅⋅⋅,且i i x y ≠(1,2,,i m =⋅⋅⋅);②1i i x y +=(1,2,,1i m =⋅⋅⋅-);③(),p q 与(),q p 不同时在数对序列A 中.(Ⅰ)当3N =,3m =时,写出所有满足11x =的数对序列A ;(Ⅱ)当6N =时,证明:13m ≤;(Ⅲ)当N 为奇数时,记m 的最大值为()T N ,求()T N .北京市西城区2023—2024学年度第一学期期末试卷高三数学答案及评分参考一、选择题(共10小题,每小题4分,共40分)1.C2.A3.D4.D5.C6.B7.D8.A9.B10.A二、填空题(共5小题,每小题5分,共25分)11.1213.3(答案不唯一)13.()4,+∞14.2x =-215.①②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)由题设22sincos 2cos 0666a πππ-=,解得a =所以()2cos 2cos f x x x x=-2cos 212sin 216x x x π⎛⎫=--=-- ⎪⎝⎭.所以()f x 的最小正周期为π.(Ⅱ)因为02x π≤≤,所以52666x πππ-≤-≤.所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭,即22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭.当262x ππ-=,即3x π=时,()f x 取得最大值1,当266x ππ-=-,即0x =时,()f x 取得最小值2-.由题设2m ≤-,且1M ≥.所以m 的最大值是2-;M 的最小值是1.17.(共13分)解:(Ⅰ)记“这2人都最喜爱使用跑步软件一”为事件A ,则()803032008020P A =⨯=.(Ⅱ)因为抽取的8人中最喜爱跑步软件二的人数为208280⨯=,所以X 的所有可能取值为0,1,2.()3638C 50C 14P X ===,()122638C C 151C 28P X ===,()212638C C 32C 28P X ===.所以X 的分布列为X012P5141528328故X 的数学期望515330121428284EX =⨯+⨯+⨯=.(Ⅲ)222231s s s <<.18.(共14分)解:(Ⅰ)因为PD AD =,E 为PA 中点,所以DE PA ⊥.又因为平面PAB ⊥平面PAD ,平面PAB 平面PAD PA =,且DE ⊂平面PAB .所以DE ⊥平面PAB .所以DE AB ⊥.因为PD ⊥平面ABCD ,所以PD AB ⊥.所以AB ⊥平面PAD .(Ⅱ)因为AB ⊥平面PAD ,//AB CD ,所以CD ⊥平面PAD .又PD⊥平面ABCD ,所以DA ,DC ,DP 两两相互垂直.如图建立空间直角坐标系D xyz -,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,2P ,()1,0,1E .所以()2,0,0CB = ,()0,2,2CP =- ,()1,0,1DE =.设平面PBC 的法向量为(),,m x y z = ,则0,0.m CB m CP ⎧⋅=⎪⎨⋅=⎪⎩即20,220.x y z =⎧⎨-+=⎩令1y =,则1z =.于是()0,1,1m =.设直线DE 与平面PBC 所成角为α,则1sin cos ,2m DE m DE m DE α⋅===⋅ .所以直线DE 与平面PBC 所成角的大小为30°.(Ⅲ)因为()1,0,1EP =-,所以点E 到平面PBC 的距离为22m EP d m⋅==.因为CB CP ⊥,所以四面体PEBC 的体积为11123323PBC V S d CB CP d =⋅=⋅⋅⋅⋅=△.19.(共15分)解:(Ⅰ)由题设,222223,2,411,c a a b c a b ⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得28a =,22b =.所以椭圆E 的方程为22182x y +=.(Ⅱ)若直线AB 与y 轴重合,则点M 与原点重合,符合题意,此时直线AB 的方程为0x =.若直线AB 与y 轴不重合,设其方程为1y kx =+.由221,48y kx x y =+⎧⎨+=⎩得()2241840k x kx ++-=.设()11,A x y ,()22,B x y ,则122841kx x k -+=+.所以1224241M x x k x k +-==+,21141M M y kx k =+=+.因为M 是CD 的中点,所以282241D M C k x x x k -=-=-+,222141D M C y y y k =-=-+.因为2248D D x y +=,所以222282241804141k k k -⎛⎫⎛⎫-+--= ⎪ ⎪++⎝⎭⎝⎭.整理得340k k +=.解得0k =.但此时直线AB 经过点C ,不符合题意,舍去.综上,直线AB 的方程为0x =.20.(共15分)解:(Ⅰ)当1a =时,()e x f x x =,所以()()21e xx f x x -='.所以()1e f =,()10f '=.