第三章 统计热力学
热力学与统计物理第三章知识总结
![热力学与统计物理第三章知识总结](https://img.taocdn.com/s3/m/5e2e4be40975f46527d3e1c1.png)
§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。
这些条件可以利用一些热力学函数作为平衡判据而求出。
下面先介绍几种常用的平衡判据。
oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。
于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。
孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。
如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。
在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。
如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。
亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。
如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。
熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。
不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据表示在等温等容条件下,系统的自由能永不增加。
这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。
我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。
这一判据称为自由能判据。
热力学统计物理 第三章 课件
![热力学统计物理 第三章 课件](https://img.taocdn.com/s3/m/e003b162b84ae45c3b358c24.png)
故而,由δS=0可以得到平衡条件,由δ2S<0可以得到 平衡的稳定性条件。
熵判据是基本的平衡判据,适用于孤立系统。 自由能判据和吉布斯函数判据 自由能判据:等温等容系统处在稳定平衡状态的必要 和充分条件为 ΔF > 0
将F作泰勒展开,准确到二级,有 1 F F 2 F 2 由δF=0和δ2F>0可以确定平衡条件和平衡的稳定性条件。
在平衡曲线上两相的化学势相等,两相可以以任意比 例共存。两相平衡是一种中性平衡。
当系统缓慢地从外界吸收或放出热量时,物质将由一
相转变到另一相而始终保持在平衡态,称为平衡相变。
单元系三相共存时,三相的温度、压强和化学势都必须相等,即 Tα = Tβ = Tγ = T , p α = p β = p γ = p
δS = 0
因为δUα、δVα、δnα是可以独立改变的,这要求 1 1 p p 0, 0, 0 T T T T T T 即
Tα = Tβ(热平衡条件)
pα = pβ(力学平衡条件)
μα =μβ(相变平衡条件)
上式指出,整个系统达到平衡时,两相的温度、压强和化 学势必须分别相等。
吉布斯函数是一个广延量,当物质的量发生变化时,吉布斯函 数也将发生变化。
对于开系,上式应推广为
dG = -SdT + Vdp +μdn 式中第三项代表由于物质的量改变dn所引起的吉布斯函数 的改变,而
称为化学势。
G n T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物
H和F分别是以S、p、n和T、V、n为独立变量的特性函数。
定义一个热力学函数 J = F -μn 称为巨热力势。
统计热力学
![统计热力学](https://img.taocdn.com/s3/m/086f6f699b6648d7c1c746c9.png)
统计热力学统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
《统计热力学》教学课件
![《统计热力学》教学课件](https://img.taocdn.com/s3/m/6c385a9529ea81c758f5f61fb7360b4c2e3f2aac.png)
《统计热力学》教学课件
欢迎来到《统计热力学》教学课件!在本课程中,我们将介绍统计热力学的 基本概念、方程和应用。让我们一起开始这个精彩的学习之旅吧!
统计热力学的介绍
统计热力学研究热力学现象的微观机制和宏观行为。它涉及热力学基本原理、熵、能量和热平衡等重要概念。通过 统计方法,我们可以深入理解物质的性质和相互之间的相互作用。
2
配分函数
配分函数是描述处于不同能级上的粒子分布情况和系统性质的重要函数。
3
巨正则系综
巨正则系综适用于描述粒子数、能级和粒子间相互作用等变量不固定的系统。
应用案例与实例分析
化学反应动力学
相变现象
量子统计
统计热力学可应用于描述化学反应
研究物质在不同温度下的相变行为, 应用量子统计原理分析高能物理、
动力学,预测反应速率和平衡位置。 如液体与气体的转变过程。
微观状态
微观系统的状态由分子或粒子的 位置、能量和动量等特性决定。
统计力学
通过统计方法研究大量粒子的平 均行为,为热力学定律提供微观 基础。 Nhomakorabea热力学均衡
系统在达到热力学平衡时,各种 宏观和微观性质达到稳定状态。
统计热力学方程
1
玻尔兹曼熵公式
