全国23年自考《线性代数(经管类)》教材大纲
自考《线性代数》(经管类)教学大纲

自考《线性代数》(经管类)教学大纲课程代码:04184 总学时:33学时一、课程的性质、目的、任务:《线性代数》是以变量的线性关系为主要研究对象的数学学科。
该课程介绍行列式,矩阵,线性方程组,二次型等有关的概念,理论及方法。
本课程不仅是许多后续相关学科的理论基础,同时也是科学技术和经济管理领域的重要数学工具。
内容的抽象性,逻辑的严密性是《线性代数》的基本特点,在教学过程中应特别注意对学生抽象思维,逻辑思维以及归纳推理能力的培养。
通过本课程的教学,要求学生对基本概念,基本理论和重要方法有正确的理解,并能比较熟练地掌握和应用。
通过本课程的学习,使学生获得线性代数的基本知识,培养学生的基本运算能力,增强学生处理问题的初步能力。
另外通过本课程的学习,为学生学习后续课程和进一步深造以及今后工作奠定必要的数学基础。
二、课程教学的基本要求:教学要求由低到高分三个层次,有关定义、定理、性质、特征概念的内容为“知道、了解、理解”;有关计算、解法、公式、法则等方法的内容按“会、掌握、熟练掌握”。
三、教学内容第一章行列式学时:4学时(讲课3学时)本章讲授要点:行列式的概念和基本性质、行列式的计算、行列式按行(列)展开定理、克莱默法则。
重点:行列式的计算、克莱默法则难点:行列式的计算、克莱默法则。
教学内容:§1.1 二阶、三阶行列式§1.2 n阶行列式§1.3 行列式的性质§1.4 行列式按行(列)展开§1.5克莱默法则教学基本要求:1.理解行列式的定义,掌握行列式的性质,并会用行列式的性质证明和计算有关问题。
2.熟练掌握通过三角化计算行列式的方法。
3.理解子式,余子式,代数余子式的定义,熟练掌握按某行(或某列)展开行列式,会应用展开定理计算和处理行列式。
4.了解“克莱默”法则的条件和结论,掌握判别齐次方程组有非零解的条件。
第二章矩阵学时:6学时(讲课4学时)本章讲授要点:矩阵的概念,几种特殊矩阵,矩阵的运算,矩阵可逆的充分必要条件,求逆矩阵,矩阵的初等变换,矩阵的秩。
线性代数》课程教学大纲

线性代数》课程教学大纲本章主要介绍行列式的概念、性质、计算方法及其应用。
包括行列式的定义、性质、初等变换及其对行列式的影响、行列式按行(列)展开式、克拉默法则和行列式在几何中的应用等内容。
第二章矩阵与向量(8学时)教学内容:本章主要介绍矩阵、向量及其基本运算,包括矩阵的定义、矩阵的运算、矩阵的转置、矩阵的乘法、矩阵的逆、向量的定义、向量的运算、向量的线性相关与线性无关、向量组的秩等内容。
第三章线性方程组(8学时)教学内容:本章主要介绍线性方程组及其解法,包括线性方程组的基本概念、线性方程组的解法、齐次线性方程组、非齐次线性方程组、矩阵方程等内容。
第四章矩阵的特征值和特征向量(6学时)教学内容:本章主要介绍矩阵的特征值和特征向量及其应用,包括特征值和特征向量的定义、性质、计算方法、相似矩阵、对角化、二次型及其标准型等内容。
二)学时分配第一章行列式(6学时)第二章矩阵与向量(8学时)第三章线性方程组(8学时)第四章矩阵的特征值和特征向量(6学时)三、考核方式考核方式包括平时成绩和期末考试成绩两部分。
平时成绩包括课堂表现、作业和小测验等,占总成绩的30%;期末考试为闭卷笔试,占总成绩的70%。
考试内容覆盖全部课程内容,注重考查学生的基本概念、基本理论和基本方法的掌握,以及应用能力的培养。
本章主要介绍矩阵的特征值与特征向量、相似矩阵、二次型与对称矩阵等内容。
其中,重点包括矩阵的特征值与特征向量的概念、性质与求法,实对称矩阵对角化的方法,以及用正交变换法和配方法化二次型为标准形。
难点则在于n阶矩阵与对角矩阵相似的条件和利用正交矩阵化实对称矩阵为对角矩阵。
本课程的教学时数为56学时,其中,课内学时32分配如下表所示。
重点内容的理论课时较多,需要学生认真听讲和思考,同时也需要大量的题课时进行练和巩固。
在行列式方面,学生需要掌握行列式的定义和性质,熟练运用行列式的计算方法,并能够用克拉默法则求解线性方程组。
在矩阵方面,学生需要理解矩阵的概念,掌握矩阵的基本运算和性质,熟练求解逆矩阵和利用分块矩阵讨论线性代数问题。
(完整版)线性代数第四章线性方程组(自考经管类原创)

知识结构
线性方程组
齐次线性方程组 非齐次线性方程组
4.1 齐次线性方程组
2
1.齐次线性方程组的解
设有齐次线性方程组
a11x1 a12 x2 a1n xn 0
a21 x1
a22 x2 a2n xn
0
am1 x1 am2 x2 amn xn 0
求齐次线性方程组通解的方法
(1)将系数矩阵A进行初等行变为行最简形矩阵T (2)写出Ax=0的同解方程组Tx=0 (3)确定自由未知量(n-r个),并用自由未知量表示其他未知量 (4)依次令其中某个自由未知量为1,其他自由未知量为0,求相 应的特殊解,那么基础解系即为所有特殊解的全体 (5)特殊解的线性组合即为通解,此处写明组合系数为任意实数
下面给出非齐次线性方程组解的性质
(1)设x 1及x 2都是Ax b的解,则x 1 2为对应的齐次方程Ax 0的解.
证明 A1 b, A2 b
A1 2 b b 0.
即x 1 2满足方程Ax 0.
(2) 设x 是方程 Ax b的解, x 是方程 Ax 0的解,则x 仍是方程 Ax b 的解.
