2008北京历年中考数学真题及答案汇编
2008中考试卷
2008年北京市中考数学试卷一、选择题(共8小题,每小题4分,满分32分)1、-2的相反数是()A、-2B、-C、D、22、截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为()A、0.216×103B、21.6×103C、2.16×103D、2.16×1043、若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()A、内切B、相交C、外切D、外离4、众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位/元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A、50,20B、50,30C、50,50D、135,505、若一个多边形的内角和等于720°,则这个多边形的边数是()A、5B、6C、7D、86、如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A、B、C、D、7、若|x+2|+ ,则xy的值为()A、-8B、-6C、5D、68、已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A、B、C、D、二、填空题(共4小题,每小题4分,满分16分)9、在函数y= 中,自变量x的取值范围是10、分解因式:a3-ab2=11、如图,在△ABC中,D、E分别是AB、AC的中点,若DE=2cm,则BC=12、一组按规律排列的式子:(ab≠0),其中第7个式子是-,第n个式子是(-1)n(n为正整数).★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮三、解答题(共13小题,满分72分)13、计算:-2sin45°+(2-π)0- .★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮14、解不等式5x-12≤2(4x-3),并把它的解集在数轴上表示出来.★★☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮15、已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮16、如图,已知直线y=kx-3经过点M,求此直线与x轴,y轴的交点坐标.★★☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮17、已知x-3y=0,求•(x-y)的值.★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD= ,BC=4 ,求DC的长.★★☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮19、已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长.★★★☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮20、为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表:请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.★★☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮21、京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?★★★★☆显示解析在线训练收藏试题试题纠错下载试题试题篮22、已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DE⊥BC于点E,过点G作GF⊥BC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A′,B′,C′处.若点A′,B′,C′在矩形DEFG内或其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A′B′C′的面积;(2)实验探究:设AD的长为m,若重叠三角形A′B′C′存在.试用含m的代数式表示重叠三角形A′B′C′的面积,并写出m的取值范围.(直接写出结果)☆☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮23、已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮24、在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.(1)求直线BC及抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)连接CD,求∠OCA与∠OCD两角和的度数.★☆☆☆☆显示解析在线训练收藏试题试题纠错下载试题试题篮25、请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DE的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).。
2008年北京市丰台区初三毕业数学试卷及答案
BCDAα丰台区2008年初三毕业及统一练习数 学 试 卷第Ⅰ卷 (机读卷 共32分)一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.-3的相反数是 A.-3 B.3 C.13 D.-132.光年是天文学中的距离单位,1光年大约是95000000万千米.将95000000用科学记数法表示为A.9.5×107 B.95×106 C.9.5×106 D.0.95×1083.在正方形网格中,若α∠的位置如图所示,则cos α的值为A.124.在函数y =x 的取值范围是A .1x ≥-B .1x ≠-C .1x >-D .1x >5.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差24S =甲,乙同学成绩的方差23.1S =乙,则下列对他们测试成绩稳定性的判断,正确的是A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙成绩稳定性相同D .甲、乙成绩的稳定性无法比较 6.如图,在直角梯形ABCD 中,AB DC ∥,AD CD ⊥于点D , 若1AB =,2AD =,4DC =,则BC 的长为B.D.137.若方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是A .1>mB .1≥mC .1≤mD . 1<m 8.如图,如果将半径为9cm 的圆形纸片剪去一个13圆 周的扇形,用剩下的扇形围成一个圆锥(接缝 处不重叠),那么这个圆锥的底面圆半径为 A .6cm B. C. D .8cm第Ⅱ卷 (非机读卷 共88分)9.写出一个图像在第二、第四象限的反比例函数的解析式 . 10.在英语单词“Olympic Games ”(奥运会)中任意选择一个字母,O AE C D B 这个字母为“m ”的概率是 .11.如图,半径为5的O 中,如果弦AB 的长为8,那么圆心O到AB 的距离,即OC 的长等于 . 12.对于实数x ,规定1)(-='n n nx x ,若2)(2-='x ,则=x . 13.(本小题满分4分) 分解因式:x x 43-. 解: 14.(本小题满分5分)计算:01()12π--- . 解:15.(本小题满分5分)解方程:216111x x x --=+-. 解:16.(本小题满分5分)已知:如图,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点O ,且B D C E =.求证:AO 平分BAC ∠. 证明: 17.(本小题满分6分)若a 满足不等式组 260,2(1)31a a a -≤⎧⎨-≤+⎩.请你为a 选取一个合适的数,使得代数式211(1)a a a-÷-的值为一个奇数. 解:四.解答题:B C DA18.(本小题满分5分)某小区便利店老板到厂家购进A、B两种香油共140瓶,花去了1000元.其进价和售价如下表:(1)该店购进A、B两种香油各多少瓶?(2)将购进的140瓶香油全部销售完,可获利多少元?解:19.(本小题满分5分)如图,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点处有人求救,便立即派三名救生员前去营救.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑50米到C点,再跳入海中;3号救生员沿岸边向前跑200米到离B点最近的D点,再跳入海中.若三名救生员同时从A点出发,他们在岸边跑的速度都是5米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°,请你通过计算说明谁先到达营救地点B.解:五.解答题:20.已知:如图,以ABC△的边AB为直径的O交边AC于点D,且过点D的切线DE 平分边BC.(1)求证:BC是O的切线;(2)当ABC△满足什么条件时,以点O、B、E、D为顶点的四边形是正方形?请说明理由.解:(1)证明:(2)ABC△满足的条件是.理由:1-1O11()-(4)表示教学方法序号18.4%42.6%10.2%4()3()2()1()六.解答题 21.数学老师将相关教学方法作为调查内容发到全年级500名学生的手中,要求每位学生选出自己喜欢的一种,调查结果如下列统计图所示:(1)请你将扇形统计图和条形统计图补充完整; (2)写出学生喜欢的教学方法的众数;(3)针对调查结果,请你发表不超过30字的简短评说。
2008年北京中考数学试卷解析
2008年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名.2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共32分)一、选择题(共8道小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案ADCCBBBD第Ⅱ卷(非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分)题号9101112答案12x()()a ab a b 4207ba31(1)n nnba三、解答题(共5道小题,共25分)13.(本小题满分5分)解:1182sin 45(2π)32222132··················································································· 4分22. ································································································· 5分14.(本小题满分5分)解:去括号,得51286x x ≤.···································································· 1分移项,得58612x x ≤.··········································································· 2分合并,得36x ≤. ······················································································ 3分系数化为1,得2x ≥.················································································· 4分不等式的解集在数轴上表示如下:················································································································· 5分15.(本小题满分5分)证明:AB ED ∥,B E . ····························································································· 2分在ABC △和CED △中,1 2 30 123AB CE B E BCED ,,,ABC CED △≌△.···················································································· 4分AC CD . ····························································································· 5分16.(本小题满分5分)解:由图象可知,点(21)M ,在直线3y kx 上, ············································· 1分231k .解得2k . ······························································································· 2分直线的解析式为23y x .······································································· 3分令0y,可得32x.直线与x 轴的交点坐标为302,. ······························································ 4分令0x ,可得3y.