熵是描述系统无序程度的物理量,玻尔兹曼熵公式给出了熵与微观状态数的关系。
材料科学等领域的问题和现象。
课堂互动与练习
• 与同学进行小组讨论,共同解决统计热力学的相关问题。 • 进行实验和模拟,观察统计热力学原理在实际系统中的应用。 • 完成课后练习和作业,巩固对统计热力学的理解和运用能力。
总结与展望
通过学习《统计热力学》,我们深入理解了热力学现象的微观机制和宏观行为。希望这门课程能给大家带来全新 的热力学视角和思考方式。
物理化学教材统计热力学
![物理化学教材统计热力学](https://img.taocdn.com/s3/m/94d7b2fb64ce0508763231126edb6f1aff0071ab.png)
03 热力学函数与状态方程
热力学函数的概念与性质
热力学函数
描述系统热力学行为的物理量,如内能、熵、焓等。
热力学函数的性质
封闭系统中,热力学函数的改变量只与系统与外界的 能量交换有关,与具体变化过程无关。
热力学基本方程
描述系统热力学函数之间关系的方程,如热力学第一、 第二定律等。
热容与熵的概念
热容
平衡。
05 热力学过程与平衡常数
热力学过程及其计算方法
热力学过程
是指系统状态随时间的变化过程,包括等温、等压、等 容等过程。
计算方法
通过热力学基本定律和相关公式,计算过程中系统吸收 或释放的热量、功量等物理量。
平衡常数的概念与计算
平衡常数
是指在一定条件下,可逆反应达到平衡状态时,反应 物和生成物的浓度比值。
02 分子运动论与热力学定律
分子运动论的基本概念
分子运动论
分子运动论是研究物质分子运动 规律的理论,它通过分析分子运 动的速度、方向、频率等参数, 揭示物质宏观性质和微观结构之
间的关系。
分子模型
分子模型是描述分子形状和结构 的工具,常见的分子模型包括球 棒模型、比例模型等,它们可以 直观地展示分子的几何形状和内
热力学第三定律
热力学第三定律指出,绝对零度是不可能达到的,即绝对 零度是不可能达到的。
分子运动论中的热力学基本关系式
理想气体状态方程
理想气体状态方程是描述理想气体状 态变化规律的公式,它表示气体的压 力、体积和温度之间的关系。
热容公式
热容公式是描述物质在加热或冷却过 程中吸收或释放热量时温度变化规律 的公式,它表示物质的比热容、熵等 热力学参数之间的关系。
统计分布描述了大量粒子系统中,粒子在各 种可能状态下的分布情况。
软件仓库-第三章统计热力学
![软件仓库-第三章统计热力学](https://img.taocdn.com/s3/m/43826c14580216fc700afd37.png)
能量为
3
h2 8 mV
2
3
平动能级是多变的, t为一定值时, nx, ny, nz有 不同的取值, 对应着不同的量子态, 如
t 68m h22V 3, nx 2n2 ynz26
nx 取 值: ny
nz
112 1 2 1,是三重简并的. 211
第三章 统计热力学初步
物理化学电子教案
(2) 刚性转子的转动能
第三章 统计热力学初步
物理化学电子教案
(3) 一维谐振子的振动能
双原子分子中原子沿化学键方向在平衡位置 附近振动, 其振动运动的Schordonger方程为:
d d 2 x2 v8 h 2 2(v2 2v2x2)v0
解得振动能量为:
v
1 vhv 2
nx、ny、nz 分别为在 x 、y 、z 方向上平动量 子数, 若为立方体时
t 8m h2V 23 nx 2n2 ynz2
第三章 统计热力学初步
物理化学电子教案
可见平动能级是量子化的, 其值不能任意取,
由量子数 nx, ny, nz决定, 其基态对应着 nx= ny= nz
=
1的状态,
(1) 简单粒子体系
对于(U, V, N )一定的体系, 设有三个一维谐振子组成, 总能量为9hv/2. 确定体系的能量分布及微态数.
该体系应满足: Nt N3,
U N ii9 h/2 v
第三章 统计热力学初步
物理化学电子教案
每个粒子在定点附近作振动运动,并以a, b, c 加以区别, 若每个能级上粒子数不受限制, 系统能 量可按如下分布:
物理化学电子教案
§3.1 引 言
1.统计热力学的研究对象和方法
热力学统计物理第三章
![热力学统计物理第三章](https://img.taocdn.com/s3/m/1f870d2933d4b14e8424680e.png)
G0
系统的温度和压强不变的条件下,对于各种可能的变动,
系统的吉布斯永不增加,即平衡态的吉布斯最小。
4、泰勒展开:
G G 1 22 G G 2 G 0 0 确 平 定 衡 平 稳 衡 定 条 性 件 条 件
第十页,共87页
5、判断方法
趋向平衡态的变化过程中: G 0
G是T, p, n 以为独立变量的特性函数。
已知G(T, p, n),其它热力学量可通过下列偏导数求得:
d= G Sd V T+ d dPn
S (GT )p,n
V
(
G p
)T
,n
G ( n )T,p
第二十页,共87页
二、开系中内能
UGTSpV
内能的全微分
dU Td p Sd V d由n 于摩尔数的改变所
体积的变化 内能的变化
V+V0=0 U+U0=0
整个系统是孤立系统,则这些量一个变 大,另一个变小,总量不变。
子系统的熵变 S=S+2S
媒质的熵变 S0=S0+2S0
虚变动引起的系统的熵变 S总 = S +S0
稳定的平衡条件下,
S总 = S+S0=0
整个孤立系统的熵取极大值,
第十三页,共87页
对于一个孤立的均匀系统
热量传递将使子系统温度降低,从而恢复平衡。
3子系子统系的统压的强体将积增发高生,收缩大,于根媒据质的压强,( 于VP是)T子系0统将膨胀。系统恢复
平衡。
第十七页,共87页
3、单(多)元系,单(多)相系
【单元系】:指化学纯的物质系统.只含一种化学组分(组元).