a21x1 LLL
a22 x2 LLL
L L
L
a2n xn LLL
b2 L
am1x1 am2 x2 L amn xn bm
简写成矩阵形式AX=b,其中
a11 a12
A
a21
a22
am1 am2
a1n
a2n
,
amn
x1
x
x2
xn
b1
b
b2
例1 判断t为何值时,方程组无解
-x1 4x2 x3 1 tx2 3x3 3
自考线性代数(经管类)第1-6章教案(已排版)

线性代数(经管类)第一章 行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数)2,1,(=j i a ij 得到下列式子:11122122aa a a 称为一个二阶行列式,其运算规则为2112221122211211a a a a a a a a -=2.三阶行列式由9个数)3,2,1,(=j i a ij 得到下列式子:333231232221131211a a a a a a a a a称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式 3332312322211312113a a a a a a a a a D =对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M例如 3332232211a a a a M =,3332131221a a a a M =,2322131231a a a a M =再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式.例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为我们把它称为3D 按第一列的展开式,经常简写成∑∑=+=-==3111131113)1(i i i i i i i M a A a D4.n 阶行列式 一阶行列式 11111a a D ==n 阶行列式 1121211111212222111211n n nnn n n n n A a A a A a a a a a a a a a a D +++==其中(,1,2,,)ij A i j n =为元素ij a 的代数余子式. 5.特殊行列式上三角行列式111212221122000n n nn nn a a a a a a a a a =下三角行列式1122112212000nn n n nna a a a a a a a a =213131212111113332312322211312113A a A a A a a a a a a a a a a D ++==对角行列式112211220000nn nna a a a a a =(二)行列式的性质性质1 行列式和它的转置行列式相等,即T D D =性质2 用数k 乘行列式D 中某一行(列)的所行列式等于kD ,也就是说,行列式可以按行和列提出公因数.有元素所得到的性质3 互换行列式的任意两行(列),行列式的值改变符号. 推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4 行列式可以按行(列)拆开.性质5 把行列式D 的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n 阶行列式n ij a D =等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即),,2,1(2211n i A a A a A a D in in i i i i =+++=或),,2,1(2211n j A a A a A a D nj nj j j j j =+++=前一式称为D 按第i 行的展开式,后一式称为D 按第j 列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n 阶行列式n ij a D =的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即)(02211k i A a A a A a kn in k i k i ≠=+++或)(02211s j A a A a A a ns nj s j s j ≠=+++ (三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k 时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式 52072325121314124-=D解:观察到第二列第四行的元素为0,而且第二列第一行的元素是112=a ,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.42141214156231212115062150********3(2)1725025********312251100813757375D -+⨯=---+-⨯+⨯=行行按第二列展开行行7 列列按第二行展开例2 计算行列式 ab b b b a b b b b a b bb b a D =4解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为b a 3+(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子b a 3+,再将后三行都减去第一行:3131(3)31311000(3)000000a b b b a b b b b b b bb a b b a b a b b a b ba b b b a b a b b a b b a b b b b aa b b b ab b ab b ba b a b a b a b++==+++-=+-- 3))(3(b a b a -+=方法2 观察到这个行列式每一行元素中有多个b ,我们采用“加边法”来计算,即是构造一个与4D 有相同值的五阶行列式11234541101000010000100001000b b b b b bb b a b b ba b b b a b b a b b D b a b b a b b b a bb b a b a b b b bab b b a a b⨯-+--===------行(),,,行 这样得到一个“箭形”行列式,如果b a =,则原行列式的值为零,故不妨假设b a ≠,即0≠-b a ,把后四列的ba -1倍加到第一列上,可以把第一列的(-1)化为零.4410000400001()(3)()00000bbbbb a b a b b a b a b a b a b a b a b a b3+--⎛⎫=-=+-=+- ⎪-⎝⎭-- 例3 三阶范德蒙德行列式))()((1112313122322213213x x x x x x x x x x x x V ---== (四)克拉默法则定理1(克拉默法则)设含有n 个方程的n 元线性方程组为11112211211222221122,,n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 如果其系数行列式0≠=n ij a D ,则方程组必有唯一解:n j DD x j j ,,2,1, ==其中j D 是把D 中第j 列换成常数项n b b b ,,,21 后得到的行列式. 把这个法则应用于齐次线性方程组,则有定理2 设有含n 个方程的n 元齐次线性方程组1111221211222211220,0,0n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果其系数行列式0≠D ,则该方程组只有零解:021====n x x x换句话说,若齐次线性方程组有非零解,则必有0=D ,在教材第二章中,将要证明,n 个方程的n 元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章 矩阵(一)矩阵的定义 1.矩阵的概念由n m ⨯个数),,2,1;,,2,1(n j m i a ij ==排成的一个m 行n 列的数表⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A212222111211 称为一个m 行n 列矩阵或n m ⨯矩阵当n m =时,称()n n ij a A ⨯=为n 阶矩阵或n 阶方阵 元素全为零的矩阵称为零矩阵,用n m O ⨯或O 表示 2.3个常用的特殊方阵:①n 阶对角矩阵是指形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a A 0000002211的矩阵②n 阶单位方阵是指形如 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 n E 的矩阵③n 阶三角矩阵是指形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n nn n n a a a a a a a a a a a a2122211122*********,000的矩阵 3.矩阵与行列式的差异矩阵仅是一个数表,而n 阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“*”与矩阵记号“()*”也不同,不能用错.(二)矩阵的运算 1.矩阵的同型与相等设有矩阵n m ij a A ⨯=)(,λ⨯=k ij b B )(,若k m =,λ=n ,则说A 与B 是同型矩阵.若A 与B 同型,且对应元素相等,即ij ij b a =,则称矩阵A 与B 相等,记为B A =因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等. 2.矩阵的加、减法设n m ij a A ⨯=)(,n m ij b B ⨯=)(是两个同型矩阵则规定n m ij ij b a B A ⨯+=+)( n m ij ij b a B A ⨯-=-)(注意:只有A 与B 为同型矩阵,它们才可以相加或相减. 由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律. 3.