直线与y 轴的交点坐标为(03),. ······························································· 5分17.(本小题满分5分)解:222()2x y x y xxy y22()()x y x y x y ························································································ 2分2x yxy . ································································································· 3分当30xy时,3x y .·············································································· 4分原式677322y y y yyy.··············································································· 5分四、解答题(共2道小题,共10分)18.(本小题满分5分)解法一:如图1,分别过点A D ,作AEBC 于点E ,DF BC 于点F .······································1分AE DF ∥.又AD BC ∥,四边形AEFD 是矩形.2EF AD .······································2分ABCDFE 图1AB AC ,45B,42BC ,AB AC .1222AEECBC .22DF AE ,2CFECEF···················································································· 4分在Rt DFC △中,90DFC ,2222(22)(2)10DC DFCF. ··········································· 5分解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,.···················· 1分ABAC ,90AEDBAC.AD BC ∥,18045DAEB BAC .在Rt ABC △中,90BAC,45B,42BC,2sin 454242AC BC ································································· 2分在Rt ADE △中,90AED ,45DAE,2AD ,1DEAE .3CE AC AE.·················································································· 4分在Rt DEC △中,90CED,22221310DC DECE.························································· 5分19.(本小题满分5分)解:(1)直线BD 与O 相切. ······································································· 1分证明:如图1,连结OD .OA OD ,A ADO .90C,90CBD CDB .又CBDA ,90ADO CDB .90ODB.直线BD 与O 相切.················································································· 2分DCOABE图1ABCDFE图2(2)解法一:如图1,连结DE .AE 是O 的直径,90ADE .:8:5AD AO ,4cos 5AD A AE . ···················································································· 3分90C,CBD A ,4cos 5BC CBD BD. ············································································· 4分2BC,52BD.······································································ 5分解法二:如图2,过点O 作OH AD 于点H .12AH DHAD .:8:5AD AO ,4cos 5AH A AO . ···················3分90C,CBD A ,4cos 5BC CBD BD. ································4分2BC ,52BD.································································································· 5分五、解答题(本题满分6分)解:(1)补全图1见下图. ············································································· 1分9137226311410546373003100100(个).这100位顾客平均一次购物使用塑料购物袋的平均数为3个.································· 3分200036000.估计这个超市每天需要为顾客提供6000个塑料购物袋. ········································ 4分(2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ······························ 5分根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.6分D COABH图240 35 30 25 20 15 10 5 0图1123 4 567 4311 26379 塑料袋数/个人数/位“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图10六、解答题(共2道小题,共9分)21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x千米. ·························································································· 1分依题意,得3061(40)602xx . ··································································· 3分解得200x.······························································································ 4分答:这次试车时,由北京到天津的平均速度是每小时200千米.······························ 5分22.解:(1)重叠三角形A B C 的面积为3. ·················································· 1分(2)用含m 的代数式表示重叠三角形A B C 的面积为23(4)m ; ····················· 2分m 的取值范围为843m ≤.··········································································· 4分七、解答题(本题满分7分)23.(1)证明:2(32)220mxm x m 是关于x 的一元二次方程,222[(32)]4(22)44(2)m m m mm m .当0m时,2(2)0m ,即0.方程有两个不相等的实数根.········································································ 2分(2)解:由求根公式,得(32)(2)2m m xm.22m x m 或1x . ················································································· 3分0m ,222(1)1mm mm.12x x ,11x ,222m x m . ··············································································· 4分21222221m yx x m m.即2(0)ymm 为所求. ·······················5分(3)解:在同一平面直角坐标系中分别画出2(0)y mm与2(0)y m m 的图象.····························································6分由图象可得,当1m ≥时,2y m ≤. ··········7分八、解答题(本题满分7分)24.解:(1)ykx 沿y 轴向上平移3个单位长度后经过y 轴上的点C ,1 2 3 44 3 21xy O -1 -2 -3 -4 -4-3 -2-1 2(0)ymm 2(0)ym m(03)C ,.设直线BC 的解析式为3ykx .(30)B ,在直线BC 上,330k.解得1k.直线BC 的解析式为3yx. ································································· 1分抛物线2y xbx c 过点B C ,,9303b c c,.解得43b c,.抛物线的解析式为243yxx . ······························································ 2分(2)由243y xx .可得(21)(10)D A ,,,.3OB ,3OC ,1OA ,2AB.可得OBC △是等腰直角三角形.45OBC,32CB.如图1,设抛物线对称轴与x 轴交于点F ,112AF AB .过点A 作AEBC 于点E .90AEB.可得2BE AE ,22CE .在AEC △与AFP △中,90AECAFP,ACEAPF ,AEC AFP △∽△.AE CE AFPF,2221PF.解得2PF.点P 在抛物线的对称轴上,点P 的坐标为(22),或(22),. ··································································· 5分1 Oy x2 344 3 2 1-1 -2 -2-1P EBD P ACF 图1(3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ,则(10)A ,.连结A C A D ,,可得10A C AC,OCAOCA .由勾股定理可得220CD,210A D .又210A C,222A DA CCD .A DC △是等腰直角三角形,90CA D,45DCA .45OCA OCD .45OCAOCD.即OCA 与OCD 两角和的度数为45. ························································ 7分解法二:如图3,连结BD .同解法一可得20CD ,10AC.在Rt DBF △中,90DFB,1BFDF,222DB DFBF.在CBD △和COA △中,221DB AO ,3223BC OC,20210CD CA.DBBCCDAO OC CA .CBD COA △∽△.BCD OCA .45OCB ,45OCAOCD.即OCA 与OCD 两角和的度数为45. ························································ 7分九、解答题(本题满分8分)25.解:(1)线段PG 与PC 的位置关系是PG PC ;1 O yx2 3 4 43 2 1-1 -2-1BDA C F 图2A 1 O y x2 3 443 2 1-1 -2 -2-1BDA C F 图3PG PC3.································································································· 2分(2)猜想:(1)中的结论没有发生变化.证明:如图,延长GP 交AD 于点H ,连结CH CG ,.P 是线段DF 的中点,FP DP .由题意可知AD FG ∥.GFP HDP .GPF HPD ,GFP HDP △≌△.GPHP ,GF HD .四边形ABCD 是菱形,CDCB ,60HDC ABC.由60ABC BEF ,且菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,可得60GBC .HDCGBC .四边形BEFG 是菱形,GF GB .HD GB .HDC GBC △≌△.CH CG ,DCH BCG .120DCHHCB BCGHCB.即120HCG .CH CG ,PH PG ,PG PC ,60GCPHCP.3PG PC.······························································································· 6分(3)PG PCtan(90). ············································································ 8分D CG P ABEFH。
8年北京市中考数学试卷(含答案)
一、选择题(共 8 道小题,每小题 4 分,共 32 分)
1. 6 的绝对值等于(
)A. 6
B. 1
6
C. 1
6
D. 6