【单相系】:一个均匀的部分称为一个相, 均匀系也称单相系.
热力学与统计物理第三章知识总结
![热力学与统计物理第三章知识总结](https://img.taocdn.com/s3/m/41461115dc36a32d7375a417866fb84ae55cc37f.png)
热力学与统计物理第三章知识总结第一篇:热力学与统计物理第三章知识总结§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。
这些条件可以利用一些热力学函数作为平衡判据而求出。
下面先介绍几种常用的平衡判据。
oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。
于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。
孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。
如果只有体积变化功,孤立系条件相当与体积不变和内能不变。
因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。
在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。
如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变稳定的平衡状态。
如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。
亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。
如果对于某些变动,熵函数的数值不变,这相当于中性平衡了。
,该状态的熵就具有极大值,是熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。
不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。
2、自由能判据表示在等温等容条件下,系统的自由能永不增加。
这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。
我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。
第三章 统计热力学基础
![第三章 统计热力学基础](https://img.taocdn.com/s3/m/658c9bae770bf78a652954fb.png)
陕西师范大学物理化学精品课程
能量量子化的概念引入统计热力学,对经典统计进行某些修正,发展成为麦克斯韦-玻 兹曼统计热力学方法。1924 年量子力学建立后,在统计力学中不但所依赖的力学基础要 改变,而且所用的统计方法也需要改变。由此产生了玻色-爱因斯坦(Bose-Einstein)统计 和费米-狄拉克(Fermi-Dirac)统计,分别适用于不同的体系。这两种统计方法都可以在 一定的条件下通过适当的近似而得到玻兹曼统计。本章的内容就是简要介绍麦克斯韦- 玻兹曼统计热力学的基本原理和应用。
n1 n2
……….ni
ε1
ε2
………. εi
φ1 φ2
………φi
简并度:一种能级有多种量子状态即一种能量对应多个波函数。
n1
n2 …………… ni
ε1
ε2 ………. εi
φ11φ12...φ1gi φ21φ22...φ2gi ……… φi1φi2...φigi 注:gi是能级εi具有的量子状态数,称该能级的简并度或者统计权重。
由大量粒子组成的体系的微观运动状态也是千变万化的,如何描述粒子及体系的微观运 动状态呢?经典力学与量子力学有不同的描述方法。
经典力学:粒子运动遵守牛顿运动方程,常用空间坐标(qx, qy, qz)、瞬时速度或动量 (px, py, pz)来描述粒子的运动状态。在经典力学中,可根据粒子的空间坐标识别它们,故 在经典力学中认为粒子是可别的。
系的总能量等于各个粒子的能量之和,即U =∑εi ;后者或称为相依粒子体系,其粒子
i
之间其的相互作用不容忽略,如高圧下的实际气体等,这种体系的总能量除了各个粒子
∑ 的能量之和外,还存在粒子之间相互作用的位能,即U = εi + UI (x1, y1, z1,......xN , yN , zN ) 。
《统计热力学基础》课件
![《统计热力学基础》课件](https://img.taocdn.com/s3/m/c37ac1ce8662caaedd3383c4bb4cf7ec4bfeb66a.png)
分布函数的定义
分布函数是描述系统微观状态分布的函数,它表示在某一时刻, 系统中的粒子在各个状态上的概率分布情况。
微观状态数的概念
微观状态数是描述系统内部可能的状态数量的一个概念,它与系统 的宏观状态和微观状态有关。
分布函数的应用
通过分析分布函数,可以了解系统的微观结构和性质,从而更好地 理解系统的宏观行为和变化规律。
02
概率分布
概率分布用于描述粒子集合中不同微观状态的概率分布情况。最常见的