所以曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=.(Ⅱ)()f x 的定义域为()(),00,-∞+∞ ,且()()21e ax ax f x x -='.令()0f x '=,得1x a=.()f x '与()f x 的情况如下:x (),0-∞10,a ⎛⎫ ⎪⎝⎭1a1,a ⎛⎫+∞ ⎪⎝⎭()f x '--+()f x所以()f x 的单调递增区间为1,a ⎛⎫+∞⎪⎝⎭;单调递减区间为(),0-∞和10,a ⎛⎫⎪⎝⎭.(Ⅲ)当12x x <且120x x ⋅>时,()()121211f x f x x x -<-,证明如下:令()()1g x f x x=-,则()()211ax ax e g x x -+='.设()()1e 1axh x ax =-+,则()2e axh x a x ='.所以当(),0x ∈-∞时,()0h x '<;当()0,x ∈+∞时,()0h x '>.所以()h x 在(),0-∞上单调递减,在()0,+∞上单调递增.从而()()00h x h >=,即()0g x '>.所以()g x 的单调递增区间为(),0-∞和()0,+∞.当120x x <<时,()()12g x g x <,即()()121211f x f x x x -<-;当120x x <<时,()()12g x g x <,即()()121211f x f x x x -<-.综上,当12x x <且120x x ⋅>时,()()121211f x f x x x -<-.21.(共15分)解:(Ⅰ)A :()1,2,()2,3,()3,1,或A :()1,3,()3,2,()2,1.(Ⅱ)因为(),p q 和(),q p 不同时出现在A 中,故2615m C ≤=,所以1,2,3,4,5,6每个数至多出现5次.又因为1i i x y +=(1,2,,1i m =⋅⋅⋅-),所以只有1x ,m y 对应的数可以出现5次,故()14425132m ≤⨯⨯+⨯=.(Ⅲ)当N 为奇数时,先证明()()221T N T N N +=++.因为(),p q 和(),q p 不同时出现在A 中,所以()()21C 12N T N N N ≤=-.当3N =时,构造A :()1,2,()2,3,()3,1恰有23C 项,且首项的第1个分量与末项的第2个分量都为1.对奇数N ,如果可以构造一个恰有2C N 项的序列A ,且首项的第1个分量与末项的第2个分量都为1,那么对奇数2N +而言,可按如下方式构造满足条件的序列A ':首先,对于如下21N +个数对集合:()(){}1,1,1,1N N ++,()(){}1,2,2,1N N ++,()(){}2,1,1,2N N ++,()(){}2,2,2,2N N ++,……,()(){},1,1,N N N N ++,()(){},2,2,N N N N ++,()(){}1,2,2,1N N N N ++++每个集合中都至多有一个数对出现在序列A '中,所以()()221T N T N N +≤++.其次,对每个不大于N 的偶数{}2,4,,1i N ∈⋅⋅⋅-,将如下4个数对并为一组:()1,N i +,(),2i N +,()2,1N i ++,()1,1i N ++,共得到12N -组,将这12N -组数对以及()1,1N +,()1,2N N ++,()2,1N +按如下方式补充到A 的后面,即:A ,()1,1N +,()1,2N +,()2,2N +,()2,3N +,()3,1N +,…,()1,1N N +-,()1,2N N -+,()2,N N +,(),1N N +,()1,2N N ++,()2,1N +.此时恰有()21T N N ++项,所以()()221T N T N N +=++.综上,当N 为奇数时,()()()()()()()()()()()224533T N T N T N T N T N T T T =--+---+⋅⋅⋅+-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三上学期数学期末考试试卷
一、单选题(共4题;共8分)
1.若命题甲:,命题乙:,则命题甲是命题乙的()
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 非充分也非必要条件
2.已知函数为函数的反函数,且函数的图像经过点,则函数的图像一定经过点()
A. B. C. D.
3.以抛物线的焦点为右焦点,且长轴为4的椭圆的标准方程为()
A. B. C. D.
4.动点在圆上绕坐标原点作逆时针匀速圆周运动,旋转一周的时间恰好是12秒,已知时间时,点的坐标是,则动点的纵坐标关于(单位:秒)的函数在下列哪个区间上单调递增()
A. B. C. D.
二、填空题(共12题;共13分)
5.若集合,集合,则________
6.________
7.已知复数z满足iz=1+i(i为虚数单位),则|z|=________
8.若关于、的方程组为,则该方程组的增广矩阵为________
9.设是等差数列,且,,则________
10.在的二项展开式中,常数项的值为________
11.已知圆柱的底面半径为1,母线长为2,则其侧面积为________.