数乘运算设n m ij a A ⨯=)(,k 为任一个数,则规定n m ij ka kA ⨯=)(故数k 与矩阵A 的乘积就是A 中所有元素都乘以k ,要注意数k 与行列式D 的乘积,只是用k 乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律. 4.乘法运算设k m ij a A ⨯=)(,n k ij b B ⨯=)(,则规定n m ij c AB ⨯=)(其中kj ik j i j i ij b a b a b a c +++= 2211 ),,2,1;,,2,1(n j m i == 由此定义可知,只有当左矩阵A 的列数与右矩阵B 的行数相等时,AB 才有意义,而且矩阵AB 的行数为A 的行数,AB 的列数为B 的列数,而矩阵AB 中的元素是由左矩阵A 中某一行元素与右矩阵B 中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地: ①不满足交换律,即BA AB ≠②在0=AB 时,不能推出0=A 或0=B ,因而也不满足消去律. 特别,若矩阵A 与B 满足BA AB =,则称A 与B 可交换,此时A 与B 必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律. 5.方阵的乘幂与多项式方阵 设A 为n 阶方阵,则规定m A AA A =m 个特别E A =0又若1110()m m m m f x a x a x a x a --=++++,则规定1110()m m m m f A a A a A a A a E --=++++称)(A f 为A 的方阵多项式,它也是一个n 阶方阵 6.矩阵的转置设A 为一个n m ⨯矩阵,把A 中行与列互换,得到一个m n ⨯矩阵,称为A 的转置矩阵,记为T A ,转置运算满足以下运算律:A A T =T )(,T T TB A B A +=+)(,T T kA kA =)(,T T T A B AB =)(由转置运算给出对称矩阵,反对称矩阵的定义设A 为一个n 阶方阵,若A 满足A A T =,则称A 为对称矩阵,若A 满足A A T -=,则称A 为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n 阶方阵,有方阵的行列式的概念.设)(ij a A =为一个n 阶方阵,则由A 中元素构成一个n 阶行列式nij a ,称为方阵A 的行列式,记为A 方阵的行列式具有下列性质:设A ,B 为n 阶方阵,k 为数,则 ①A A T =; ②A k kA n = ③B A AB ⋅= (三)方阵的逆矩阵 1.可逆矩阵的概念与性质设A 为一个n 阶方阵,若存在另一个n 阶方阵B ,使满足E BA AB ==,则把B 称为A 的逆矩阵,且说A 为一个可逆矩阵,意指A 是一个可以存在逆矩阵的矩阵,把A 的逆矩阵B 记为1-A ,从而A 与1-A 首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A ,B 为同阶可逆矩阵,0≠k 为常数,则①1-A 是可逆矩阵,且A A =--11)(;②AB 是可逆矩阵,且111)(---=A B AB ;③kA 是可逆矩阵,且111)(--=A kkA④T A 是可逆矩阵,且T T A A )()(11--=⑤可逆矩阵可从矩阵等式的同侧消去,即设P 为可逆矩阵,则B A PB PA =⇔= B A BP AP =⇔= 2.伴随矩阵设)(ij a A =为一个n 阶方阵,ij A 为A 的行列式nij a A =中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn nn n n A A A A A A A A A 212221212111称为A 的伴随矩阵,记为*A (务必注意*A 中元素排列的特点)伴随矩阵必满足E A A A AA ==**1*-=n A A (n 为A 的阶数)3.n 阶阵可逆的条件与逆矩阵的求法定理:n 阶方阵A 可逆⇔0≠A ,且*11A AA =-推论:设A ,B 均为n 阶方阵,且满足E AB =,则A ,B 都可逆,且B A =-1,A B =-1例1 设⎪⎪⎭⎫ ⎝⎛=d c b a A (1)求A 的伴随矩阵*A(2)a ,b ,c ,d 满足什么条件时,A 可逆?此时求1-A解:(1)对二阶方阵A ,求*A 的口诀为“主交换,次变号”即⎪⎪⎭⎫ ⎝⎛--=a c b d A *(2)由bc ad d c b a A -==,故当0≠-bc ad 时,即0≠A ,A 为可逆矩阵 此时⎪⎪⎭⎫ ⎝⎛---==-a c b d bc ad A A A 11*1 (四)分块矩阵1.分块矩阵的概念与运算 对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A 的列分块方式与右矩阵B 的行分块方式一致,然后把子块当作元素来看待,相乘时A 的各子块分别左乘B 的对应的子块.2.准对角矩阵的逆矩阵形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛r A A A 21的分块矩阵称为准对角矩阵,其中r A A A ,,,21 均为方阵空白处都是零块.