概率分布有玻尔兹曼分布和麦克斯韦-玻尔兹通过概率分布可以计算各种物理量的平均值,如粒子的平均速度和平均
动能。同时,涨落描述了粒子集合中物理量的偏离平均值的情况。
统计热力学的发展历程
早期发展
经典统计热力学
统计热力学的重要性
在科学研究和工程应用中,统计热力学提供了理解和预测物质性质、能量转换 和热力学过程的基础理论框架。它对于化学工程、材料科学、环境科学等领域 具有重要意义。
统计热力学的基本概念
01
微观状态和宏观状态
微观状态是指单个粒子的状态,如位置和速度;宏观状态是指大量粒子
集合的整体状态,如温度、压力和体积。
05
02
详细描述
热力学的第二定律指出,在一个封闭系统中 ,自发过程总是向着熵增加的方向进行,即 熵总是向着增加的方向变化。
04
详细描述
根据热力学的第二定律,热机的效率 不可能达到百分之百,因为总会有一 些能量以热的形式散失到环境中。
06
详细描述
热力学的第二定律还排除了第二类永动机的存 在,即不能从单一热源吸收热量并将其完全转 化为机械功而不产生其他影响。
熵的概念和性质
1 2
熵的定义
统计热力学基础.ppt
![统计热力学基础.ppt](https://img.taocdn.com/s3/m/0e3ac4406f1aff00bed51ec6.png)
N
qN
lnq
S kBln
N! NkBT (
T
)
V, N
(定位) (非定位)
G
kBTln q N
NkBTV
lnq ()
V T, N
G
kBTln
qN N!
NkBTV
lnq ()
V T, N
(定位) (非定位)
2020-6-17
谢谢阅读
18
U
NkBT
2 (lnq ) T V,
N
(定位或非定位)
H
NkBT
分布为最概然分布;
2020-6-17
谢谢阅读
7
通过摘取最大相原理可证明:在粒子数 N 很大 (N 1024)时,玻尔兹曼分布的微观状态数 (tmax) 几乎可以代表体系的全部微观状态数 ();
故玻尔兹曼分布即为宏观平衡分布。
在 A、B 两个能级上粒子数之比:
A / kBT
N g e A
A
量在第 i 个微态中的取值。
2020-6-17
谢谢阅读
6
七、玻尔兹曼分布
玻尔兹曼分布是自然界最重要的规律之一,其数 学表达为:
Ni
N
g ei / kBT i g ei / kBT i
i
(定位或非定位)
玻尔兹曼分布是微观状态数最多(由求 ti 极大值
得到)的一种分布;根据等概率原理,玻尔兹曼
可计算体系的熵。
2020-6-17
谢谢阅读
2
三、分布(构型、布居)
一种分布: 指 N 个粒子在许可能级上的一种分配;
每一种分布的微观状态数(ti)可用下列公式计算:
• 定位体系: ti N!
统计热力学课件
![统计热力学课件](https://img.taocdn.com/s3/m/d5bbddc5690203d8ce2f0066f5335a8102d266f9.png)
统计热力学课件1. 引言统计热力学是热力学的一个分支领域,它通过统计方法来研究物质的宏观性质。
统计热力学在物理学、化学等领域都有着广泛的应用。
本课件将介绍统计热力学的基本概念和主要内容。
2. 统计热力学基本概念2.1 系综统计热力学的基本概念之一是系综(Ensemble)。
系综是指一个包含一组相同物理性质的系统的集合。
常见的系综有微正则系综、正则系综、巨正则系综等。
2.2 平衡态在统计热力学中,平衡态是指系统的宏观性质不随时间改变或在长时间内保持不变的状态。
平衡态的性质可以通过统计平均值来描述。
2.3 统计力学统计力学是统计热力学的基本方法,它通过建立系统与外界的相互作用关系,研究宏观性质与微观粒子运动规律之间的关系。
统计力学的核心是概率论和统计学的应用。
3. 统计热力学的主要内容3.1 玻尔兹曼分布玻尔兹曼分布是统计热力学中最基本的分布函数之一,它描述了自由粒子在一定温度下的分布状态。
3.2 能量与熵能量和熵是统计热力学中两个重要的物理量。
能量是系统状态的核心属性,熵则是系统的无序程度。
统计热力学通过研究能量和熵的关系来揭示物质的宏观行为。
3.3 统计平均值统计平均值是描述系统平衡态性质的基本指标,例如内能、熵等。
通过对系统微观状态进行统计,可以得到系统宏观性质的平均值,从而揭示系统的宏观行为。
3.4 相变与临界现象相变和临界现象是统计热力学的一个重要研究内容。
相变是指物质在一定条件下从一个相向另一个相的转变。
临界现象则是相变过程中出现的特殊现象,例如临界点和临界指数等。
4. 应用领域4.1 物理学在物理学领域,统计热力学被广泛应用于凝聚态物理、磁学、高能物理等研究中。
例如,统计热力学可以用来解释物质的相变行为、电磁波的统计行为等。
4.2 化学在化学领域,统计热力学可以用来研究化学平衡、化学反应速率等问题。
例如,通过统计方法可以计算出化学反应的平衡常数和反应速率常数。
4.3 生物学统计热力学在生物学领域的应用越来越广泛。
材料热力学第三章-统计热力学基础2016
![材料热力学第三章-统计热力学基础2016](https://img.taocdn.com/s3/m/2f161fee0242a8956bece456.png)
