三章分子对称和点群

合集下载

分子的对称性与群论基础群与分子点群

分子的对称性与群论基础群与分子点群

群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….

第三章:分子对称性和点群

第三章:分子对称性和点群

σv2 σv2 σd1 σv1 σd2 C42 E
C41 C43
σd1 σd1 σv1 σd2 σv2 C41 C43 E
C42
σd2 σd2 σv2 σd1 σv1 C43 C41 C42 E
第三章:分子对称性和点群
1
群元素 群
乘法
对称操作 点群
操作动作的连续
2
本章目录
3.1对称元素和对称操作 3.2 对称操作的乘积 3.3分子点群
3.3.1 构成群 3.3.2 点群乘法表 3.3.3 类和子群 3.3.4 分子点群的类型 ****
3
3.1对称元素和对称操作
• 对称元素的定义(Symmetry Elements) 几何实体,如一个点,一条直线,一个平面;
(x,y,z) -C-2-(-x-)-> (x,-y,-z)-C--2(-y-)> (-x,-y,z) (x,y,z) -C--2(-z-)-> (-x,-y,z)
so, C2(y)C2(x)= C2(z)
34
例3:C4(z)和σ (xz)的存在,自动地要求σ d的存在 普通点[x1,y1,z1]通过xz平面的反映效果可以表为
分子点群满足数学群四准则。
点群中点的含义:(1)这些对称操作都是点操作,操作时 分子中至少有一点不动;(2) 分子的全部对称元素至少通 过一个公共点。
37
满足群的四点要求:
• (1)群中任意两个元素的乘积必为群中的 一个元素。
以NH3为例,逐一求出所有的对称操作的二元乘 积,发现两个操作的乘积仍为集合中的一个操作。
Snm = hmCnm (1)若独立地存在一个Cn轴和一个垂直于它 的平面h,那么就存在Sn。 (2)当分别地既不存在Cn也不存在垂直的h 时,Sn也可以存在。

群论第3章

群论第3章

NH3
CO,NO,HCN
C3v
C∞v
③ Cnh 群 属于Cnh点群的分子中具有一个Cn轴和一个垂直于Cn轴的σh 对称元素:Cn和σh 因σhCn=Sn,故(n-1)个旋转必产生(n-1)个象转 实际上 Cnh群是Cn群和Cs群的直积,阶次为2n 。
Cnh Cn Cs E, Cn1 , Cn 2 ,..., Cn n1 E, h = E, Cn1 , Cn 2 ,..., Cn n1 , h , hCn1 Sn , hCn 2 ,..., hCn n1
第三章. 分子对称性与分子点群
3.1 分子对称性
利用对称性原理和概念探讨分子的结构和性质,是人们认 识分子的重要途径,是了解分子结构和性质的重要方法。 ① 能简明地表达分子的构型 Ni(CN)42-离子具有D4h点群的对称性,用D4h这个符号就可以 准确地表达 9 个原子在同一平面上, Ni 原子在中心位置, 周围4个-CN完全等同,Ni-C-N都是直线型,互为90°角。 ② 简化分子构型的测定工作
3.分子的对称操作和对称元素:
分子是有限物体,在进行对称操作时,分子中至少有一 点不动------点操作 只有四种类型的对称操作和对称元素 a. 旋转操作------旋转轴(Cn)
b. 反映操作------镜面( σ )
c. 反演操作------ 对称心(i) d. 象轴(旋转反映)操作------象转轴(反轴)Sn 右手坐标系:讨论对称操作时,常将分子定位在右手坐 标轴系上,分子的重心处在坐标原点,主轴与Z轴重合。 主轴:分子中轴次最高的轴。
Cnh 待 定 分 子 是 否 直 线 型 N Y i Td
例:有两个分子群 D2 { E,C2(x),C2(y),C2(z) }

