中考数学压轴题专题圆的综合的经典综合题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(3)已知⊙O的半径为3.
①若AB
AC
=
5
3
,求BC的长;
②当AB
AC
为何值时,AB•AC的值最大?
【答案】(1)证明见解析;(2)证明见解析;(3)2;②3 2
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则
CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BG
BF BA
=,即BF•BG=BE•A B,将BF=BC-CF=BC-
AC、BG=BC+CG=BC+AC代入可得;
(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,
Rt△DMC中由DC=AC=3k、MC=1
2
6k求得22
CD CM
-3,可知OM=OD-
3,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴BE BG
BF BA
=,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(3)设AB=5k、AC=3k,
∵BC2﹣AC2=AB•AC,
∴6k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=3k,MC=1
2
6k,
∴223
CD CM k
-=,
∴OM=OD﹣DM=33k,
在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,
解得:k=
3
3
或k=0(舍),
∴62;
②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=36﹣4d2,
AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣3
4
)2+
81
4
,
∴当d=3
4
,即OM=
3
4
时,AB•AC最大,最大值为
81
4
,
∴DC2=27
2
,
∴AC=DC=36
2
,
∴AB=96
4,此时
3
2
AB
AC
.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tan A=1
2
,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
【答案】(1)答案见解析;(2)AB=3BE;(3)3.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x,进而得出OE=1+2x,最后用勾股定理
即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,