【2者【.解解,析析截A创】.】止历AD0到.2届16h奥欢2t01t运0p0迎58:会/ 访/年b之l问o5最gB月...si将n12a91..6c日o21m,103.已6c0n有0/ b用e2i1j科Cin.6学g0s20记.t1u6名数d1y中法03 外表记示者应成为D.为(2北.16京1奥04运)会的注册记
依题意,得 30
6 x
1 (x
40) . · ··········
3分
60
2
解得 x 200 . ················· 4 分
答:这次试车时,由北京到天津的平均速度是每小时 200 千米. 5 分
2已点按2知图.G(等.本1D边E小所三题示B角C满方形于分式纸点折片4E叠,分,过A)hB欢点点Ct t的p迎G:A/边作,访/ b长BG,l问oF为Cg.分s8Bi,别Cna于落.Dc点o为在m点FA.cB,n边把A/ b,上三ei的角jBin,点形gs,纸Ct u过片处dy点.AB若CD点分作别ADG沿,∥BDBGC,,交DCEA在,CG矩于F
据这
1 100
位2 顾3客图平41均一5 次6购物7 使塑用料塑袋料数购/物袋的平均数,图估2计这个超市每天需要
为顾客提供多少个塑料购物袋? (2)补全图 2,并根.据.统.计.图.和.统.计.表.说.明. ,购物时怎样选用购物袋,塑料购物
袋使用后怎样处理,能对环境保护带来积极的影响.
【解析】 ⑴ 补全图 1 见下图. 1 分
【解析】 ⑴ 直线 BD 与 e O 相切. 1 分
北京市2008-2019年中考数学分类汇编圆pdf含解析
2008~2019北京中考数学分类(圆)一.解答题(共12小题)1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.2.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.3.如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O 的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.4.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.5.如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.6.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.7.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=,求OE的长.8.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.9.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.10.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.11.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cos C=时,求⊙O的半径.12.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长.2008~2019北京中考数学分类(圆)参考答案与试题解析一.解答题(共12小题)1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.2.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.3.如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O 的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O的半径为.4.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【解答】(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.=AE•DM,只要求出DM即首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE可.(方法二:证明△ADE的面积等于四边形ACDE的面积的一半)∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积=a2.5.如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.【解答】(1)证明:∵AB是⊙O的直径,BM是⊙O的切线,∴AB⊥BE,∵CD∥BE,∴CD⊥AB,∴,∵=,∴,∴AD=AC=CD,∴△ACD是等边三角形;(2)解:连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,∴∠DAC=60°∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O的半径为:r,∴ON=r,AN=DN=r,∴EN=2+,BE=AE=,在R t△NEO与R t△BEO中,OE2=ON2+NE2=OB2+BE2,即()2+(2+)2=r2+,∴r=2,∴OE2=+25=28,∴OE=2.6.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【解答】(1)证明:连接OC,∵C是的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.7.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=,求OE的长.【解答】(1)证明:PA,PC与⊙O分别相切于点A,C,∴∠APO=∠EPD且PA⊥AO,∴∠PAO=90°,∵∠AOP=∠EOD,∠PAO=∠E=90°,∴∠APO=∠EDO,∴∠EPD=∠EDO;(2)解:连接OC,∴PA=PC=6,∵tan∠PDA=,∴在Rt△PAD中,AD=8,PD=10,∴CD=4,∵tan∠PDA=,∴在Rt△OCD中,OC=OA=3,OD=5,∵∠EPD=∠ODE,∴△DEP∽△OED,∴===2,∴DE=2OE在Rt△OED中,OE2+DE2=OD2,即5OE2=52,∴OE=.8.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.【解答】证明:(1)连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE和△OBE中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,∵OB是⊙O半径,∴BE与⊙O相切.(2)过点D作DH⊥AB,连接AD并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴==又∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即=,∴OH=4,∴DH==2,又∵△ADH∽△AFB,∴=,=,∴FB=.9.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==10.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2.∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DC sin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.11.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cos C=时,求⊙O的半径.【解答】(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cos C=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得∴⊙O的半径为.12.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长.【解答】解:(1)直线BD与⊙O相切.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线BD与⊙O相切.(2)解法一:如图,连接DE.∵AE是⊙O的直径,∴∠ADE=90°∵AD:AO=8:5∴∵∠C=90°,∠CBD=∠A∵BC=2,∴解法二:如图,过点O作OH⊥AD于点H.∴AH=DH=∵AD:AO=8:5∴cos A=∵∠C=90°,∠CBD=∠A∴∵BC=2∴。
2008年华北各省中考数学代数填空题(附答案)
第(14)题2008年华北各省中考数学代数---填空题(08北京市卷)9.在函数121y x =-中,自变量x 的取值范围是.12x ≠ (08北京市卷)10.分解因式:32a ab -=.()()a a b a b +-(08北京市卷)12.一组按规律排列的式子:2b a -,53b a ,83b a -,114b a ,…(0ab ≠),其中第7个式子是207b a -,第n 个式子是(n 为正整数).31(1)n nnb a --(08天津市卷)11.不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为.34<<-x(08天津市卷)12.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为.5(08天津市卷)13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是.(4,5)(08天津市卷)14.如图,是北京奥运会、残奥会赛会志愿者 申请人来源的统计数据,请你计算:志愿者申 请人的总数为112.6万;其中“京外省区市” 志愿者申请人数在总人数中所占的百分比约 为25.9%(精确到0.1%),它所对应的 扇形的圆心角约为︒93(度)(精确到度).(08天津市卷)17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ; ③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解读式可以是:(写出一个即可).2-=x y (提示:答案不惟一,如652-+-=x x y 等)(08河北省卷)12.当x =时,分式31x -无意义.1 (08河北省卷)13.若m n ,互为相反数,则555m n +-=.5-(08河北省卷)15.某班学生理化生实验操作测试成绩的统计结果如下表:则这些学生成绩的众数为.9分(或9)(08河北省卷)16.图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是g .20(08河北省卷)17.点(231)P m -,在反比例函数1y x=的图象上,则m =.2 (08内蒙古赤峰)12.足球联赛得分规定胜一场得3分,平一场得1分,负一场得0分。
08年中考数学真题及答案
2008年北京市高级中等学校招生考试数 学 试 卷下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.6-的绝对值等于( )A .6B .16C .16- D .6- 2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( )A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( )A .内切B .相交C .外切D .外离4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( )A .50,20B .50,30C .50,50D .135,505.若一个多边形的内角和等于720,则这个多边形的边数是( )A .5B .6C .7D .86.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )A .15B .25C .12D .357.若20x +=,则xy 的值为( )A .8-B .6-C .5D .68.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )2008年北京市高级中等学校招生考试数 学 试 卷二、填空题(共4道小题,每小题4分,共16分)9.在函数121y x =-中,自变量x 的取值范围是 . 10.分解因式:32a ab -= . 11.如图,在ABC △中,D E ,分别是AB AC ,的中点,若2cm DE =,则BC = cm . 12.一组按规律排列的式子:2b a -,53b a ,83b a-,114b a ,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).三、解答题(共5道小题,共25分)13.(本小题满分5分)1012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭. 解:CAE DB OP M O M ' M P A . O M ' M P B . O M 'M P C .O M ' M P D .14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.解:15.(本小题满分5分)已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =.求证:AC CD =. 证明:16.(本小题满分5分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.解:17.(本小题满分5分)已知30x y -=,求222()2x y x y x xy y +--+的值. 