第三章分子对称性和点群

第三章分子对称性和点群

A(c) A(a) A( f ) 0 1
0
0
001
cos 4
3
sin 4
3 0
sin 4
3
cos 4
3 0
0 0Βιβλιοθήκη cos 43sin 4
3
1 0
sin 4
3
cos 4
3 0
0
0
1
A (a) 1
A (b) 1
A (c) 1
表示的分类:
(1)等价表示 若A(g)是群G的一个表示, X是一正交变换矩阵, 则 B(g)=X-1A(g)X
规则二. 点群中所有不可约表示的维数的平方和等于群的阶 n. l12 l22 lk 2 n
在 D3中, l12 l22 l32 6
从而 l1 l2 1, l3 2
规则三. 点群中不可约表示特征标间的正交关系:
k
h j r (R j ) * s (R j ) n rs
j 1
对不可约表示: (R) 2 n
3
y2 a21 a22 a23 x2 , yi aij x j
y3 a31 a32 a33 x3
j 1
(i=1,2,3)
矩阵的迹 (trace) 或特征标 (character):
( A) TrA aii
i
相似变换:
A S1AS
TrA TrA
(S为正交矩阵) St S SSt E
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
3.1.1 n重对称轴, Cn (转动)
转角 2 / n

点对称操作群(点群)

点对称操作群(点群)

6. Dnh点群 σv
C4
σv
C2
σh
C2
C2
C2
C4,4C2,,4σv,σh,S4,i,E
XeF4为平面四边形,属于D4h点群; CO32-离子为平面正三角形,含有对称元素
C3,3C2,3σv,σh, S3, E,属于D3h点群;
C6H6为平面正六边形,属于D6h点群; 平面乙烯属于D2h群; 环戊二烯是平面正五边形分子,为D5h点群; 以上统属于Dnh点群。此点群的特点是具有一 个Cn轴和n个垂直于主轴的C2轴,同时有h面。
所有直线分子和A2型双原子分子都具有C∞旋转 轴。
3.1.3 反演与反映
1. 对称中心(i)与反演操作
从分子中任一原子至分子中心连一直线,如果 在其延长线的相等距离处有一个相同原子,并且对 分子中所有的原子都成立,则称此分子具有对称中 心i,通过对称中心使分子复原的操作叫反演。如:
(i)
(i)
“具有对称中心的分子,其原子必定两两成对出现”
2. 对称面(镜面)与反映操作
如果分子被一平面等分为两半,任一半中的每 个原子通过此平面的反映后,能在另一半(映象)中 与其相同的原子重合,则称此对称分子具有一对称
面,用表示。据此进行的操作叫对称面反映操作,
或简称反映。
➢含有竖直轴(主轴)的平面叫竖直对称面, v; ➢垂直主轴的平面叫水平对称面, h;
-1
1
-1
Tx
Γ3
1
1
1
1
Tz
上述数字的集合(矩阵)代表群,就是 群的表示。
其中Γ用以表示Tx、Ty、Tz的不同对称行为。
3.3.2. 可约表示与不可约表示
对称群是用群元对应的矩阵的集合表示的。 有的矩阵太大,例如苯分子为36×36,要进行 “约化”。约化到不可再约的程度,这种表示为不 可约表示。 约化前的表示称为可约表示。

分子的对称性和群论初步

分子的对称性和群论初步
属4阶群
H3BO3分

C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。

点对称操作群(点群) §3.1 对称操作与对称元素

点对称操作群(点群) §3.1   对称操作与对称元素

v(2)
0 0 1 0 1 0 1 0 0
v(3)
0 1 0 1 0 0 0 0 1
Γr
C3v
E
1 2 3 2 0
C31
3 2 1 2 0 0 0 1
C32
旋转——第一类对称操作,或实际操作;
反映、反演、旋转-反映只能在想象中实现,称 作第二类对称操作或虚操作;
3.1.6 同类对称元素与同类操作
如果一个操作能使一个对称元素变成另一个对 称元素,那么这些对称元素就是同一类对称元素。 如:NH3分子中3个v反映面属于同一类; H2O分子中两个对称面不属于同一类; 对于旋转,把等价而并不恒等的旋转操作归属 于同一类,称为同类操作。 如:NH3分子中C31,C32,C33(E)中,前两个属 于同一类,2就是C3操作的阶; CH4分子中4个C3操作属于同一类;
3.4.2 分子的对称性与旋光性
分子有无旋光性就看它是否能跟它的镜像重合。 如果二者能重合,则该分子没有旋光性;反之,分 子就有旋光性。
称不具备任意次旋转-反映轴Sn的分子为不对
称分子,所有不对称分子都具有旋光性。
于C3v点群,类似的如CHCl3,NF3等。
3.2.2 主要点群
1. C1点群
H C F
Br
Cl
HCBrClF分子,无任何对称元素(除C1外),属 于C1点群,该类化合物称为非对称化合物。如: SiFClBrI、POFClBr等;
2. Cn点群
C2
H O O
H
仅含有一个Cn轴。如:H2O2仅含有一个C2轴, 该轴平分两个平面的夹角,并交于O-O键的中点, 所以,该分子属于C2点群;类似的结构如:N2H4等