式,但任何一种状态分布方式都服从粒子数守恒和能
量守恒。
n
j
j
N
j
n
j j
U
3.2.1微观粒子的能量分布
若各能级的简并度均为1时,一种能级分布只对应着一 种状态分布 若有的能级简并度不为1时,这种能级分布就对应着多 种状态分布
宏观系统的平衡状态,在微观上瞬息万变。当系统内每个粒子 都能给与确定的描述(即量子状态确定)时系统呈现的状态称 为微观状态。只要有一个粒子的量子态发生改变,就构成一种 新的微观状态。把能实现某种分布的所有微观状态的总和叫做 这种分布的微观状态数。所有分布的微观状态数的总和叫系统 的微观状态数。
引入拉格朗日未定系数法,③ + αX② + βX① = 0,
gi i ln n i ni 0 i
待定乘数 和 的求取
31
3.4 Maxwell-Boltzman能量分配定律
gi ln i 0 ni 代入到 N i ni 得
ω=
N! N! N1! N 2 !...N i ! N i !
i
3.2.2 热力学几率计算
可辨粒子体系(定域子系统, 晶体):
n1 , n2, , ni i 当各能级简并度是 g1 , g 2 , , g,各能级分布数是
W D N !
i
ni gi
ni !
等同粒子体系(离域子系统,理气):
N i ni e i gi e
代入到 E
i
ni gi e e
i
e N i gi e
i
第三章_单元系的相变_热力学统计物理
![第三章_单元系的相变_热力学统计物理](https://img.taocdn.com/s3/m/ac8072c94028915f804dc2c3.png)
U p0 V
T0
代入平衡条件得到:
1 1 p p S U ( ) V ( 0 ) 0 T T0 T T0
9
上页得到: S U ( ) V (
1 T
1 T0
p T
p0 )0 T0
由于虚变动δU、δV 可任意变化,故上式要求:
UB U A W T
外界所作的功是
SB S A
W p(VB VA )
SB S A
U B U A p (VB V A ) T
G GB GA 0
在等温等压过程中,系统的吉布斯函数永不增 加。也就是说,在等温等压条件下,系统中发 生的不可逆过程总是朝着吉布斯函数减少的方 向进行的。
T T0
p p0
结果表明:达到平衡时整个系统的温度和压强是均匀的!
2、稳定平衡
近似有 而
~ S 2 S0 2 S 0 2~ S 2S 0
2
可以证明:
2 S0 2 S
2S 2S 2S 2S (U ) 2 2 UV 2 (V ) 2 0 U 2 UV V
4
二、热平衡的判据(热动平衡条件)
1、基本平衡判据
根据熵增加原理,孤立系统中发生的趋于平衡的过程 必朝着熵增加的方向进行。
熵判据:孤立系统平衡态是熵最大的态。 相对于平衡态的虚变动后的态的熵变小。 孤立系统处在稳定平衡状态的必要充分条件:
1 1 S S 2! S 3! S
U n H n F n
pdV dn
T ,V
18
定义:巨热力势
热力学与统计物理第三章
![热力学与统计物理第三章](https://img.taocdn.com/s3/m/562df77367ec102de2bd89bd.png)
2020/4/4
17
由开系的基本热力学方程知: dU TdS pdV dn
S
U
p V
T
n
S
U
p V
T
n
由熵的广延性质: S S S
δS
1 T
1 T
δU
p T
p T
δV
T
T
δn
利用熵判据,平衡时总熵应有极大值,所以: δS 0
2020/4/4
18
T T 热平衡条件
独立变化。
• 相平衡曲线 在单元两相系中,由相平衡
条件所得到的T—p之间的关系p = p( T ),在T—p图上所描述的曲线
称为相平衡曲线。
AC—汽化线,分开气相区和液相区; AB—熔解线,分开液相区和固相区; 0A—升华线,分开气相区和固相区。
2020/4/4
24
单元两相平衡共存时,必须满足下面三个平衡条件:
第三章 单元系的相变
单元系:化学上纯的物质系统。 相:被一定边界包围,性质均匀的部分。
2020/4/4
1
§3.1 热动平衡判据
一、熵判据
• 虚变动
为了对系统的平衡态作出判断,必须考虑系统在平衡态 附近的一切可能的变动,这里面就有趋向平衡态的变动和 离开平衡态的变动。在热力学范围内,不考虑涨落现象, 系统一旦达到平衡态以后,其性质就不再发生变化了。因 此,在平衡态附近的一切可能的变动就是理论上虚拟的, 并不代表系统真实的物理过程,引进它的目的完全是为了 从数学上方便地导出系统的平衡条件。这类似于理论力学 中的“虚位移”概念。并以δ表示之。
它对各种平衡态系统包括化学平衡系统均成立。
2020/4/4
22
统计热力学基础
![统计热力学基础](https://img.taocdn.com/s3/m/f1127dbfb307e87100f6962b.png)
量子力学中把能级可能有的微观状态数称为
该能级的简并度,用符号gi 表示。简并度亦称为
退化度或统计权重。
简并度(degeneration)
例如,气体分子平动能的公式为:
N!