解:四、解答题(共2道小题,共10分)18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=,AD =BC =求DC 的长.解: A C E D B y xA D19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O(2)若:8:5AD AO =,2BC =,求解:(1)(2)五、解答题(本题满分6分)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:B 图1 “限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人“限塑令”实施后,使用各种 购物袋的人数分布统计图 其它 _______% 24%(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.解:(1)(2)六、解答题(共2道小题,共9分)21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?解:22.(本小题满分4分)已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG BC∥交AC于点G.DE BC⊥于点E,过点G作GF BC⊥于点F,把三角形纸片ABC 分别沿DG DE GF,,按图1所示方式折叠,点A B C,,分别落在点A',B',C'处.若点A',B',C'在矩形DEFG内或其边上,且互不重合,此时我们称A B C'''△(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D,,,恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A B C'''的面积;(2)实验探究:设AD的长为m,若重叠三角形A B C'''存在.试用含m的代数式表示重叠三角形A B C'''的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用).图1图2A A解:(1)重叠三角形A B C '''的面积为 ;(2)用含m 的代数式表示重叠三角形A B C '''的面积为 ;m 的取值范围为 .七、解答题(本题满分7分)23.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.(1)证明:(2)解:(3八、解答题(本题满分7分)24.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A在点B 的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;x(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠解:(1)(2)(3)九、解答题(本题满分8分)25.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PG PC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PG PC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. x D A B E F C P G 图1 D C G P A B F 图2(3)若图1中2(090)ABC BEFαα∠=∠=<<,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).解:(1)线段PG与PC的位置关系是;PGPC=.(2)2008年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名.2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共32分)第Ⅱ卷(非机读卷共88分)13.(本小题满分5分)112sin45(2π)3-⎛⎫+-- ⎪⎝⎭2132=⨯+-········································································· 4分2=. ····················································································· 5分14.(本小题满分5分)解:去括号,得51286x x --≤. ························································ 1分 移项,得58612x x --+≤. ······························································· 2分 合并,得36x -≤. ·········································································· 3分 系数化为1,得2x -≥. ··································································· 4分···································································································· 5分15.(本小题满分5分)证明:AB ED ∥,B E ∴∠=∠. ·················································································· 2分 在ABC △和CED △中,AB CE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,,, ABC CED ∴△≌△.········································································· 4分 AC CD ∴=. ·················································································· 5分 16.(本小题满分5分)解:由图象可知,点(21)M -,在直线3y kx =-上, ·································· 1分 231k ∴--=.解得2k =-. ·················································································· 2分 ∴直线的解析式为23y x =--. ······································································· 3分令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ··················································· 4分 令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,. ···················································· 5分17.(本小题满分5分)解:222()2x y x y x xy y+--+ 22()()x y x y x y +=-- ·············································································· 2分2x y x y +=-. ····················································································· 3分 当30x y -=时,3x y =. ·································································· 4分 原式677322y y y y y y +===-. ··································································· 5分 四、解答题(共2道小题,共10分)18.(本小题满分5分)解法一:如图1,分别过点A D ,作AE BC ⊥于点E ,DF BC ⊥于点F . ······························· 1分 ∴AE DF ∥.又AD BC ∥,∴四边形AEFD 是矩形.EF AD ∴==. ································ 2分 AB AC ⊥,45B ∠=,BC =AB AC ∴=.12AE EC BC ∴===DF AE ∴==CF EC EF =-=········································································· 4分在Rt DFC △中,90DFC ∠=,DC ∴=== ······································ 5分 解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,. ·········· 1分AB AC ⊥,90AED BAC ∴∠=∠=. AD BC ∥, 18045DAE B BAC ∴∠=-∠-∠=. 在Rt ABC △中,90BAC ∠=,45B ∠=,BC =sin 454242AC BC ∴=== ························································ 2分 在Rt ADE △中,90AED ∠=,45DAE ∠=,AD =AB CD F E2 A B C D F E 图11DE AE ∴==.3CE AC AE ∴=-=. ······································································· 4分 在Rt DEC △中,90CED ∠=,DC ∴===. ················································· 5分 19. (本小题满分5分)解:(1)直线BD 与O 相切. ························································· 1分证明:如图1,连结OD .OA OD =,A ADO ∴∠=∠.90C ∠=,CBD ∴∠+∠又CBD A ∠=∠,90ADO CDB ∴∠+∠=.90ODB ∴∠=. ∴直线BD 与O 相切. ···································································· 2分(2)解法一:如图1,连结DE .AE 是O 的直径, 90ADE ∴∠=.:8:5AD AO =,4cos 5AD A AE ∴==. ·········································································· 3分 90C ∠=,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. ···································································· 4分 2BC =, 52BD ∴=. ·························································· 5分 解法二:如图2,过点O 作OH AD ⊥于点H . 12A H D H A D ∴==. :8:5AD AO =, 4cos 5AH A AO ∴==.················· 3分 90C ∠=,CBD A ∠=∠, 4cos 5BC CBD BD ∴∠==. ························2BC =,BB52BD ∴=. ···················································································· 5分 五、解答题(本题满分6分)解:(1)补全图1见下图. ······························································ 1分913723100100⨯+⨯+==(个). 这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ·················· 3分200036000⨯=.估计这个超市每天需要为顾客提供6000个塑料购物袋. ·························· 4分(2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ················· 5分 根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献. ··················································· 6分六、解答题(共2道小题,共9分)21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ············································ 1分依题意,得3061(40)602x x +=+. ························································ 3分 解得200x =. ················································································· 4分 答:这次试车时,由北京到天津的平均速度是每小时200千米. ··············· 5分 22.