第八节 分子对称性和分子点群.

第八节 分子对称性和分子点群.
E , C n , C n2 , … , C n 1 n 1 v 2 v … n s , , v
C
nv
,s
,s

C2 v
C2 H 2Cl2
的,每个元素与自身共轭,即
… E C2 C2 E
1 2 v




每个元素为一类。

C2 v群共有四类,
… s s s s C C2 C C E v v

1 2 2 v
Cn 群
点群定义 点群表示
点群示例
无任何对 称 元素
对称元素是n重旋转轴,共有n个旋转操作, 标记为Cnn 。
群中元素的数目为群的阶,群中所包含的小群称为子群。群阶和 子群的关系为: 大群阶(h)/子群阶(g)=正整数(k)
C、共轭元素和群的分类 若X和A是群G中的两个元素,有 X 1 AX B ,这时,称A 和 B为共轭元素。群中相互共轭的元素的完整集合构成群的类。 Example 在 H 2O的 C2v群中的任意两个元素之积是可以交换
C
2 E , C n , C n , C n3 , … , C n 1 n n E ) (C n
n
C1
CHFClBr
Cn 群
点群示例
C2
C3
H 2O2
部分交错
CCl3CH3
Cnv 群
点群定义 点群表示 点群示例
群中有Cn 轴,还有通过 Cn轴的n个对称面.
要素(点、线、面及其组合)。
转 120
o
(1) 恒等元素 ( E ) 和恒等操作 ( E )

恒等操作
恒等操作是所有分子几何图形都具有 的,其相应的操作是对分子施行这种 对称操作后,分子保持完全不动,即 分子中各原子的位置及其轨道的方位 完全不变。

chap3b第三章 分子的对称性和点群

chap3b第三章 分子的对称性和点群
C1 , Ci , Cs
有多条高阶轴分子(正四面体、正八面体 有多条高阶轴分子(正四面体、正八面体…) 只有镜面或对称中心, 或无对称性的分子: 只有镜面或对称中心 或无对称性的分子 只有S 为正整数) 只有 2n(n为正整数)分子 为正整数 分子:
S 4 , S 6 , S8 ,...
C n , C nh , C nv
Z
对称操作,共有 个对称操作 但每条S 必然也是C 个对称操作. 对称操作,共有9个对称操作 但每条 4必然也是 2, S42与C2对称操作等价,所以将 个S42划归 2, 对称操作等价,所以将3个 划归C ,
穿过正四面体每条棱 并将四面体分为两半 的是一个σd , 共有 个 共有6个 的是一个 σd 。
旋转反映
(具有 n的)分子 具有S 分子 具有 镜象 反映 旋转
分子
橙色虚线框表明,分子与其镜象能够通过实操作旋转完 橙色虚线框表明, 全迭合,而前提是“分子具有 全迭合,而前提是“分子具有Sn”. 根据n的不同可以写出 根据 的不同可以写出: S1=σ,S2=i,S4=S4。 的不同可以写出 结论: 的分子, 结论 : 具有 σ、 或 i、 或 S4 的分子 , 可通过实际操作与其 镜象完全迭合,称为非手性分子。 镜象完全迭合,称为非手性分子。
夹角的镜面σ 夹角的镜面 d.
D2d : 丙二烯
D2d : B2Cl4
立方群:包括T 立方群:包括 d 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次 旋转轴相交 这类点群的共同特点是有多条高次 大于二次)旋转轴相交 大于二次 旋转轴相交.
Td 群:属于该群的分子,对称性与正四面体完全相同。 属于该群的分子,对称性与正四面体完全相同。 正四面体完全相同

