初中数学专题_折叠问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八折叠问题

学习要点与方法点拨:

出题位置:选择、填空压轴题或压轴题倒数第二题

折叠问题中,常出现的知识时轴对称。折叠对象有三角形、矩形、正方形、梯形等;

考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;轴对称性质-----折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

基本图形:

在矩形ABCD中,将△ABF沿BE折叠至△FBE,可得何结论

(1)基本图形练习:

如图,将三角形纸片ABC沿过点A的直线折叠,使得AC落在AB上,折痕为AD,展开纸片;再次折叠,使得A 和D点重合,折痕为EF,展开纸片后得到△AEF,则△AEF是等腰三角形,对吗

(2)折叠中角的考法与做法:

将矩形纸片ABCD沿过点B的直线折叠,使得A落在BC边上的点F处,折痕为BE(图1);再沿过点E的直线折叠,使点D落在BE边上的点D’,折痕为EG(图2),再展开纸片,求图(3)中角a的大小。

结论:(1)全等;(2)垂直。

(3)折叠中边的考法与做法:

如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边中点E处,

折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是多少

★解题步骤:

第一步:将已知条件标在图上;

第二步:设未知数,将未知数标在图上;

模块精讲

例1.(2014•扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.

①求证:△OCP∽△PDA;

②若△OCP与△PDA的面积比为1:4,求边AB的长;

(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;

(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),

动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度.

例2.(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则= 用含k的代数式表示).

例3、(2013•苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是

△EB′F.设点E、F、G运动的时间为t(单位:s).

(1)当t= s时,四边形EBFB′为正方形;

(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;

(3)是否存在实数t,使得点B′与点O重合若存在,求出t的值;若不存在,请说明理由.

例4、如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD 交于点G,F,AE与FG交于点O.

(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;

(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;

(3)如图2,在(2)的条件下,求折痕FG的长.

例5、已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD 对称,AC与BD相交于点G,则()

A.1+tan∠ADB=2 B.2BC=5CF

C.∠AEB+22°=∠DEF D.4cos∠AGB=6

课堂练习

1、

2、(2014连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=_________ .

图3 图4

3、(2014•徐州)如图3,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=_________ °.

4、(2014•扬州)如图4,△A BC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_________ cm2.

5、(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和

B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.

(1)求y与x的函数关系式;

(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;

(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.

课后巩固习题

1、(2014•淮安)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.

2、(2013•宿迁)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.

(1)证明△AMF是等腰三角形;

(2)当EG过点D时(如图(3)),求x的值;

(3)将y表示成x的函数,并求y的最大值.

相关文档
最新文档