解:(1)重叠三角形A B C '''. ···································· 1分(2)用含m 的代数式表示重叠三角形A B C '''2)m -; ··········· 2分m 的取值范围为843m <≤. ······························································ 4分 七、解答题(本题满分7分)23.(1)证明:2(32)220mx m x m -+++=是关于x 的一元二次方程,222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+.当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根. ·························································· 2分 图1 塑料袋数/个 “限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人(2)解:由求根公式,得(32)(2)2m m x m+±+=. 22m x m+∴=或1x =. ······································································· 3分 0m >,222(1)1m m m m++∴=>. 12x x <,11x ∴=,222m x m+=. ····································································· 4分 21222221m y x x m m+∴=-=-⨯=. 即2(0)y m m =>为所求. ·····(32(0)y m m =>与2(y m m => ·······································由图象可得,当1m ≥时,y ≤八、解答题(本题满分24.解:(1)y kx =沿y 轴向上平移3个单位长度后经过y 轴上的点C ,(03)C ∴,.设直线BC 的解析式为3y kx =+.(30)B ,在直线BC 上,330k ∴+=.解得1k =-.∴直线BC 的解析式为3y x =-+. ······················································· 1分抛物线2y x bx c =++过点B C ,,9303b c c ++=⎧∴⎨=⎩,.解得43b c =-⎧⎨=⎩,. ∴抛物线的解析式为243y x x =-+. ··················································· 2分 x 0)(2)由24y x x =-+可得(21)(1D A -,,3OB ∴=,3OC =,1OA =可得OBC △45OBC ∴∠=,CB =如图1,设抛物线对称轴与x 112AF AB ∴==过点A 作AE BC ⊥于点E .90AEB ∴∠=. 可得BE AE ==CE =在AEC △与AFP △中,90AEC AFP ∠=∠=,ACE APF ∠=∠,AEC AFP ∴△∽△.AE CE AF PF∴=,1PF =. 解得2PF =.点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,. ························································· 5分(3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ',则(10)A '-,. 连结A C A D '',,可得A C AC '==OCA '∠=由勾股定理可得220CD =,2A D '又210A C '=, 222A D A C CD ''∴+=. A DC '∴△是等腰直角三角形,CA '∠45DCA '∴∠=. 45OCA OCD '∴∠+∠=.45OCA OCD ∴∠+∠=.x图1 x图2即OCA∠与OCD∠两角和的度数为45.·············································· 7分解法二:如图3同解法一可得CD=在Rt DBF△中,90DFB∠=DB∴==在CBD△和COA△1DBAO==3BCOC==DB BC CDAO OC CA∴==.CBD COA∴△∽△.BCD OCA∴∠=∠.45OCB∠=,45OCA OCD∴∠+∠=.即OCA∠与OCD∠两角和的度数为45.·············································· 7分九、解答题(本题满分8分)25.解:(1)线段PG与PC的位置关系是PG PC⊥;PGPC= ···················································································· 2分(2)猜想:(1)中的结论没有发生变化.证明:如图,延长GP交AD于点H,连结CH CG,.P是线段DF的中点,FP DP∴=.由题意可知AD FG∥.GFP HDP∴∠=∠.GPF HPD∠=∠,GFP HDP∴△≌△.GP HP∴=,GF HD=.四边形ABCD是菱形,CD CB∴=,60HDC ABC∠=∠=.由60ABC BEF∠=∠=,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,可得60GBC∠=.xD CGPA BEFH。
2008年北京市中考试题及参考答案
2008年北京市高级中等学校招生考试数 学 试 卷一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.6-的绝对值等于( ) A .6B .16C .16-D .6-2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,50 D .135,50 5.若一个多边形的内角和等于720,则这个多边形的边数是( )A .5B .6C .7D .86.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )A .15B .25C .12D .357.若20x +=,则xy 的值为( )A .8-B .6-C .5D .68.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )2008年北京市高级中等学校招生考试数 学 试 卷二、填空题(共4道小题,每小题4分,共16分) 9.在函数121y x =-中,自变量x 的取值范围是 . 10.分解因式:32a ab -= .11.如图,在ABC △中,D E ,分别是AB AC ,的中点, 若2cm DE =,则BC = cm .12.一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).三、解答题(共5道小题,共25分) 13.(本小题满分5分)1012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭.解:CA E D BO P M O M ' M P A . O M ' M P B . OM ' M P C . O M ' M P D .解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.解: 15.(本小题满分5分)已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =.求证:AC CD =.证明:16.(本小题满分5分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标. 解: 17.(本小题满分5分) 已知30x y -=,求222()2x yx y x xy y+--+ 的值. 解:四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=,AD =,BC =求DC 的长. 解:ACE DBy A BCD已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.解:(1)(2)五、解答题(本题满分6分)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题: (1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明...........,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响. 解:(1)A图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 “限塑令”实施后,使用各种购物袋的人数分布统计图 其它 % 46%24%(2)六、解答题(共2道小题,共9分) 21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解: 22.(本小题满分4分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC 放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D ,,,恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A B C '''的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A B C '''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用).解:(1)重叠三角形A B C '''的面积为 ;(2)用含m 的代数式表示重叠三角形A B C '''的面积为 ;m 的取值范围为 .图1图2 A B 备用图 A B备用图七、解答题(本题满分7分)23.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.(1)证明:(2)解:(3)解:八、解答题(本题满分7分)24.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数. 解:(1)(2)x(3)九、解答题(本题满分8分) 25.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC 的值(用含α的式子表示). 解:(1)线段PG 与PC 的位置关系是 ;PGPC= . (2)D A BE F C P G 图1 D C G PA B F图22008年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷 (机读卷 共32分)第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分)13.(本小题满分5分)112sin 45(2π)3-⎛⎫+-- ⎪⎝⎭213=+- ·········································································································· 4分 2=. ····························································································································· 5分14.(本小题满分5分)解:去括号,得51286x x --≤. ······················································································ 1分 移项,得58612x x --+≤. ······························································································· 2分 合并,得36x -≤. ··············································································································· 3分 系数化为1,得2x -≥. ······································································································ 4分················································································································································· 5分 15.(本小题满分5分)证明:AB ED ∥, B E ∴∠=∠. ························································································································ 2分 在ABC △和CED △中,AB CE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,,, ABC CED ∴△≌△. ·········································································································· 4分 AC CD ∴=. ························································································································ 5分16.