螺栓连接的受力分析
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
螺栓受力分析与计算

螺栓受力分析与计算详解螺栓是一种常用的固定连接件,广泛应用于船舶、机械、航空航天等,对螺栓的受力分析不仅对此类固定件的研究有重要的意义,也是螺栓安装拧紧工艺的重要基础。
螺栓受力分析研究一般分为受力类型及其有关计算方法,螺栓受力类型共分为四类:螺栓的拉伸受力、压缩受力、旋转受力和扭转受力。
受力计算则以不同受力类型对应相应受力计算方法为基础:(1)拉伸受力计算:拉伸受力是指在螺栓紧固时,螺栓身体和螺母以及螺栓润滑层之间的表面间隙由于拉伸失稳变形而造成的受力。
由于螺栓预紧受力基本由表面间隙中受压力组件之外主动应力和受压由内外动应力共同决定,因此拉伸受力计算方法会考虑表面间隙的内外应力组合的效应,通常以应力开发系数的概念算出表面间隙中受力组件的拉伸受力,有:【δ= βα/π (α+δ/2)】其中,δ为受压力组件的表面间隙,α为受压力组件的理论应力,β为受压力组件的应力开发系数,以此为基础可算出螺栓的拉伸受力。
(2)压缩受力计算:压缩受力是指在螺栓紧固时,螺栓身体螺母以及螺栓润滑层之间的表面间隙由于压缩变形而造成的受力。
压缩受力的计算方法则可由塑性曲线等静力方程式及计算钱求解,通常考虑材料的塑性应力应变曲线,由此可得出表面间隙变形宽度和内外应力之间的关系,然后可利用公式计算出螺栓的压缩受力。
有:【y=(α/B)×(B2-x2),F=y×A】其中,y为受压力组件的表面间隙变形宽度,α为受压力组件的理论应力,B为受压力组件的应力开发系数,x为受压力组件的表面间隙宽度,A为受压力组件的表面区域,F为受压力组件的压缩受力。
(3)旋转受力计算:旋转受力是指在螺栓紧固时,由于拧紧扭矩产生的螺纹旋转斜滑力的受力。
由于螺栓旋转斜滑力的受力大小受扭矩大小影响并与拧紧螺纹的支承面积有关,因此,旋转受力计算应考虑螺纹支承面积以及拧紧扭矩大小,有:【F=τ × δ 】其中,F为螺栓的旋转受力,τ为螺栓拧紧扭矩大小,δ为螺栓紧固时螺纹支承螺纹面积。
螺栓组连接的受力分析及禁忌

l3 -
4
式中 F 为预 紧力 ( ) N , 为螺栓的直径 (一 ) 为螺栓 的许用应力 d r , r
( / m 。 Nr ) a
此公式可理解 为 :螺栓被拧 紧时既受 托又受 扭 ,采用第 四强度理 论 ,拉扭合 成 的结果相 当于纯拉伸 的 1 倍 。应深 刻理解 1 的物理 意 . 3 . 3 义 , 安全系数 和可 靠系数等 。 绝非 2 . 2既受预 紧力又受 工作载荷 的受拉 螺栓 外载荷为轴 向载荷 F 或 翻倒 力矩 M作用 , 而采用受 拉螺栓 的情况 属于此种情况 , 度条 件为 : 1 , 强 . 3
的相对 刚度系数 ;工作 载荷 F 由轴 向力 F 或 翻倒 力矩 M引起 的 , 是 。 其 值可 由螺栓组受力分 析相关公式求得 。 如螺 栓受变载荷作 用 ,除按上 述公式进 行设计 或校核 满足静 强度 外 , 验算螺栓的应力 幅 , 盯≤【 详 细内容请参 考机械 设计教材 。 尚需 即 叮, 2 . 3受剪螺栓连接 的强 度设 计 计算 2. .1受剪螺栓连 接的强度设计计算 概述 3 受剪螺栓 ( 铰制孑 光制螺栓 ) L 螺栓杆 和螺栓孑采 用基孑 制过渡 配合 L L ( 7 6H /6, H / , 7 )能精确 固定被 连接件 相对位 置 , 承受横 向载 荷 , m n 并能 但 是孔 的加工 精度要求 高 。用于 结构要求 紧凑或连 接空 间受 到 限制 的情 况。受剪螺栓连接 的失效形式 为螺栓 的栓杆部分被 压溃或栓 杆被剪 断。 I 剪强度计算 : ) 抗 2抗压 强度计算 : )
