碳钢在海水中的腐蚀和防护

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳钢在海水中的腐蚀和防护

摘要

对碳钢在海水中的腐蚀与防护进行了现场实地考察,分析了它作为海水中常用材料的腐蚀特点,同时在实验室进行了挂片实验和电化学测试,评价了它的耐蚀性能,对其防蚀提出了一点经验。

关键词:碳钢海水腐蚀防护

1 前言

碳钢是应用最广泛的工程材料之一。海洋腐蚀环境苛刻,尽管在应用这些材料时,需进行必要的防护,但开展这些材料在海水中腐蚀性能的研究仍非常必要,二十世纪三十年代以来,美国积累了各腐蚀区域527 种金属材料长达3 a~16 a 的海水腐蚀数据。我国则仅限于碳钢在海水全浸条件下的五年数据,而在潮差区、飞溅区的腐蚀数据几乎没有。这给海洋工程设计、选材、开展防护工作造成了很大困难,金属材料在海水中的腐蚀受其环境影响是非常复杂的过程,在不同海域所表现出的耐蚀性有很大差别,既使在同一海域不同区带,其腐蚀性能各异,因此对常用金属材料在我国海域进行系统的腐蚀试验及研究,获得可靠的材料腐蚀数据,为海洋工程、沿海建筑物的设计、选材、开展防护,开发新的耐蚀材料提供依据。

碳钢、低合金钢是应用最广泛的工程材料。海洋腐蚀环境苛刻,尽管在应用这些材料时,需进行必要的防护,但开展这些材料在海水中腐蚀性能的研究仍非常必要,二十世纪三十年代以来,美国积累了各腐蚀区域527 种金属材料长达 3 a~16 a 的海水腐蚀数据。我国则仅限于碳钢、低合金钢在海水全浸条件下的五年数据,而在潮差区、飞溅区的腐蚀数据几乎没有。这给海洋工程设计、选材、开展防护工作造成了很大困难,金属材料在海水中的腐蚀受其环境影响是非常复杂的过程,在不同海域所表现出的耐蚀性有很大差别,既使在同一海域不同区带,其腐蚀性能各异,因此对常用金属材料在我国海域进行系统的腐蚀试验及研究,获

得可靠的材料腐蚀数据,为海洋工程、沿海建筑物的设计、选材、开展防护,开发新的耐蚀材料提供依据。

本文用实验室挂片和电化学方法对碳钢在海水中的腐蚀行为进行研究,分析了它作为海水中常用材料的腐蚀特点,评价了它的耐蚀性能,对它的防蚀提出了一点经验。

2 实验

电化学试样用电木粉镶嵌,工作面积为1cm2 ,经由400 # 至700 # 水磨砂纸逐级打磨、水洗、无水酒精棉擦拭脱酯、吹干。介质采用大连付家庄海域海水。温度由WK2120 型恒温水浴锅控制。电化学测试采用CP5 型综合腐蚀测试仪及三电极体系(辅助电极为Pt 电极,参比电极为饱和甘汞电极) 。

测定了碳钢Q235在海水中不同条件下的自腐蚀电位、腐蚀速度和极化曲线。

3 结果与讨论

(1)碳钢的自腐蚀电位

碳钢的腐蚀电位与时间和温度的有关系。碳钢在海水中的电位是随着时间逐渐正移的,稳定、缓慢,波动较小。稳定在- 0. 67V 左右。

在青岛海域挂片180 天的碳钢的腐蚀电位的结果很接近。但试样刚打磨后浸入海水中的腐蚀电位是负移的,这时试样表面还未形成腐蚀产物层。这表明碳钢在海水中形成对腐蚀电位有重要影响的稳定的腐蚀产物膜需要较长的时间。温度越高,其自腐蚀电位相对更负,达到相对稳定所需的时间更长。

(2)碳钢的腐蚀速度

其腐蚀速度总趋势是随着时间的推移逐渐减小的。这说明碳钢在海水中的腐

蚀逐渐减轻,64 天后稳定在一较小值约0. 04mm/ a ,但前12 天里,腐蚀速度较快地增长,达0. 06mm/ a 。这可从此实验的试样处理上得到解释:试样经处理后置于干燥器内待用;碳钢表面会生成一层极薄的氧化膜。当试样浸入海水中时,由于氯离子的侵蚀作用,这层薄膜开始破坏,腐蚀速度上升。随着腐蚀的进一步发展,碳钢表面逐渐形成浅黄色的腐蚀产物层,覆盖在试样表面,阻滞了腐蚀的进一步进行,对碳钢起一定的保护作用。