若r A A A ,,,21 都是可逆矩阵,则这个准对角矩阵也可逆,并且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11211121r r A A A A A A ( 五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A 的某两行(列);(2)用一个非零数k 乘A 的某一行(列);(3)把A 中某一行(列)的k 倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“→”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E 经过一次初等变换得到的矩阵称为初等方阵. 由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为ij P ,)(k D i 和)(k T ij ,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A 为任一个矩阵,当在A 的左边乘一个初等方阵的乘积相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵的乘积相当于对A 作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A 经过若干次初等变换变为B ,则称A 与B 等价,记为B A ≅ 对任一个n m ⨯矩阵A ,必与分块矩阵⎪⎪⎭⎫ ⎝⎛O O O E r 等价,称这个分块矩阵为A 的等价标准形.即对任一个n m ⨯矩阵A ,必存在n 阶可逆矩阵P 及n 阶可逆矩阵Q ,使得⎪⎪⎭⎫ ⎝⎛=O O O E PAQ r 5.用初等行变换求可逆矩阵的逆矩阵设A 为任一个n 阶可逆矩阵,构造n n 2⨯矩阵(A ,E )然后 ),(),(1-→A E E A注意:这里的初等变换必须是初等行变换.例2 求⎪⎪⎪⎭⎫ ⎝⎛----=421412311A 的逆矩阵解:()()()122113211311213322113100113100(,)214010012210124001011101101110100421012210010412001311001311A E ⨯-+⨯+⨯+⨯-+⨯-+⨯+--⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭---⎛⎫⎛⎫ ⎪ ⎪→--→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行行行行行行行 则 ⎪⎪⎪⎭⎫⎝⎛----=-1132141241A例3 求解矩阵方程⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛----213411421412311X解:令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----=213411,421412311B A ,则矩阵方程为B AX =,这里A 即为例2中矩阵,是可逆的,在矩阵方程两边左乘1-A ,得⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛----==-2052032134111132141241B A X也能用初等行变换法,不用求出1A -,而直接求B A 1-),(201005201003001214213441211311),(1B A E B A -=⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=则 ⎪⎪⎪⎭⎫⎝⎛==-2052031B A X(六)矩阵的秩1.秩的定义设A 为n m ⨯矩阵,把A 中非零子式的最高阶数称为A 的秩,记为秩)(A 或)(A r零矩阵的秩为0,因而{}n m A ,m in )(0≤≤秩,对n 阶方阵A ,若秩n A =)(,称A 为满秩矩阵,否则称为降秩矩阵.1.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A ,只要用初等行变换把A 化成阶梯形矩阵T ,则秩(A)=秩(T)=T 中非零行的行数.3.与满秩矩阵等价的条件n 阶方阵A 满秩⇔A 可逆,即存在B ,使E BA AB ==⇔A 非奇异,即0≠A⇔A 的等价标准形为E⇔A 可以表示为有限个初等方阵的乘积⇔齐次线性方程组0=AX 只有零解⇔对任意非零列向量b ,非齐次线性方程组b AX =有唯一解⇔A 的行(列)向量组线性无关⇔A 的行(列)向量组为n R 的一个基⇔任意n 维行(列)向量均可以表示为A 的行(列)向量组的线性组合,且表示法唯一.⇔A 的特征值均不为零⇔A A T 为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a22112222212111212111 可以表示成矩阵形式b AX =,其中n m ij a A ⨯=)(为系数矩阵,T m b b b b ),,,(21 =为常数列矩阵,T n x x x X ),,,(21 =为未知元列矩阵.