Hale Waihona Puke g Ni iN! i
i Ni !
非定位体系的最概然分布
同样采用最概然分布的概念,用Stiring公式
和Lagrange乘因子法求条件极值,得到微态数为
极大值时的分布方式
N
*(非定位)为:
i
N(i* 非定位) N
g ei / kT i g ei / kT i
i
由此可见,定位体系与非定位体系,最概然
的分布公式是相同的。
Boltzmann公式的其它形式
(1)将i能级和j能级上粒子数进行比较,用最 概然分布公式相比,消去相同项,得:
Ni*
N
* j
g ei / kT i
g e j / kT j
Boltzmann公式的其它形式
(2)在经典力学中不考虑简并度,则上式成为
Ni*
N
* j
i / kT
ee j / kT
(U,V , N)
N!
g Ni i
i
i Ni !
求和的限制条件仍为:
Ni N
Nii U
i
i
有简并度时定位体系的微态数
再采用最概然分布概念, i max ,用
Stiring公式和Lagrange乘因子法求条件极值,得
到微态数为极大值时的分布方式 Ni* 为:
统计热力学
![统计热力学](https://img.taocdn.com/s3/m/c947ec103186bceb18e8bb4c.png)
这就是定域体系的自由能公式,式中Q称为分子配分函数。
❖ 总结
定域体系有三个重要公式:
1、总微观状态数
γν ι
Ω Ν! ι
D
i νι!
2、最可几分布
FkT lnQN
3、热力学函数
*
ni N
g ie i g ie i
i
基本粒子:如电子、中子、光子等。 复合粒子:如原子、分子等。 复合粒子构成体系:如一升气体,一摩尔晶体等。 (2)统计体系分类 按照体系内粒子之间相互作用的强弱可把体系分为近独立 粒子体系和相依粒子体系。 按照体系内粒子是否可区分,也可把体系分为定域粒子体 系和离域粒子体系。
(3)微观态和宏观态 体系的微观态是指在某一瞬间,体系中全体
N个全同粒子构成体系,总自由度为Nf (f 为一个粒 子自由度),需要2 Nf 维相空间。
Γ空间:描述N个粒子构成体系,整个气体运动状态的 相空间,也叫做气体相空间。 Γ空间中的一个相点 代表体系的一个微观运动状态。
测不准原理:△q× △p≈ h
相胞:hf
❖ §1.2 粒子微观运动状态的描述 一、自由粒子
ni !
2、最可几分布
ni* e i e(i)/kT gi
3、热力学函数
Sk
i
[ni*lnngi*i ni*]
❖ §2.3 费米-狄拉克统计
由质子、中子、电子以及由奇数个这些基本粒子组成的复合粒子构成的体系 服从费米-狄拉克统计。这个统计分布的特点是每一状态最多容纳一个粒子。
一、微观状态数
D D
如果每个容器最多容纳物体数目不受限制,有多少种排列方式(N≤M)?
