高等土力学

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

饱和砂土液化研究现状

摘要:首先对液化的概念进行了介绍,并简单评述了静态液化的发展,总结了饱和砂土液化的分析与判别的三种方法。然后对稳态变形和稳态线做了相关介绍,最后作了现有砂土本构模型的概述。

关键字:饱和砂土,液化,稳态线,本构模型

1、液化的概念

日本土力学与基础工程学会在它所编写的《土力学与基础工程词典》(1985年)中给出了液化的定义:“饱和砂土由于孔隙压力的升高而引起剪切强度丧失和有效应力降低,这种状态称为液化”。这种定义是一种关于饱和砂土液化的广义定义。按这种广义液化的定义,液化后可以产生两种结果,一种是产生流动滑移破坏,另一种是由于软化而产生一定量的变形。这种定义是美国[1]与日本近些年普遍接受的定义。但这种饱和砂土液化的定义与我国工程界普遍流行的看法并不完全一致。在我国通常认为:物质从固体状态转化为液体状态的行为和过程,称为液化。

关于砂土液化的定义在80年代以前较为混乱,例如有“初始液化、循环液化、实际液化”等定义。为便于讨论,首先给出上述三种液化的定义。

根据动三轴试验的结果,Seed给出了初始液化(Initial liquefaction) (有时Seed等也简称为液化)的定义:在简谐循环荷载作用下,饱和砂土孔隙中的残余孔隙压力初次等于所施加的围压时的状态,即峰值循环孔压与围压的比值初次达到100%的条件或状态。初始液化时,土样的轴向应变(双峰值差的轴向应变)大致为5%。因此有时也把土样动轴向应变值初次达到5%的状态称为初始液化。Seed学派把初始液化作为判别液化势的一个准则而得到广泛应用。对于这一定义,我国岩土界是比较熟悉的。

实际液化:在冲击或应变的作用下,松散饱和砂土的强度极大地降低,在极端情况下将导致流动滑移破坏。

循环液化:在动三轴循环荷载作用下,具有膨胀性趋势的较密实的砂样中孔隙水压力在每一循环中将瞬时达到围压的响应或状态,它是动力和静力荷载同时作用的结果。循环活动性也是类似定义的。

应该指出,循环液化或循环活动性一般是在较密实的(具有膨胀趋势的)饱和砂土中不排水循环荷载作用下才能发生,但不会产生实际液化也不会引起流动滑移破坏。因为进一步的应变会产生膨胀和负孔隙压力。一旦循环荷载停止,饱和砂土还是稳定的,只不过会产生一定量的残余变形。除非密砂在振动过程中,先由密振松然后才可能产生实际液化。

砂土液化引起的流动滑移通常是先由动力循环作用引起强度降低,然后主要在静力作用下引发流动滑移破坏。因而绝大多数液化流动滑移破坏是在地震以后的一段时间才发生。

在1996年以前的文献中,液化(Liquefaction)一词原指饱和松砂在应变与冲击荷载作用下所导致的土体流动滑移破坏。自从Seed在文献[2]中使用液化一词描述砂土试样在动力三轴试验中的反应以后,液化一词已隐含了两种含意,即初始液化与现场液化。与Seed的观点不同,Casagrande(1975年)[3]认为现场液化过程与动三轴中饱和砂样的液化过程是不同的,应该加以区分。为防止这种混淆,Casagrande(1975年)[3],Castro(1975年)[4]把饱和砂土液化分为两类。第一类为实际液化(Actual liquefaction);第二类为循环液化(Cyclic liquefaction)[3],或循环活动性(Cyclic mobility)[4]。

上述关于饱和砂土液化的定义是从不同角度和方面对液化这一现象进行描述。初始液化是Seed在动三轴不排水试验中所观测到的现象,并用来描述现场的饱和砂土液化。Seed的简化砂土液化的判别方法就是建立在以初始液化作为判别标准的基础上。

值得注意的是,实际液化并不要求达到初始液化后才发生,当触发应力大于既有强度时就可能发生,并且很多实际液化发生时其抗剪强度并不等于零。初始液化也并不意味着实际液化或流动破坏。例如中密或较密实的砂土,初始液化后一般就不会发生实际液化。因而以初始液化作为液化判别准则时,应铭记上述情况。另外中密或密实砂土试样,当孔压上升到接近或等于围压时,会产生某种程

度的软化,相应地也会产生显著的残余循环应变量,但还具有较高的强度[4],并不像有些人认为的那样,其有效应力等于零时,强度也等于零;其变形也不会无限制地增加。产生这种情况的原因是因为孔压是变化的而非常值[4],因而不会出现实际液化而只会出现循环液化。

这三种液化概念,目前都被广泛应用,但它们的适用范围是不同的。初始液化在分析液化能否被触发的问题时较为合理和方便。但当分析液化后能否发生失稳破坏或变形时,则需使用实际液化和循环液化的概念。

众所周知,失稳与变形是岩土工程研究的两大主题,而饱和砂土液化后的结果也可分为两类: (1)失稳流滑破坏; (2)产生一定量的变形。美日近些年普遍接受的液化定义可以包括上述两类液化后果。但初始液化概念却不能描述液化将引起哪种结果。另外,这两类结果的影响范围和严重性也是不同的。在一次地震后的地质现场中,实际液化发生的范围与液化变形发生的范围相比要小得多,但其破坏程度却严重得多。而液化变形可以在种类非常广泛的土层范围和场地条件下发生;并且它的结果可以从几乎没有什么影响到严重的沉陷破坏的范围内变化。

2、静态液化

静态液化的概念是人们在讨论静力滑坡灾害的过程中提出的。最早Castro[5],Casagrande[6],Kramer等[7]。提出了静态液化的概念并分析了液化产生的条件。尤其在90年代以来,静态液化引起了人们的重视。多种本构模型被提出来模拟各向同性不排水条件下砂土的静态液化:标准的或非相关流弹塑性模型[8-10];非线性增量本构模型[11],Lade等[12-14]讨论了松散细砂构成的坡体的静态失稳和液化问题。进行了系列的完全饱和及部分饱和的细砂的三轴实验,采用排水和不排水条件,研究稳定和不稳定区域。主要是从应力一应变关系的角度,从非相关流的观点,讨论砂土的稳定性。他们分析了浅水面下的斜坡和完全饱和的陡峭坡两个例子,按照传统的分析方法,这两个坡是稳定的,但按照他们的分析方法,则是不稳定的。另外他们也研究了非塑性粉砂对砂土静态液化的影响。用重塑的Nevada砂和ottawa砂进行不排水三轴压缩实验,其中粉砂的成分从小到大变化(20%,50%,100%)。结果表明,非塑性粉砂有增加砂土静态液化势的作用。

相关文档
最新文档