从而线性方程组b AX =与增广矩阵),(b A A =一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章 向量空间(一)n 维向量的定义与向量组的线性组合1.n 维向量的定义与向量的线性运算由n 个数组成的一个有序数组称为一个n 维向量,若用一行表示,称为n 维行向量,即n ⨯1矩阵,若用一列表示,称为n 维列向量,即1⨯n 矩阵与矩阵线性运算类似,有向量的线性运算及运算律.2.向量的线性组合设m ααα,,,21 是一组n 维向量,m k k k ,,,21 是一组常数,则称m m k k k ααα+++ 2211为m ααα,,,21 的一个线性组合,常数m k k k ,,,21 称为组合系数.若一个向量β可以表示成m m k k k αααβ+++= 2211则称β是m ααα,,,21 的线性组合,或称β可用m ααα,,,21 线性表出.3.矩阵的行、列向量组设A 为一个n m ⨯矩阵,若把A 按列分块,可得一个m 维列向量组称之为A 的列向量组.若把A 按行分块,可得一个n 维行向量组称之为A 的行向量组.4.线性表示的判断及表出系数的求法.向量β能用m ααα,,,21 线性表出的充要条件是线性方程组βααα=+++m m x x x 2211有解,且每一个解就是一个组合系数. 例1 问T )5,1,1(-=β能否表示成T )3,2,1(1=α,T )4,1,0(2=α,T )6,3,2(3=α的线性组合?解:设线性方程组为 βααα=++332211x x x对方程组的增广矩阵作初等行变换:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-==110020101001564313121201),,,(),(321βαααβA则方程组有唯一解1,2,1321-===x x x所以β可以唯一地表示成321,,ααα的线性组合,且3212αααβ-+=(一)向量组的线性相关与线性无关1.线性相关性概念设m ααα,,,21 是m 个n 维向量,如果存在m 个不全为零的数m k k k ,,,21 ,使得02211=+++m m k k k ααα ,则称向量组m ααα,,,21 线性相关,称m k k k ,,,21 为相关系数.否则,称向量m ααα,,,21 线性无关.由定义可知,m ααα,,,21 线性无关就是指向量等式02211=+++m m k k k ααα 当且仅当021====m k k k 时成立.特别 单个向量α线性相关⇔0=α;单个向量α线性无关⇔0≠α2.求相关系数的方法设m ααα,,,21 为m 个n 维列向量,则m ααα,,,21 线性相关⇔m 元齐次线性方程组02211=+++m m x x x ααα 有非零解,且每一个非零解就是一个相关系数⇔矩阵),,,(21m A ααα =的秩小于m例2 设向量组123(2,1,7),(1,4,11),(3,6,3)T T T ααα=-==-,试讨论其线性相关性.解:考虑方程组0332211=++αααx x x其系数矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--==0001102013117641312),,(321αααA于是,秩32)(<=A ,所以向量组线性相关,与方程组同解的方程组为⎩⎨⎧=-=+0023231x x x x 令13=x ,得一个非零解为1,1,2321==-=x x x则02321=++-ααα3.线性相关性的若干基本定理定理1 n 维向量组m ααα,,,21 线性相关⇔至少有一个向量是其余向量的线性组合.即m ααα,,,21 线性无关⇔任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组m ααα,,,21 线性无关,又m αααβ,,,,21 线性相关,则β可以用m ααα,,,21 线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1.向量组等价的概念若向量组S 可以由向量组R 线性表出,向量组R 也可以由向量组S 线性表出,则称这两个向量组等价.2.向量组的极大无关组设T 为一个向量组,若存在T 的一个部分组S ,它是线性无关的,且T 中任一个向量都能由S 线性表示,则称部分向量组S 为T 的一个极大无关组.显然,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:定理1 向量组T 与它的任一个极大无关组等价,因而T 的任意两个极大无关组等价.定理2 向量组T 的任意两个极大无关组所含向量的个数相同.3.向量组的秩与矩阵的秩的关系把向量组T 的任意一个极大无关组中的所含向量的个数称为向量组T 的秩.把矩阵A 的行向量组的秩,称为A 的行秩,把A 的列向量组的秩称为A 的列秩.