第三章 分子的对称性

第三章 分子的对称性

逆元素
I--- I C3+---C3– v1--- v1 v2---v2 v3 ---v3
封闭性
结合律 v1(v2 v3) = v1 C3+ = v2
(v1v2)v3 = C3+ v3 = v2
3.5 群的表示
矩阵乘法 矩阵 方阵 对角元素
分子的所有对称操作----点群
如果每一种对称操作可以用一个矩阵(方阵)表示, 矩 阵集合满足群的要求,矩阵乘法表与对称操作乘法表
相似, 矩阵集合---群的一个表示
恒等操作I
矩阵
C2v: I C2 v v
特征标: 对角元素和 9
特征标3
特征标 1
特征标 -1
单位矩阵
I 矩阵, C2 矩阵, v 矩阵, v 矩阵 满足群的要求, 是C2v 点群的一个表示
集合G 构成群
1 –1, 乘法
1X1=1, 1X(-1)= -1 (-1)X1= -1, (-1)X(-1)=1 封闭性 恒等元素1 逆元素 1---1, -1--- -1,
群的乘法表 I A I A
I
I
IA
AA
I
I
A

A AI
A A
交叉线上元素 = 行元素 X 列元素
已知,I,A,B构成群, I 为恒等元素, 写出群的乘法表
3) 如果对称中心上无任何原子, 则同类原子是成双出现的.
例如: 苯中C, H
NH3 有无对称中心, 为什么? C2H3Cl有无对称中心, 为什么?
(b) 旋转轴Cp
绕轴旋转3600/p, 等价构型 水分子----绕轴旋转1800, 等价构型 C2轴 C3轴 360/2=180
BF3, 旋转1200, 等价构型 360/3=120

第三章-分子的对称性

第三章-分子的对称性

对称操作只能产生等价构型分子,不能改变其 物理性质(偶极矩)。因此,分子的偶极矩必定在 分子的每一个对称元素上。
(1) 若分子有一个Cn轴,则DM必在轴上; (2) 若分子有一个σ面,则DM必在面上; (3) 若分子有n个σ面,则DM必在面的交线上; (4) 若分子有n个Cn轴,则DM必在轴的交点上,DM=0; (5) 分子有对称中心 i ( Sn ),则DM=0。
群的乘法表
把群元素的乘积列为表,则得到乘法表。乘 积为列×行,行元素先作用,列元素后作用。群 的元素数目 n为群的阶数。 例:H2O,对称元素,C2, σv, σv’ ,对称操作
ˆ ˆ ˆ ˆ C2,σv ,σv ', E , 属4阶群。
C2v
ˆ E ˆ C2 ˆ σv ˆ σv'
ˆ E ˆ ˆ σv σv' ˆ ˆ σv' σv
判据:若分子中有对称中心或有两个对称元素相交 于一点, 则分子不存在偶极矩。 推论:只有属于Cn 和Cnv(n=1,2,3,…,∞)这两类点群 的分子才具有偶极矩,而其他点群的分子偶极矩为 0。因C1v≡C1h≡Cs,Cs点群也包括在Cnv之中。
H C Cl
H C Cl
1,2 -二氯乙烯(顺式) , C2v,有
C60
闭合式[B12H12]2-
非真旋轴群: 包括Cs 、Ci 、S4 只有虚轴(不计包含在Sn中的Cn/2. 此外, i= S2 , σ = S1, 只有n为4的倍数时Sn是独立的).
Cs 群 : 只有镜面 Ci 群: 只有对称中心 S4 群: 只有四次旋映轴
亚硝酸酐 N2O3
分子点群的确定
起点 线性分子
2
ˆ E ˆ E ˆ C
ˆ C2 ˆ C