N个可区分的物体,排列在M个不同容器中,物体的数目不受限制,可能的方式 数有多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章统计热力学一、选择题1. 下面有关统计热力学的描述,正确的是:( )(A) 统计热力学研究的是大量分子的微观平衡体系;(B) 统计热力学研究的是大量分子的宏观平衡体系;(C) 统计热力学是热力学的理论基础;(D) 统计热力学和热力学是相互独立互不相关的两门学科。
2. 在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列说法正确的是:( )(A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系;(C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。
3. 在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为所研究的体系是:( )(A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的;(C) 体系是孤立的,粒子是独立的; (D) 体系是封闭的,粒子是相依的。
4. 某种分子的许多可能级是εo、ε1、ε2,简并度为g0 = 1、g1 = 2、g2 = 1。
5个可别粒子,按N0 = 2、N1 = 2、N2 = 1的分布方式分配在三个能级上,则该分布方式的样式为:( )(A) 30 ;(B) 120 ;(C) 480 ;(D) 35. 假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3。
四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( )(A) 40 ;(B) 24 ;(C) 20 ;(D) 286. 对热力学性质(U、V、N)确定的体系,下面描述中不对的是:( )(A) 体系中各能级的能量和简并度一定;(B) 体系的微观状态数一定;(C) 体系中粒子在各能级上的分布数一定;(D) 体系的吉布斯自由能一定。
7. 对于定位体系,N个粒子分布方式D所拥有微观状态数W D为:( )(A) W D = N!πN i g i/N i!;(B) W D = N!πg i Ni/Ni!;(C) W D = N!πg i Ni/Ni;(D) W D = πg i Ni/Ni!。
8. 设一粒子体系由三个线性谐振子组成,体系的能量为(11/2) hν,三个谐振子分别在三个固定点a、b、c上振动,体系总的微观状态数为:( )(A) 12 ;(B) 15 ;(C) 9 ;(D) 69. 使用麦克斯韦- 玻尔兹曼分布定律,要求粒子数N很大,这是因为在推出该定律时:( )(A) 假定粒子是可别的;(B) 应用了斯特令近似公式;(C) 忽略了粒子之间的相互作用;(D) 应用拉氏待定乘因子法。
10. 式子∑N i = N和∑N iεi = U的含义是:( )(A) 表示在等概率假设条件下,密封的独立粒子平衡体系;(B) 表示在等概率假设条件下,密封的独立粒子非平衡体系;(C) 表示密闭的独立粒子平衡体系;(D) 表示密闭的非独立粒子平衡体系。
11. 下面关于排列组合和拉格朗日求极值问题的描述正确的是:( )(A) 排列组合都是对可别粒子而言的,排列考虑顺序,组合不考虑顺序;(B) 排列是对可别粒子而言的,而组合是对不可别粒子而言的;(C) 拉格朗日未定因子法适用于自变量相互独立的多元函数的求极值问题;(D) 拉格朗日未定因子法适用于一定限制条件下的不连续多元函数的求极值问题。
12. 对于玻尔兹曼分布定律n i =(N/Q)·g n·exp(-εi/kT) 的说法:⑴n i是第i能级上的粒子分布数;⑵随着能级升高,εi增大,n i总是减少的;⑶它只适用于可区分的独立粒子体系;⑷它适用于任何的大量粒子体系。
其中正确的是:( )(A) ⑴⑶;(B) ⑶⑷;(C) ⑴⑵;(D) ⑵⑷13. 玻尔兹曼统计认为:( )(A) 玻尔兹曼分布不是最可几分布但却代表平衡分布;(B) 玻尔兹曼分布只是最可几分布但不代表平衡分布;(C) 玻尔兹曼分布不是最可几分布也不代表平衡分布;(D) 玻尔兹曼分布就是最可几分布也代表平衡分布。
14. 对于分布在某一能级εi上的粒子数n i,下列说法中正确是:( )(A) n i与能级的简并度无关;(B) εi值越小,n i值就越大;(C) n i称为一种分布; (D) 任何分布的n i都可以用波尔兹曼分布公式求出。
15. 在N个独立可别粒子组成体系中,最可几分布的微观状态数t m与配分函数Q之间的关系为:( )(A) t m = 1/N! ·q N;(B) t m = 1/N! ·q N·e U/kT;(C) t m = q N·e U/kT ;(D) t m = N! q N·e U/kT 。
16. I2分子的振动能级间隔是0.43 × 10-20J,则在298K时某一振动能级和其较低能级上分子数之比为:( )(A) 1 ;(B) 0.43 × 10-20;(C) 0.35 ;(D) 无法计算。
17. 在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子数之比为:( )(A) ½exp(εj/2kT) ;(B) 2exp(-εj/2kT) ;(C) ½exp(-εj/2kT) ;(D) 2exp(-2εj/kT) 。