(本小题满分5分)解:由图象可知,点(21)M -,在直线3y kx =-上, ·························································· 1分 231k ∴--=. 解得2k =-. ························································································································· 2分∴直线的解析式为23y x =--. ·························································································· 3分 令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ················································································ 4分 令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,. ·················································································· 5分 17.(本小题满分5分) 解:222()2x yx y x xy y+--+ 22()()x yx y x y +=-- ················································································································· 2分2x yx y+=-. ····························································································································· 3分 当30x y -=时,3x y =. ··································································································· 4分原式677322y y y y y y +===-. ···································································································· 5分四、解答题(共2道小题,共10分) 18.(本小题满分5分)解法一:如图1,分别过点A D ,作AE BC ⊥于点E , DF BC ⊥于点F . ··············································· 1分ABCDFE 图1∴AE DF ∥.又AD BC ∥,∴四边形AEFD 是矩形.EF AD ∴== ··············································· 2分 AB AC ⊥ ,45B ∠=,BC = AB AC ∴=.12AE EC BC ∴===DF AE ∴==CF EC EF =-=············································································································ 4分 在Rt DFC △中,90DFC ∠=,DC ∴=== ························································· 5分解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,. ·························· 1分AB AC ⊥ ,90AED BAC ∴∠=∠= . AD BC ∥,18045DAE B BAC ∴∠=-∠-∠= .在Rt ABC △中,90BAC ∠=,45B ∠=,BC =sin 454AC BC ∴=== ··················································································· 2分 在Rt ADE △中,90AED ∠=,45DAE ∠=,AD ,1DE AE ∴==.3CE AC AE ∴=-=. ········································································································ 4分在Rt DEC △中,90CED ∠=,DC ∴== ········································································· 5分 19. (本小题满分5分) 解:(1)直线BD 与O 相切. ···························································································· 1分 证明:如图1,连结OD . OA OD = , A ADO ∴∠=∠.90C ∠= , 90CBD CDB ∴∠+∠= .AABCDFE图2又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= . 90ODB ∴∠= .∴直线BD 与O 相切. ······································································································· 2分 (2)解法一:如图1,连结DE .AE 是O 的直径, 90ADE ∴∠= .:8:5AD AO = ,4cos 5AD A AE ∴==. ············································································································ 3分90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. ··································································································· 4分 2BC = , 52BD ∴=.························································································· 5分解法二:如图2,过点O 作OH AD ⊥于点H . 12AH DH AD ∴==.:8:5AD AO = ,4cos 5AH A AO ∴==. ························· 3分90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. ········································· 4分2BC = ,52BD ∴=. ··························································································································· 5分五、解答题(本题满分6分) 解:(1)补全图1见下图. ··································································································· 1分91372263113100100⨯+⨯+⨯+==(个).这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ·········································· 3分A图1 “限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图200036000⨯=.估计这个超市每天需要为顾客提供6000个塑料购物袋. ···················································· 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ········································ 5分 根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献. ·························································································································· 6分 六、解答题(共2道小题,共9分)21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ···························································································· 1分依题意,得3061(40)602x x +=+. ······················································································ 3分 解得200x =. ······················································································································· 4分答:这次试车时,由北京到天津的平均速度是每小时200千米. ······································ 5分 22.解:(1)重叠三角形A B C '''································································ 1分 (2)用含m 的代数式表示重叠三角形A B C '''2)m -; ····························· 2分m 的取值范围为843m <≤. ······························································································· 4分 七、解答题(本题满分7分)23.(1)证明:2(32)220mx m x m -+++= 是关于x 的一元二次方程,222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+.当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根. ··························································································· 2分 (2)解:由求根公式,得(32)(2)2m m x m+±+=.22m x m+∴=或1x =. ········································································································ 3分0m > ,222(1)1m m m m++∴=>.12x x < ,11x ∴=,222m x m +=. ······································································································ 4分 21222221m y x x m m+∴=-=-⨯=.即2(0)y m m =>为所求.······························· 5分(3)解:在同一平面直角坐标系中分别画出0)。
2008--2018北京中考数学真题答案
,解得
,
x<3
∴不等式组的解为:-2<x<3.
1
中考数学备考 QQ群:689548040
20.关于 x的一元二次方程 ax2+bx+1=0.
(1)当 b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的 a,b的值,并求此时方
(2)解:如解图,连接 OC与 OD, ∵OA=OD,∠DAB=50°, ∴∠ODA=∠OAD=50°,
x/cm 0 1 2 3 4 5 6 y1/cm5.624.673.763.002.653.184.37 y2/cm5.625.595.535.425.194.734.11 (2)作图如下:
∵AB=AD, ∴四边形 ABCD是菱形; (2)解:由(1)得四边形 ABCD是菱形,
0),(3,0);
中考数学备考 QQ群:689548040
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3) 率排名情况如图所示,中国创新综合排名全球第 22,创新效率排名全球第3.