结构化学第三章

结构化学第三章

第一种情况: 分子与其镜象(对应体)完全相同, 可通 过实际操作将完全迭合,这种分子是非手性分子. 分子 实操作 镜象
从对称性看, 分子若有虚轴Sn , 就能用实操作将分子 与其镜象迭合, 是非手性分子.
va, vb , vc
a b c ˆ 1, C ˆ 2 , ˆ,C ˆ ˆ ˆ E , , 3 3 v v v
C ˆ C 3 3 ˆ2 ˆ2 C C
3
ˆ E ˆ E
ˆ1 C 3 ˆ1 C
vc
va
ˆ va ˆ ˆ vb ˆ ˆ vc ˆ
(2) 甲烷具有S4,所以, 只有 C2与S4共轴,但C4和与之垂 直的σ并不独立存在.
CH4中的映轴S4与旋转反映操作

注意: C4和与之垂直的σ都不独立存在
环辛四烯衍生物中的 S4
分子中心是S4的图形符号
对称操作与对称元素
§3.2 点 群
一、群的定义 一个集合G含有A、B、C、D……元素,在这些元素之 间定义一种运算(通常称为“乘法”),如果满足下面4 个条件,则称集合G为群。 ▲封闭性:集合G={A、B、C、D…},其中任二个元素 的乘积 AB=C,AA=D也是群中元素。 ▲ 缔合性:G中各元素之间的运算满足乘法结合律, (AB)C=A(BC)。 ▲ 有单位元素:G中必存一单位元素E,它使群中任一元 素R满足于ER=RE=R。 ▲ 有逆元素:G中任一元素R都存在逆元素 R 1,R 1 亦属 于G,且 RR 1 R 1 R E
第三章 分子的对称性和点群
判天地之美,析万物之理。 —— 庄 子 在所有智慧的追求中,很难找到其他例子能 够在深刻的普遍性与优美简洁性方面与对称性原 理相比. —— 李政道
生 物 界 的 对 称 性

第三节分子的对称性与点群

第三节分子的对称性与点群

1
6
5
6
2 Revolve 5
1 Revolve 4
6
5
3
60º
4
4
2
3
60º 3
1
2
图形不变
图形不变
空间旋转对称操作是分子对称性讨论中的重要操作之 一。任何一种分子至少可找出一种空间旋转操作。
Revolve

图形不变(复原)
……
Revolve 240º
1
6
2
5
3
4
图形复原
精品资料
⑵镜像反映
当一个体系对空间平面进行反映操作时,若其图形不变,该操作称为镜 像反映对称操作。
例如: CO2 分子(直线型)
1
OC
2
i
2
O 中心反演 O C
图形不变
又如:苯分子(正六边形)
1i
O 中心反演
1
2
OC O
图形复原
1
4
CH
CH
6 CH
CH 2
i
3 CH
CH 5
中心反演
图形不变
5 CH
CH 3
2 CH
CH 6
CH
CH
4
1
精品资料
⑷像转轴 — Sn
所谓“像转”对称操作,实际上是旋转与镜面反映的复合操作。像转
轴可表示为对称轴与对称面的组合。即:
Sn = Cn +σh =σh + Cn
例如:甲烷分子中的四次像转轴 S4 = Ch +σh
C4
2
1
1
C41操作
2 反映操作
图形不变
3 4
3

