高考文科三角函数知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数知识点
1.角度制与弧度制的互化:,23600π= ,1800π=
1rad =π180°≈57.30°=57°18ˊ. 1°=
180
π≈0.01745(rad ) 2.弧长及扇形面积公式
弧长公式:r l .α= 扇形面积公式:S=r l .2
1
α----是圆心角且为弧度制。 r-----是扇形半径
3.任意角的三角函数
设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=
r y 余弦cos α=r x 正切tan α=x
y (2)各象限的符号:
sin α cos α
tan α
4、三角函数线
正弦线:MP; 余弦线:OM; 正切线: AT.
5.同角三角函数的基本关系:
(1)平方关系:s in 2α+ cos 2α=1。 (2)商数关系:
ααcos sin =tan α(z k k ∈+≠,2
ππ
α) 6.诱导公式:奇变偶不变,符号看象限
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.
x
y
+
O
— —
+
x y
O — +
+
— +
y O
— +
+ —
T
M
A O
P
x
y
()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.
()5sin cos 2π
αα⎛⎫-=
⎪⎝⎭,cos sin 2παα⎛⎫
-= ⎪⎝⎭. ()6sin cos 2π
αα⎛⎫+=
⎪⎝⎭,cos sin 2παα⎛⎫
+=- ⎪⎝⎭
. 7、三角函数公式:
注意:引入辅助角。asin θ+bcos θ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a
b
确定。
两角和与差的三角函数关系 sin(α±β)=sin α·
cos β±cos α·sin β cos(α±β)=cos α·cos βμsin α·sin β β
αβαβαtan tan 1tan tan )tan(⋅±=±μ
倍角公式 降幂公式 s in2α=2sin α·cos α cos2α=cos 2α-sin 2α =2cos 2α-1 =1-2sin 2α α
α
α2
tan 1tan 22tan -=
8正弦函数、余弦函数和正切函数的图象与性质
9.三角函数的伸缩变化
①先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)
平移个单位长度
得sin()y x ϕ=+的图象()ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象. ②先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得sin y A x =的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象
(0)(0)ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得sin ()y A x x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象.
10.正弦定理 :
2sin sin sin a b c
R A B C
===. 11.余弦定理:
2222cos a b c bc A =+-; 2222cos b c a ca B =+-;
2222cos c a b ab C =+-.
12.三角形面积定理.111sin sin sin 2
2
2
S ab C bc A ca B ===.