横 向力被接缝 面间 的摩 擦力平衡 ,螺栓组受 的转矩 被接缝 面问 的压 力 产 生的摩擦力矩平衡 。拧紧螺栓 时每个螺栓受到 的轴 向拉力 , 连接件 被 受 到夹紧力 而产生预 紧力 F。因此螺 栓没有受 到剪切 ,只受到 预紧力 F, 即只受拉 而不受剪 。 2螺栓 连接的强度设 汁汁算 及禁忌 螺栓组受力 的分析 目的是 求 出一组 螺栓 中受 力最大 的螺栓 所受 的 力, 进行强度计算 。 作用 于—组螺栓 的外 力有轴 向力 、 横向力 F 、 转矩 T及 翻倒 力矩 M 四种情 况 , 对于单个 螺栓 的受 力只有 两种情 况 : 受拉或 受剪 。工程应 用中多数应用 为受拉螺栓 。 2 . 1只受预 紧力 的受拉螺栓连 接 只受 预 紧力 F 的受拉 螺栓连 接 ,是指 工作后 不 再受 轴 向载荷作 用 。例如外 载荷为横 向力 F R或转矩 T 用 , 作 受拉螺 栓连接属 于这种情 况, 只受预 紧力 作用 , 其强度条件 为 : 1F, . 3
螺栓强度计算

――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组连接强度设计

用4.6级的Q235螺柱,拧紧时控制预紧力,取1.5 ,于是(P86表5-8、P87表5-10)
[] sS 24 1 .5 0 1M 6a 0P
由强度条件得:
d1 4 1 [ .3]F 2 5.21 164 00 .26 17.2 0m 72m
查手册,取M16 (其d1=13.835>计算值12.07)。
K sT
z
f ri
i1
ca 1 d .3 1 2 F 0 /4 或d 14 1 .3 F 0 d
2)铰制孔用螺栓连接
变形量越大,则所受工作剪力越大
Fi Fmax ri rmax
Fi
Fmax rmax
ri
ri rm ax Fmax
Fi
力矩T 平 F 1r1衡 F 2r2 : F zrz
即T : F rm ma a(x r x 12r2 2rz2)
受力最大力 螺F : m 栓 axL1 2 的 M L2 2 工 L m ax L 作 2 zM 拉 zL L m 2 i ax
受力最大螺栓 :F的 2F总 0C 拉 bC bC 力 mFmax i1
ca 1 d .3 1 2 F /2 4 或d 14 1 .3 F 2 d
校核接合面的强度计算: 底板受力分析 受翻转力矩前,接合面挤压应力分布图 F0
五、采用合理的制造工艺方法: 1)冷墩头部、滚压螺纹 2)氮化、氰化、喷丸等处理。
谢谢
F2 m
B1
F
C1
F2
F1
小结: 1.在实际工作中,螺栓所受的工作载荷往往是以上四中
简单形式的不同组合,但不论受力多复杂,都可以将 复杂状态简化成以上四中简单的受力状况,先分别求 螺栓的工作载荷,然后向量迭加,就可求出螺栓所受 的总工作载荷;
螺栓组的受力分析

5)导程S——同一条螺旋线相邻两牙的轴向距离;
单线:S=t
d2
双线:S=2t
多线:S=nt
n——头数;
右旋
6)升角:螺旋线与水平线夹角;
S t
tg S d2
7)牙型角 牙型斜角
8)牙的工作高度h
S
d2
二、各种螺纹的特点、应用
自锁条件:升角<v(摩擦角); 牙型斜角越小越不容易加工。