结构化学-分子的对称性

结构化学-分子的对称性

H2O中的C2和两个σv
C2v 群
船式环己烷
N2H4
C2v群:臭氧 C2v 群:菲
与水分子类似的V型分子,如SO2、NO2、ClO2、H2S等均 属于C2v点群,此外,顺式-1,2-二氯乙烯、船式环己烷,
呋喃,吡啶等也属于C2v点群
C3v :NH3 C3v :CHCl3
NH3 分子是C3v 点群的一个典型例子。其它三角锥形分 子,如PCl3、PF3、CH3Cl等也属于C3v点群
单轴群: 包括Cn 、Cnh 、Cnv 点群. 这类点群的共同特点是只有一条旋转轴. Cn 群:只有一条n次旋转轴Cn 。群的阶为n。
C2
C2 群
C2
H2O2
C2 群
C2群
二氯丙二烯
C3通过分子中心且垂直于荧光屏
C3 群
Cnv 群: 有一条n次旋转轴Cn 和n个包含该轴的对称
面σv。群的阶为2n。
对称中心i 对称中心i
确定分子点群的几点其他思路
(b) 有对称中心,且主轴为偶数时,则分子属于Cnh或Dnh点群。进一 步去找镜面或垂直于主轴的C2 轴,如果只有一个镜面或没有垂直于 主轴的C2轴,则属于Cnh点群;如果有二个以上的镜面或有垂直于主 轴的C2轴,则属于Dnh点群。如图2所示分子属于这种情况。
C2
D2 群
主轴C2垂直于荧光屏
C2
D3群:这种分子比较少见,其对称元素也不易看出. [Co(NH2CH2CH2NH2)3 ]3+是一实例.
C2
C2 唯一的C3旋转轴从正三角形中 心穿过, 通向中心Co;
三条C2旋转轴分别从每个N–N 键中心穿过通向Co.
C2
Dnh 群:在Dn 基础上,还有一个垂直于主轴的对称面σh 。

第三讲分子的对称性与群论基础群与分子点群

第三讲分子的对称性与群论基础群与分子点群

(AB)C=A(BC)
(3) 恒等元素 该集合必须含有一个元素 E,对于该集合中的任何元素 A, 都有:AE=EA=A (4) 逆元素 对于该集合的任何元素 A,一定有一个逆元素A-1,它也是 该集合的一个元素,使得: AA-1= A-1A = E 。
2
群与分子点群
1. 群的定义
* 群元素: 数、矩阵、对称操作、算符
群G与群H同构,则两者的阶相同,且乘法表相同。 群G: …., Ai , …, Aj , …., AiAj = Ak , ….
群H: …., Bi , …, Bj , …., BiBj = Bk , ….
26
群与分子点群
5、同构与同态
CS 群
Ci 群
CS与Ci 同构:元素一一对应,“乘积对应乘积”:
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
群H: …., Bi , …, Bj , …., BiBj , ….
* 同态的群,其群元素的乘法关系相同。
* 若两个同态的群的阶相同,则两者同构。
28
群与分子点群
5、同构与同态
群 G = { 1, -1, i, -i }
(证毕)
由定理3,相互共轭的群元素组成一个封闭的子集合,称为 一个类(共轭类)。从而可以把一个群的元素按共轭类划 分,不同的类没有共同元素。
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
(4) 逆元素:相反数 (1 与 -1,2 与 -
2,…..)

第三章 群表示理论基础1

第三章 群表示理论基础1

若{F 1,F 2,… F m }及{G 1,G 2,… G n }是两个函数集合,则函数集合{F i G k }(m ×n 个)称为前两个函数集合的直积。

B 、表示的直积以函数集合{F i G k }为基的表示ΓFG 称为以函数集合{F 1,F 2,… F m }为基的表示ΓF 与以函数集合{G 1,G 2,… G n }为基的表示ΓG 的直积。

记为:ΓFG = ΓF × ΓG2)定理:操作R 对应的矩阵中,以直积为基表示的特征标等于以单个函数为基表示的特征标的乘积。

χFG (R) = χF (R)χG (R)五、群表示间的关系小结1、群表示间的关系群表示Γa 的矩阵群为{A 1,A 2,A 3, …},Γb 的矩阵群为{B 1,B 2,B 3, …}其中,A i 、B i 分别为Γa 与Γb 中对应于第i 个操作的矩阵 。

1)等价:若对每一个操作R 均能找到矩阵X ,使B(R) = X -1A(R)X ,则表示Γa与Γb 是等价的,记为Γa = Γb 。

2)约化: 若能找到矩阵X ,使表示Γ的任一矩阵C(R),可通过相似变换X -1C(R)X= C´(R) 变为对角方阵C´(R)。

C´(R)中每一组对应的小方阵构成一个群的低维表示Γi ,则称表示Γ是可约化的。

记为:...2211+Γ+Γ=Γ=Γ∑a a a ii i3)直积:若ψa 和ψb 分别为Γa 及Γb 表示的基,则以(ψa ψb )为基的表示Γab称为Γa 与Γb 的直积。