12.已知集合,任取,则幂函数为偶函数的概率为________(结果用数值表示)
13.在△中,边、、满足,,则边的最小值为________
14.若函数存在零点,则实数的取值范围是________
15.已知数列,,,若对于任意的,,不等式
恒成立,则实数的取值范围为________
16.如果方程组有实数解,则正整数的最小值是________
三、解答题(共5题;共60分)
17.如图,四棱锥的底面是正方形,平面,,点是线段
上任意一点.
(1)求证:;
(2)试确定点的位置,使与平面所成角的大小为30°.
18.已知函数.
(1)求函数的最小正周期及单调递增区间;
(2)在△中,,若函数的图像经过点,求△的面积.
19.某贫困村共有农户100户,均从事水果种植,平均每户年收入为1.8万元,在当地政府大力扶持和引导下,村委会决定2020年初抽出户(,)从事水果销售工作,经测算,剩下从事水果种植的农户平均每户年收入比上一年提高了,而从事水果销售的农户平均每户年收入为万元.
(1)为了使从事水果种植的农户三年后平均每户年收入不低于2.4万元,那么2020年初至少应抽出多少农户从事水果销售工作?
(2)若一年后,该村平均每户的年收入为(万元),问的最大值是否可以达到2.1万元?20.已知曲线,过点作直线和曲线交于、两点.
(1)求曲线的焦点到它的渐近线之间的距离;
(2)若,点在第一象限,轴,垂足为,连结,求直线倾斜角的取值范围;
(3)过点作另一条直线,和曲线交于、两点,问是否存在实数,使得
和同时成立?如果存在,求出满足条件的实数的取值集合,如果不存在,请说明理由. 21.定义(,)为有限实数列的
波动强度.
(1)求数列1,4,2,3的波动强度;
(2)若数列,,,满足,判断
是否正确,如果正确请证明,如果错误请举出反例;
(3)设数列,,,是数列,,,,的一个排列,求的最大值,并说明理由.
答案解析部分
一、单选题
1.【答案】A
2.【答案】B
3.【答案】C
4.【答案】D
二、填空题
5.【答案】
6.【答案】
7.【答案】
8.【答案】
9.【答案】
10.【答案】15
11.【答案】
12.【答案】
13.【答案】
14.【答案】
15.【答案】
16.【答案】
三、解答题
17.【答案】(1)证明:连结,因为四边形为正方形,
所以,,
又因为⊥平面,平面,
所以.由平面.
又因为平面,所以.
解法2:以为坐标原点,建立空间直角坐标系.
,,,.
设,则
则,
因为,
所以
(2)解:解法一:设,因为⊥平面,
所以与平面所成角为
在中,由.
所以,当时,与平面所成角的大小为.
解法2:取平面的一个法向量为
因为,可知直线的一个方向向量为.设与平面所成角为,由题意知.与所成的角为,
则,
因为,所以,,
解得,.
当时,与平面所成角的大小为.
18.【答案】(1)解:由已知
令,
得
所以函数的单调递增区间为
(2)解:由已知,
又,
\
19.【答案】(1)解:经过三年,种植户的平均收入为
因而由题意,得
由,即至少抽出户贫困农户从事水果销售工作
(2)解:
对称轴,
因而当时,可以达到万元
20.【答案】(1)解:曲线的焦点为,渐近线方程,由对称性,不妨计算到直线的距离,.
(2)解:设,,从而
又因为点在第一象限,所以,
从而,
所以直线倾斜角的取值范围是
(3)解:当直线,直线
,
当直线,直线时,
不妨设,与双曲线联立可得,
由弦长公式,
将替换成,可得
由,可得,
解得,此时成立.
因此满足条件的集合为
21.【答案】(1)解:
(2)解:是正确的
证明:
或,
且
所以,即
并且当时,可以取等号,当时,可以取等号,
所以等号可以取到
(3)解:设,,是单调递增数列.
分是奇、偶数情况讨论
,其中,,并且.经过上述调整后的数列,系数不可能为0.
当为偶数时,系数中有个和个,个和个.
当为奇数时,有两种情况:系数中有个和个,个;
或系数中有个和个,个.
[1] 是偶数,,
[2] 是奇数,,
因为,,可知
综上,当为偶数时,,;当为奇数时,,。