b只受预紧力214dqp???31116dt???紧螺栓联接装配时螺母需要拧紧在拧紧力矩作用下螺栓除受预紧力qp的拉伸而产生拉伸应力外还受螺纹摩擦力矩t1的扭转而产生扭转剪应力使螺栓处于拉伸与扭转的复合应力状态下
第四章 螺纹零件
一、概述
1、作用
联接:起联接作用的螺纹; 传动:起传动作用的螺纹;
2、螺纹的形成 刀具——做直线运动; 工件——做旋转运动; 螺纹线:转动与直线运动;
rz
ks T
z
f ri
i 1
式中:f——结合面的摩擦系数;
ri——第i个螺栓的轴线到螺栓组 对称中心O的距离;
z——螺栓数目;
ks——防滑系数,同前。
机架 地基
T
r4 r1
rr32
Qpf
Qpf
松配
T
r4 r1
rr23
Qpf
Qpf
紧配
b)紧配 当采用紧配螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压
习题: 一、选择题
第四章 螺纹零件
1、在常用的螺旋传动中,传动效率最高的螺纹是 4 。
(1)三角形螺纹;(2)梯形螺纹;(3)锯齿形螺纹;(4)矩 形螺纹;
2、在常用的螺纹联接中,自锁性最好的螺纹是 1 。
单个螺栓联接受力分析和强度计算

设计螺栓直径,计算应力幅σa 选择螺栓材料、性能,确定[σa]
校核螺栓变载荷强度 σa ? [σa]
例题6.1 已知气缸工作压力在0MPa~0.5MPa之间变化,工作温度<125℃,气缸内直径 D2=1100mm,螺栓数目z=20,采用铜皮石棉垫片。试计算气缸盖螺栓直径。
1. 计算螺栓受力
3. 确定许用应力幅、校核
知识点:单个螺栓联接受力分析和强度计算
1.受拉松螺栓联接(计算直径):
2.受拉紧螺栓联接:
知识点:单个螺栓联接受力分析和强度计算
3.受预紧力和工作载荷的紧螺栓联接:
F0 螺栓总拉力 F 工作载荷 F’ 预紧力 F’’ 剩余预紧力
4.受变载荷情况( [σa ]: 变载荷应力幅 ):
知识点:单个螺栓联接受力分析和强度计算
例题6.1 已知气缸工作压力在0MPa~0.5MPa之间变化,工作温度<125℃,气缸内 直径D2=1100mm,螺栓数目z=20,采用铜皮石棉垫片。试计算气缸盖螺栓直在0MPa~0.5MPa之间变化,工作温度<125℃,气缸内直径 D2=1100mm,螺栓数目z=20,采用铜皮石棉垫片。试计算气缸盖螺栓直径。
4.受剪螺栓联接(挤压强度):
(剪切强度) (挤压强度)
d 螺栓抗剪面直径 m 螺栓抗剪面数目
h 计算对象的受压高度
例题6.1 已知气缸工作压力在0MPa~0.5MPa之间变化,工作温度 <125℃,气缸内直径D2=1100mm,螺栓数目z=20,采用铜皮石棉垫 片。试计算气缸盖螺栓直径。
解题思路: 预紧力F’、变载荷F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺栓连接的受力分析之—
基本连接图
阿特拉斯·科普柯工业工具
课程摘要
•在本节「拧紧微课堂」中,我们将为您介绍螺栓连接的基本连接图、螺栓连接的等效模型、螺栓连接图的作用以及螺栓连接中螺栓拉伸和被连接件压缩的数学模型。
连接件模型
•连接图可以帮助工程师深入的了解连接力学。
•此连接模型中使用M12,10.9级的螺栓将夹持长度为66mm的连接件拧紧到最小37.5KN,最大60KN。
•此连接件将承受5KN的剪切载荷和24.9KN的轴向载荷。
•下面我们将会讲解如何使用螺栓连接图去分析类似的问题。
连接件模型-螺栓
•连接模型中的螺栓可以看做是一个刚性的被拉伸的弹簧。
连接件模型-被连接件
•连接模型中的被连接件可以看做一个刚性的被压缩的弹簧。