18. 如分子第一激发态的能量为400 kJ·mol-1,则体系中10%的分子被激发到第一激发态时,体系的温度(K)是:( )(A) 2.2 × 104;(B) 2.0 × 104;(C) 2.0 × 103 ;(D) 2.2 × 10519. I2的振动特征温度ΘV = 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = ½的温度是:( )(A) 306K;(B) 443K;(C) 760K;(D) 556K20. 某一理想气体体系由含N A个A分子与N B个B分子的两个体系组成。
分子配分函数分别为q A、q B,若不考虑分子间相互作用,则体系配分函数表示为:( )(A) q A N Aq B N B/(N A + N B)!;(B) q A N A·q B N B;(C) q A N A/N!·q B N B/N B!;(D) (q A·q B)N A + N B21. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( )(A) S、G、F、C V;(B) U、H、P、C V;(C) G、F、H、U;(D) S、U、H、G22. 各种运动形式的配分函数中与压力有关的是:( )(A) 电子配分函数;(B) 平动配分函数;(C) 转动配分函数;(D) 振动配分函数。
23. 分子运动的振动特征温度Θv是物质的重要性质之一,下列正确的说法是:( )(A) Θv越高,表示温度越高;(B) Θv越高,表示分子振动能越小;(C) Θv越高,表示分子处于激发态的百分数越小;(D) Θv越高,表示分子处于基态的百分数越小。
24. 下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点:( )(A) 每一个可能的微观状态以相同的几率出现;(B) 各能级的各量子态上分配的粒子数,受保里不相容原理的限制;(C) 体系由独立可别的粒子组成,U= ∑n iεi;(D) 宏观状态参量N、U、V为定值的封闭体系。
25. 下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( )(A) 转动运动;(B) 电子运动; (C) 振动运动;(D) 平动运动。
26. 下面对转动配分函数计算式的对称数σ差别理解不对的是:( )(A) 对配分函数的修正;(B) 对粒子等同性的修正;(C) 对量子态等同性的修正;(D) 对转动量子数的修正。
27. 对于下列各个亥姆兹自由能函数公式,哪一公式适用于晶体系统:( )(A) A = - kT ln(q N/N! ) ;(B) A = -NkT lnq ;(C) A = - NkT(lnq/N + 1) ;(D) A = -NkT lnq e/N。
28. 三维平动子的平动能为εt = 7h2/(4mv2/3),能级的简并度为:( )(A) 1 ;B) 3 ;(C) 6 ;(D) 2 。
29. HI的转动特征温度Θr = 9.0 K,300K时HI的摩尔转动熵为:( )(A) 37.45 J·K-l·mol-1;(B) 31.70 J·K-l·mol-1;(C) 29.15 J·K-l·mol-1;(D) 30.5 J·K-l·mol-1。
30. O2的转动惯量J = 19.3 × 10-47 kg·m2,则O2的转动特征温度是:( )(A) 10K ;(B) 5K ;(C) 2.07K ;(D) 8K 。
31. 下面关于分子各种运动形式配分函数计算公式的能量标度零点选取的描述错误的是:( )(A) q t的计算公式是近似地以基态能级的能量为能量标度的零点;(B) q r的计算公式是以基态的能量为能量标度的零点;(C) q e和q n的计算公式是基态能级的能量标度的零点;(D) q v的计算公式是以基态能级的能量标度的零点。
32. 对于单原子理想气体在室温下的物理过程,若要通过配分函数来求过程中热力学函数的变化:( )(A) 必须知道q t、q R、q v、q n各配分函数;(B) 只须知道q t一个配分函数;(C) 必须知道q t、q n配分函数;(D) 必须知道q t、q R、q v配分函数。
33. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( )(A) 不变;(B) 增多;(C) 减少;(D) 不能确定。
34. 钠原子基态的光谱项符号是1S1/2 ,则钠原子电子基态能级的简并度g e0为:( )(A) 1 ;(B) 1/2 ;(C) 3 ;(D) 2 。
35. 体积为1cm3,质量为m克的单原子分子气体,在温度为T时,对一般的物理过程,分子的配分函数为:( )(A) 8.78 × 1055(mT)3/2 ;(B) 1.88 × 1020(mT)3/2;(C) 1.88 × 1026(mT)3/2 ;(D) 8.78 × 1049(mT)3/2。
36. 在相同条件下,对于He与Ne单原子分子,近似认为它们的电子配分函数相同且等于1,则He与Ne单原子分子的摩尔熵是:( )(A) S m(He) > S m(Ne);(B) S m(He) = S m(Ne);(C) S m(He) < S m(Ne);(D) 以上答案均不成立。