温度越高,碳钢的腐蚀越严重。温度对其腐蚀的影响较大。从室温升至80 ℃,腐蚀速率由0. 04mm/ a增大至0. 25mm/ a ,相差5 倍。由V = keEa/ RT可知,温度越高,反应速率越大。碳钢在海水中的腐蚀主要由阴极氧去极化控制,温度升高有利于氧的扩散。

温度越高,其腐蚀电位越负;极化曲线也逐渐右移,腐蚀电流增大。阳极极化曲线随着温度的升高变化不大,但阴极极化曲线逐渐变得平坦,即斜率慢慢减小。碳钢在海水中不能建立钝态,阳极活性高,极化率小,一切有利于氧向阴极表面扩散的因素都会加快碳钢的腐蚀。

碳钢在海水和自来水中的腐蚀都是靠氧的去极化进行。但海水中含盐量远高于淡水,因此电阻性阻滞比淡水小得多,而盐份中氯化物居多,建立钝态很困难,发生腐蚀时的速度比淡水中大。海水中碳钢实施阴极保护的效果比淡水中好。碳钢在室温下的海水和自来水两种介质中的自腐蚀电位相差300mV左右,而海水中的阴极极化曲线的斜率要小得多。可见,其中氯离子是影响碳钢腐蚀的主要因素。一些靠表面钝化维持耐蚀性的材料,如不锈钢、铝合金等,由于海水中的大量氯离子,其钝化膜不稳定,易发生点蚀和缝隙腐蚀破坏。

(3)钛-碳钢材料的自然腐蚀

两种金属中碳钢在静止海水中的腐蚀速率相对较大(平均为0. 1477 g/m2 ·h) ,而钛在静止海水中则显出极强的耐腐蚀能力,腐蚀速率很小。它们的自腐蚀电位,可了解碳钢的自腐蚀电位稳定在- 0. 7740V 左右,而钛的自腐蚀电位则稳定在- 0. 060V左右,两者相差超过700 mV ,所以在组成电偶对时存在很大的

驱动电位差,然而,电偶腐蚀真正的驱动力却取决于电偶极化后的稳定电位差。

从碳钢和钛在海水中的稳态极化曲线中,得到碳钢的Tafel 斜率ba 值为63. 2mV ,这与文献中给出的碳钢的Tafel 常数ba = 57mV 相差不大。而钛的Tafel 常数bc = 163mV ,也接近文献的156mV。从极化曲线可知: (1) 碳钢的自腐蚀电流要远比钛的自腐蚀电流大,钛的耐蚀性比碳钢的好得多。(2) 钛具有较强的阴极极化性,对其进行阴极极化时,钛上发生析氧的阴极还原反应。所以,电偶电位应该比较接近碳钢的自腐蚀电位,同时,其驱动电位也会衰减。

(4)Ti/ 碳钢电偶对电偶腐蚀

Ti/ 碳钢电偶对的电偶电位非常接近碳钢的自腐蚀电位,随面积比的增加,电偶电位稍有正移,但正移范围较小,这与Ti 强极化性的特点有关.而Ig 随阴/ 阳极面积比的增大明显增大. 在面积比值较小的范围内, Ig 随阴/ 阳极面积比的增大而线性增大; 当阴/ 阳极面积比增大到一定数值(约为500) 时, Ig 随阴/ 阳极面积比的增大趋势减缓. 而Eg 的变化幅度也在大于该面积比值时变缓。

随着Ti/ 碳钢面积比的增加,阳极的失重速率不断增大,但在阴/ 阳极面积比值较小范围内失重速率的增大与面积比成线性关系;当面积比> 500 时,阳极的失重速率的变化趋势有所变缓,这与大阴极对小阳极产生的极化范围有关. 由此可推断,阳极的腐蚀速率随着阴/ 阳极面积比的增大,将会有一个极限值.

在电偶腐蚀过程中,当阴/ 阳极面积比较大时,阳极已经不能够对阴极进行均匀的极化了,而电位仍然是在碳钢的同一点上测得的,不能代表整个金属表面的电位变化. 在稳态极化曲线测量过程中,由于辅助电极和工作电极面积都比较小,属均匀极化,所以不会存在这种问题.

(5)碳钢/ Ti/ 海军黄铜电偶对电偶腐蚀

碳钢/ Ti/ 海军黄铜组成电偶对在海水中浸泡10 d ,碳钢的腐蚀速率为33118 mg/ (m2·h) ,Ti 的腐蚀速率为01216 mg/ (m2·h) ,海军黄铜的腐蚀速率为2914

相关文档
最新文档