1 2018年北京市高级中等学校招生考试
时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),
解:(1)补全图形如解图:
动员起跳后的 x与 y的三组数据,根据上述函数模型
和数据,可推断出该运动员起跳后飞行到最高点时,水
平距离为
( B )
A
59 151 166 124 500
B
50 50 121 278 500
A.10m
B.15m C.20m D.22.5m
8.上图是老北京城一些地点的分布示意图.在图中,分别
当
y=1 4x+b过点(1,-1)时,b=-5 4,区域
2008年北京市中考数学试题和答案(WORD版)
2008年北京市高级中等学校招生考试数 学 试 卷一、选择题(共8道小题,每小题4分,共32分) 1.6-的绝对值等于( ) A .6B .16C .16-D .6-2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切B .相交C .外切D .外离4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20B .50,30C .50,50D .135,505.若一个多边形的内角和等于720,则这个多边形的边数是( ) A .5B .6C .7D .86.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )A .15B .25C .12D .357.若230x y ++-=,则xy 的值为( )A .8-B .6-C .5D .68.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )二、填空题(共4道小题,每小题4分,共16分) 9.在函数121y x =-中,自变量x 的取值范围是 . 10.分解因式:32a ab -= .11.如图,在ABC △中,D E ,分别是AB AC ,的中点, 若2cm DE =,则BC = cm .12.一组按规律排列的式子:2b a -,53b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数). 三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:1182sin 45(2)3-⎛⎫-+-π- ⎪⎝⎭.解:14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来. 解:CA E D B1 2 30 1- 2- 3- OPM OM 'M PA .OM 'M PB .OM 'M PC .OM 'M PD .15.(本小题满分5分)已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =. 求证:AC CD =. 证明:16.(本小题满分5分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标. 解:17.(本小题满分5分) 已知30x y -=,求222()2x yx y x xy y+--+的值. 解:ACEDB3y kx =- yxOM11 2-四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=,2AD =,42BC =,求DC 的长. 解:19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长. 解:(1) (2)ABCDDCOABE五、解答题(本题满分6分)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表处理方式 直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5%35%49%11%请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明...........,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响. 解:(1) (2)40 35 30 25 2015 10 5 0 图1 1 2 3 4 5 6 7 4 3 11 26 379 塑料袋数/个 人数/位 “限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 “限塑令”实施后,使用各种购物袋的人数分布统计图 其它 5% 收费塑料购物袋 _______% 自备袋 46%押金式环保袋24% 图2六、解答题(共2道小题,共9分)21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解:22.(本小题满分4分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.AGCF B ' C 'E BDA ' 图1AGCFB 'C ' E BDA '图2(1)若把三角形纸片ABC 放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D ,,,恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A B C '''的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A B C '''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用).解:(1)重叠三角形A B C '''的面积为 ;(2)用含m 的代数式表示重叠三角形A B C '''的面积为 ;m 的取值范围为 . 七、解答题(本题满分7分)23.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.A CB备用图ACB备用图(1)证明:(2)解:(3)解:1 2 3 44 3 2 1xy O -1 -2 -3 -4 -4-3 -2 -124.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点. (1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数.解:(1) (2) (3)1 Oy x2 3 44 32 1 -1 -2 -2-125.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC 的值(用含α的式子表示). 解:(1)线段PG 与PC 的位置关系是 ;PGPC= . (2)DAB EF CPG 图1DCG PAB EF图22008年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名.2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共32分)一、选择题(共8道小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8答案 A D C C B B B D第Ⅱ卷(非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分)题号9 10 11 12答案12x≠()()a ab a b+- 4207ba-31(1)nnnba--三、解答题(共5道小题,共25分)13.(本小题满分5分)解:11 82sin45(2π)3-⎛⎫-+-- ⎪⎝⎭2222132=-⨯+-····················································································4分22=-.···································································································5分解:去括号,得51286x x --≤. ···································································· 1分 移项,得58612x x --+≤. ··········································································· 2分 合并,得36x -≤. ······················································································· 3分 系数化为1,得2x -≥. ················································································· 4分 不等式的解集在数轴上表示如下:··················································································································· 5分 15.(本小题满分5分) 证明:AB ED ∥,B E ∴∠=∠. ······························································································· 2分 在ABC △和CED △中,AB CE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,,, ABC CED ∴△≌△. ···················································································· 4分 AC CD ∴=. ······························································································· 5分 16.(本小题满分5分)解:由图象可知,点(21)M -,在直线3y kx =-上, ·············································· 1分231k ∴--=.解得2k =-.································································································ 2分∴直线的解析式为23y x =--. ······································································· 3分令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ······························································· 4分令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,. ································································· 5分1 2 30 1- 2- 3-解:222()2x yx y x xy y +--+22()()x yx y x y +=-- ························································································· 2分 2x yx y+=-. ··································································································· 3分 当30x y -=时,3x y =. ·············································································· 4分原式677322y y y y y y +===-. ··············································································· 5分四、解答题(共2道小题,共10分) 18.(本小题满分5分)解法一:如图1,分别过点A D ,作AE BC ⊥于点E , DF BC ⊥于点F . ····································· 1分 ∴AE DF ∥.又AD BC ∥,∴四边形AEFD 是矩形.2EF AD ∴==. ····································· 2分AB AC ⊥,45B ∠=,42BC =, AB AC ∴=. 1222AE EC BC ∴===. 22DF AE ∴==,2CF EC EF =-= ····················································································· 4分在Rt DFC △中,90DFC ∠=,2222(22)(2)10DC DF CF ∴=+=+=. ············································· 5分解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,. ···················· 1分AB AC ⊥,ABCDFE 图190AED BAC ∴∠=∠=. AD BC ∥,18045DAE B BAC ∴∠=-∠-∠=.在Rt ABC △中,90BAC ∠=,45B ∠=,42BC =,2sin 454242AC BC ∴==⨯= ································································· 2分 在Rt ADE △中,90AED ∠=,45DAE ∠=,2AD =,1DE AE ∴==.3CE AC AE ∴=-=. ·················································································· 4分 在Rt DEC △中,90CED ∠=,22221310DC DE CE ∴=+=+=. ························································· 5分 19. (本小题满分5分) 解:(1)直线BD 与O 相切. ········································································ 1分 证明:如图1,连结OD .OA OD =, A ADO ∴∠=∠.90C ∠=, 90CBD CDB ∴∠+∠=.又CBD A ∠=∠,90ADO CDB ∴∠+∠=. 90ODB ∴∠=.∴直线BD 与O 相切. ················································································· 2分(2)解法一:如图1,连结DE .AE 是O 的直径, 90ADE ∴∠=. :8:5AD AO =, 4cos 5AD A AE ∴==. ······················································································ 3分 90C ∠=,CBD A ∠=∠,DCOABE 图1ABCDFE图24cos 5BC CBD BD ∴∠==. ··············································································· 4分 2BC =, 52BD ∴=. ······································································ 5分 解法二:如图2,过点O 作OH AD ⊥于点H . 12AH DH AD ∴==.:8:5AD AO =, 4cos 5AH A AO ∴==. ··················· 3分 90C ∠=,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. ································· 4分 2BC =, 52BD ∴=. ································································································· 5分 五、解答题(本题满分6分)解:(1)补全图1见下图. ·············································································· 1分9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个). 这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ································· 3分200036000⨯=.估计这个超市每天需要为顾客提供6000个塑料购物袋. ········································· 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ······························· 5分 根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为DCO ABH图240 35 30 25 20 15 10 5 0图1123 4 567 4 311 26379 塑料袋数/个人数/位 “限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 10环保做贡献. ································································································· 6分 六、解答题(共2道小题,共9分)21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ········································································· 1分 依题意,得3061(40)602x x +=+. ···································································· 3分 解得200x =. ······························································································ 4分 答:这次试车时,由北京到天津的平均速度是每小时200千米. ······························ 5分 22.解:(1)重叠三角形A B C '''的面积为3. ··················································· 1分(2)用含m 的代数式表示重叠三角形A B C '''的面积为23(4)m -; ······················· 2分m 的取值范围为843m <≤. ··········································································· 4分七、解答题(本题满分7分) 23.(1)证明:2(32)220mx m x m -+++=是关于x 的一元二次方程,222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+.当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根. ········································································ 2分(2)解:由求根公式,得(32)(2)2m m x m+±+=.22m x m+∴=或1x =. ·················································································· 3分 0m >, 222(1)1m m m m++∴=>. 12x x <,11x ∴=,222m x m +=. ················································································ 4分 21222221m y x x m m+∴=-=-⨯=.即2(0)y m m =>为所求. ······················· 5分(3)解:在同一平面直角坐标系中分别画出4 3 2 1xy2(0)y m m=> 2(0)y m m =>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.如图,在 △ABC 中, D,E 分别是 AB,AC 的中点,若 DE 2cm ,则 BC
cm. D
A E C
【解析】 4 【点评】 本题尽管是填空题的倒数第二道题,但难度很小,很多学生在读完题后就能马 上写出正确答案. B 本题考点:三角形的中位线(或相似三角形) 难度系数:0.85
1 中,自变量 x 的取值范围是 2x 1
.