记为Γab =Γa ×Γb2、群表示的特征标间的关系若将上述关系中群表示符号Γ换为群表示中与某一对称操作对应的矩阵的特征标,则与上述群表示间关系相对应的特征标间的代数运算依然成立。

1)等价: Γa = Γb → χa (R) = χb (R)因为A(R)与B(R)为共轭矩阵,因此特征标应相等。

2)约化:∑∑=→Γ=Γi ii i i i R a R a )()(χχ这是显然的,因为与Γi 对应的矩阵在C´(R)里是沿对角线排列的,因此∑=ii i R a R )()('χχ又因为C(R)与C´(R) 共轭,因此χ(R) =χ´(R)。

第三章 分子的对称性习题课

第三章  分子的对称性习题课
8、凡是四面体构型的分子一定属于 Td点群。
二、填空题____ 1、有一个 AB3分子,实验测得其偶极矩为零且有一个三重轴,则此分子所属 点群是________。 2、 NF3分子属于_____________点群。该分子是极性分子, 其偶极矩向量位 于__________上。 3、 (1)对-二氟苯 (2)邻-二氟苯 (3)间-二氟苯,有相同的点群的是_______。 4、 丙二烯分子所属点群为_______。 5、既有偶极矩,又有旋光性的分子必属于_________点群。
13 、氯乙烯 (CH2CHCl)中,大π键是_________, 该分子属于_______点群。
三、问答题 1、 指出下列分子所属点群:
(1) H2O2(两个OH不共面) 式)
(3) CH3CHClBr (5) BF5 (四方锥) (7) ClCH=CHCl(反式) (9) 三乙二胺合钴离子
(2) H3C—CCl3(既非交叉,又非重迭
确定分子点群的流程简图
分子
线形分子: D ∞ h C ∞ v 根据有无对称中心判断
有多条高阶轴分子(正四面体、正八面体…)
Td , O h ,
只有镜面或对称中心, 或无对称性的分子:
C1,C i,Cs
只有S2n(n为正整数)分子: S 4 , S 6 , S 8 , . . .
Cn轴(但不是S2n 的简单结果)
______________。
4、(丙2)二和烯(分3子)所属点群为_____。
5、既有偶极矩,又有旋光性的D分2d 子必属于____点群。
6、偶极矩μ=0,而可能有旋光性的分子所属C的n 点群为____;偶极矩μ≠0,而一定
没有旋光性的分子所属的点群为_____。
Dn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•子群: 设 H 是群 G 的非空子集, 若对于群 G 的乘法规则,集 合 H 也满足群的四个条件,则称 H 是 G 的子群.
显然, 恒等元素 E 和群 G 自身是固有子群.
例. 在 D3={e,d,f,a,b,c} 中, 子集 {e,d,f}, {e,a}, {e,b}, {e,c}都是子群.
共轭元素: B=X-1AX ( X,A,B都是群G的元素) (A和B共轭)
第三章 分子对称性和点群
分子具有某种对称性. 它对于理解和应用分子 量子态及相关光谱有极大帮助.
确定光谱的选择定则需要用到对称性. 标记分子的量子态需要用到对称性.
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
故 ad = b
D3群的乘法表
每一行和每一列都是所有群元素的重排 ad = b , da = c
例5. 求3阶群的乘法表. (错)
(?)
G={E,A,A2} (循环群)
• 群的阶: 有限群中群元素的个数. 如 D3 群的阶为 6.
• 循环群: 整个群是由一个元素及其所有的幂产生. • 如: Cn , C2n , C3n ,....,Cnn E
3.1.3. 对称中心, i (反演)
i2 = I
3.1.4
n 重旋转反映轴, Sn
Sn = h Cn = Cn h
Sn = h Cn 由于S1 = h C1 = , S2 = h C2 = i 所以S1 和S2无意义.
3.1.5 恒等元素, E 或 I
•所有分子都具有恒等元素 E (有时也写为 I ). •是保持群论规则必需的元素.
3.1.6 元素的生成
(注意顺序)
v = v C2 , v 包含CH2面, 而v 包含CF2面. 类似地, v = v C2 , C2 = v v 对Cn , 会产生(n-1)个对称操作. 如: C32 C3 C3 C6,C62( C3),C36( C2),C64( C32),C56 C-61
当n为偶数时, 当n为奇数时,
Snn hnCnn I Snn hnCnn h , S2nn h2nC2nn I
3.2 群的定义和基本性质
• 定义: 群 G 是一个不同元素的集合{A,B,…,R,…}, 对于一定的 乘法规则, 满足以下四个条件:
• 1) 封闭性 群中任意两个元素 R和 S的乘积等于集合中另一个元素, T=RS
3.1.1 n 重对称轴, Cn (转动) 转角 2 / n
Cn ,Cn2,Cn3,....,Cnn I
I 为恒等操作
主轴: n 最大的轴。 产生 n-1 个转动。
3.1.2 对称面, (反映)
2 = I h : 垂直于主轴的对称面 v :包含主轴的对称面 d :包含主轴且平分两
个C2轴的对称面
• 2) 结合律 A(BC)=(AB)C • 3) 有唯一的恒等元素 E, 使得对任意群元素 R, 有 RE=ER=R • 4) 每个元素 R 必有逆元素 R-1, 使得 RR-1 =R-1 R则 B=C