完整连接件模型
•螺栓与被连接件可以看做是拉伸弹簧被固定在压缩弹簧中。
•螺栓与被连接件的受力和各自的形变成正比。
力
夹紧力拉伸力
连接件压缩曲线螺栓拉伸曲线
压缩量拉伸量
•为了便于分析,将连接件的压缩曲线平移到同一侧。
•拧紧完成且不受外力时(静载)螺栓的拉伸力和连接件的夹紧力相等,我们称之为预紧力。
螺栓预紧力位移
力
螺栓拉伸量连接件压缩量
连接件被拧紧的螺栓夹紧
•螺栓拧紧时的拉伸量f 取决于螺栓受拉长度L 、预紧力F 、螺栓材料的弹性模量E 和螺栓的应力截面积A ,其中应力截面积A 可通过螺栓直径进行计算或查询相关国家标准获取(GB/T 3098.1等)。
螺栓拉伸的数学模型螺栓应力截面积A
夹持长度L 拉伸力F
L x F Extension f E x A
•一颗M12的螺栓,夹持长度是66mm,如果拧紧结束时其预紧力是61kN,那么它大约被拉伸了多长?•螺栓材料钢的弹性模量E = 205000 N/mm2
•被连接件材料也是钢,弹性模量同样取E = 205000 N/mm2螺栓拉伸示例螺栓应力截面积A
夹持长度L 拉伸力F
L x F Extension f E x A
•在这个例子里,L = 66 mm ,F = 61000 N ,E = 205000 N/mm2,A = π / 4 x 122 = 113 mm2
•备注:这种方法往往低估了实际的拉伸量,因为螺纹部分的面积减少和螺栓头和螺母偏转作都对拉伸做出了贡献。
更详细的计算表明,实际的拉伸量接近0.22毫米。
螺栓拉伸示例-答案螺栓应力截面积A
夹持长度L 拉伸力F
66610000.17205000113
x Extension f mm x ==
•在螺栓预紧力下的连接件压缩量与夹持长度L 、预紧力F 、连接件材料的弹性模量E 以及连接件被压缩部分的有效面积Aeff 有关。
•确定连接件压缩量的主要问题是如何计算上述方程中的有效面积Aeff 连接件压缩的数学模型eff
L x F Compression f E x A
•被连接件的有效面积取决于连接件的尺寸
•如果连接件由板材或粗管构成,下面的公式可以用来计算被连接件的有效面积•备注:被连接件的承载面积计算建议参考GB/T 16823.1被连接件的有效面积22()4eff A h A w
A D d when D d π
=-=22232()()[(1)1]48.eff w h w A w w w A w A
A d d d D d x L d with x the relationis valid for d D d L D ππ=-+
-+-=≤≤+
•在这个例子中,使用的M12的螺栓的L=66,dw= 16.6, dh=12.2, DA =32mm •代入计算后得到:
•连接件材料同样是铁,螺栓预紧力为61kN,那么被连接件的压缩量将是多少?被连接件有效面积计算示例答案322222
8616.601.11732
(16.612.2)16.6(3216.6)[(1.1171)1]44948
eff x x A mm ππ===-+-+-=66610000.044205000449
eff L x F x Compression f mm E x A x ===
螺栓连接图是做螺栓连接受力分析的有力工具
•基本螺栓连接图反映螺栓预加载(不受外力时的)情况。
•理解螺栓连接图可以帮助我们深刻认识螺纹紧固件中的结构力学。
•螺栓连接图可以帮助我们更好的理解拧紧曲线。
•借助螺栓和被连接件受力的数学模型,我们可以做粗略的夹紧力计算。