1 2
【点评】 本题作为填空题的第 1 道,故难度不大,解决本题的关键是:分式的分母不能为零 本题考点:函数自变量的取值范围、分式的分母不能为零. 难度系数:0.9
10.分解因式: a3 ab2 【解析】 a(a b)(a b)
.
【点评】 本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式. 本题考点:因式分解(提取公因式法、应用公式法) 难度系数:0.85
D AB ∥ ED , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分 B E . · 在 △ABC 和 △CED 中,
2 2 2
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 1 3 · 2
2. 截止到 2008 年 5 月 19 日, 已有 21 600 名中外记者成为北京奥运会的注册记者, 创历届奥运会之最. 将 21 600 用科学记数法表示应为( ) A. 0.216 105 B. 21.6 103 C. 2.16 103 D. 2.16 104 【解析】 D 【点评】 本题是以奥运会为背景的一道题,考核了科学记数法的同时让学生了解我国今年奥运会的进展 及相关情况,此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.9
M
M
M
P
O
M
M
P
O
M
M
P
O
M
A.
B.
C.
D.
【解析】 D 【点评】 本题考核了立意相对较新,考核了学生的空间想象能力。 本题考点:圆锥侧面展开图、两点之间线段最短. 难度系数:0.4
08 北京中考试题分析(数学)
第 2 页 (共 15 页)
二、填空题(共 4 道小题,每小题 4 分,共 16 分) 9.在函数 y 【解析】 x
AB CE, B E, BC ED,
△ABC ≌△CED . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 AC CD . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5分 【点评】 本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的 几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显。本题是解答题中几 何的第 1 道题,难度较小是为了让所有的考生在进入解答题后都有一个顺利的开端,避免产生 畏惧心理,这样考试才有信心做后面较难的题目。 本题考点:全等三角形的判定(SAS)和性质. 难度系数:0.9
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5分 【点评】 解不等式也是北京市中考题中计算题部分的常考题型. 本题易错点是:在数轴上表示最后的解集时,要注意数轴上这个点是实心点还是空心点 本题考点:解不等式、在数轴上表示不等式的解集. 难度系数:0.75 A 15. (本小题满分 5 分) B 已知:如图, C 为 BE 上一点,点 A,D 分别在 BE 两侧. AB ∥ ED , AB CE , BC ED .求证: AC CD . 【解析】 C E
A.5
B.6
C.7
D.8
【解析】 B 【点评】 本题考核了多边形的外角和公式及利用外角和公式列方程解决相关问题.外角和公式是初一下的 内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能 真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学, 理解比记忆更重要. 本题考点:多边形的内角和公式,及利用公式列方程解应用题 难度系数:0.75 6.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃) 、 火炬和奖牌等四种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机 抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )
A.
1 5
B.
2 5
C.
1 2
D.
3 5
【解析】 B 【点评】 本题和第 2 题一样,也是以奥运知识为背景的一道题目,本题在让学生了解奥运知识的基础上 考核了学生对概率的理解. 本题考点:求概率. 难度系数:0.95 7.若 x 2 y 3 0 ,则 xy 的值为(
)
A. 8 B. 6 C. 5 D. 6 【解析】 B 【点评】 本题考核了非负数的性质,这种题型在平时训练中应该很常见. 本题考点:非负数的性质、绝对值、二次根式 难度系数:0.75 8.已知 O 为圆锥的顶点, M 为圆锥底面上一点,点 P 在 OM 上.一只蜗牛从 P 点出发,绕圆锥侧面爬 行,回到 P 点时所爬过的最短路线的痕迹如右图所示.若沿 OM 将圆锥侧面剪开并展开,所得侧面展开 图是( ) O P M P O
14. (本小题满分 5 分) 解不等式 5x 12 ≤ 2(4 x 3) ,并把它的解集在数轴上表示出来.
3 2 1 0 1 2 3 【解析】 去括号,得 5x 12 ≤ 8x 6 . 1 分 移项,得 5x 8x ≤ 6 12 .· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分 合并,得 3x ≤ 6 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3分 系数化为 1,得 x ≥ 2 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 不等式的解集在数轴上表示如下: 3 2 1 0 1 2 3
4.众志成城,抗震救灾.某小组 7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单 位:元) :50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A.50,20 B.50,30 C.50,50 D.135,50 【解析】 C 【点评】 本题以给地震灾区捐款为背景,考核了统计概率的相关知识。本题在考核数学知识的基础上向 学生渗透爱心教育,是一道很不错的题目. 本题考点:众数、中位数. 难度系数:0.85 5.若一个多边形的内角和等于 720 ,则这个多边形的边数是( 08 北京中考试题分析(数学) ) 第 1 页 (共 15 页)
08 北京中考试题分析(数学)
第 4 页 (共 15 页)
y kx 3
y 1 O 1 x
M 16. (本小题满分 5 分) 如图,已知直线 y kx 3 经过点 M ,求此直线与 x 轴, y 轴的交点坐标. 【解析】 由图象可知,点 M (2, 1) 在直线 y kx 3 上,1 分
三、解答题(共 5 道小题,共 25 分) 13. (本小题满分 5 分)
1 计算: 8 2sin 45 (2 )0 . 3 1 【解析】 8 2sin 45 (2 π) 3
0 1 1
08 北京中考试题分析(数学)
第 3 页 (共 15 页)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5分 2 2.· 【点评】 本题综合考核了初中数学代数部分的相关计算题,尽管题目综合的知识点很多,但是都不难, 只要掌握了每一个知识点,解决本题应该不在话下.本题是北京市中考计算题中的常见题型. 本题考点:二次根式的化简、特殊角的三角函数值、零次幂运算、负指数幂运算. 难度系数:0.8