2) (AB) –1 =B –1 A –1
• 因为 (AB)(AB) –1 =ABB –1 A –1 =AA –1 =E
所以 D3 的共轭类为: {e}, {d,f}, {a,b,c}
3.3 点群
• 分子的所有对称元素构成分子的点群. 这些对称元素至少保持空间中的一点(分子质心)不变, 从而成为点群.
• 如H2O的所有对称元素为: I, C2, v (xz) , v (yz)
1. Cn点群
Cn ,C2n ,C3n ,....,Cnn I
2. Sn 点群 (n为偶数) Sn ,S2n ,S3n ,....,Snn I S2 i
3. Cnv 点群 有一个 Cn 轴和 n 个包含该轴的对称面 v
Cv
4. Dn点群 有一个Cn轴和n个垂直于该轴的C2轴. (暂没有实例)
5. Cnh点群 有一个Cn轴和一个垂直于该轴的对称面h.
6. Dnd点群 有一个Cn轴,一个S2n轴, n个垂直于该轴 的C2轴, n个平分C2轴的对称面d.
元素的共轭类: 一组彼此共轭的所有元素集合称为群的 一个类.
f 类 = { x-1fx, x 取遍所有的群元素}
例. 求 D3 的所有共轭类 D3={e,d,f,a,b,c}
e 类: x-1ex =e
d 类: a-1da=ac=f
a 类: b-1ab=bd=c d-1ad=fb=c c-1ac=cf=b
7. Dnh群
有一个Cn轴, n个垂直于该轴的C2轴,
1个垂直于该轴的对称面h
D3h
H2为Dh
8. Td点群 有4个C3轴, 3个 C2轴, 6个对称面 d. 正四面体对称群.
例1. 全部整数的集合, 乘法规则为代数加法, 则构 成一个群.
恒等元素为 0. 数 n 的逆元素为 (-n). 封闭性和结合律是显然的.
例2. 数的集合 {1, -1, i, -i}, 乘法规则为代数乘法, 则构成一个群.
恒等元素为1. 数 (-1) 的逆元素为(-1).数 (i) 的逆元素为 (-i).
Cnn-1 C-n1
Sn hCn , S2n hCn hCn h2Cn2 Cn2
例: S4 h C4
S24 h2 C42 C2 , S34 h3C34 h C34 S-41 S44 h4 C44 I
S3 h C3 S32 h2 C32 C32 , S33 h3C33 h I h S34 h4 C34 C34 C3 ,S53 h5C35 h C32 , S36 h6 C36 I
例3. 空间反演群 {E,i}, i为空间反演操作.
i2 = E
• 例4. D3={e,d,f,a,b,c}
e: 恒等操作 d: 绕 z 轴顺时针转动 120 f: 绕 z 轴顺时针转动 240 a: 绕 a 轴顺时针转动 180 b: 绕 b 轴顺时针转动 180 c: 绕 c 轴顺时针转动 180
相关文档
最新文档