定理:对任一个矩阵A ,A 的列秩=A 的行秩=秩(A )此定理说明,对于给定的向量组,可以按照列构造一个矩阵A ,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:)3,4,4,2(),3,4,1,2(),6,6,1,1(),9,2,,2,1(),7,2,1,1(54321==--=---=-=ααααα解:把所有的行向量都转置成列向量,构造一个54⨯矩阵,再用初等行变换把它化成简化阶梯形矩阵()B A TT T T T =⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛------==1000001100010100000133697446224112122111,,,,54321ααααα易见B 的秩为4,A 的秩为4,从而秩{}4,,,,54321=ααααα,而且B 中主元位于第一、二、三、五列,那么相应地5321,,,αααα为向量组的一个极大无关组,而且324ααα--=(四)向量空间1.向量空间及其子空间的定义定义1 n 维实列向量全体(或实行向量全体)构成的集合称为实n 维向量空间,记作n R定义2 设V 是n 维向量构成的非空集合,若V 对于向量的线性运算封闭,则称集合V 是n R 的子空间,也称为向量空间.1.向量空间的基与维数设V 为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V 的一个基,把向量组的秩称为向量空间的维数.显然,n 维向量空间n R 的维数为n ,且n R 中任意n 个线性无关的向量都是n R 的一个基.3. 向量在某个基下的坐标设r ααα,,,21 是向量空间V 的一个基,则V 中任一个向量α都可以用r ααα,,,21 唯一地线性表出,由r 个表出系数组成的r 维列向量称为向量α在此基下的坐标.第四章 线性方程组(一)线性方程组关于解的结论定理1 设b AX =为n 元非齐次线性方程组,则它有解的充要条件是)(),(A r b A r =定理2 当n 元非齐次线性方程组b AX =有解时,即r A r b A r ==)(),(时,那么(1)b AX =有唯一解⇔n r =; (2)b AX =有无穷多解⇔n r <.定理3 n 元齐次线性方程组0=AX 有非零解的充要条件是n r A r <=)(推论1 设A 为n 阶方阵,则n 元齐次线性方程组0=AX 有非零解⇔0=A推论2 设A 为n m ⨯矩阵,且n m <,则n 元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组0=AX 的解的全体所组成的向量集合{}0==ξξA V显然V 是非空的,因为V 中有零向量,即零解,而且容易证明V 对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V 成为n 维列向量空间n R 的一个子空间,我们称V 为方程组0=AX 的解空间(三)齐次线性方程组的基础解系与通解把n 元齐次线性方程组0=AX 的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n 元齐次线性方程组0=AX 有非零解时,即n r A r <=)(时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为r n -求基础解系与通解的方法是:对方程组0=AX 先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求⎪⎩⎪⎨⎧=-++=+-+=+-+0022*********43214321x x x x x x x x x x x x 的通解解:对系数矩阵A ,作初等行变换化成简化阶梯形矩阵:12212310341034321211110145111111110000A ⨯⨯⨯⨯---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭行(-1)+2行行(-1)+3行3行(-1)+1行1行(-1)+2行 42)(<=A r ,有非零解,取43,x x 为自由未知量,可得一般解为⎪⎪⎩⎪⎪⎨⎧==+-=-=4433432431,54,43x x x x x x x x x x 写成向量形式,令13k x =,24k x =为任意常数,则通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1054014321k k X可见,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1054,014321ξξ为方程组的一个基础解系.(四) 非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设b AX =为一个n 元非齐次线性方程组,0=AX 为它的导出组,则它们的解之间有以下性质:性质1 如果21,ηη是b AX =的解,则21ηηξ-=是0=AX 的解 性质2 如果η是b AX =的解,ξ是0=AX 的解,则ηξ+是b AX =的解由这两个性质,可以得到b AX =的解的结构定理:定理 设A 是n m ⨯矩阵,且r A r b A r ==)(),(,则方程组b AX =的通解为r n r n k k k X --++++=ξξξη 2211*其中*η为b AX =的任一个解(称为特解),r n -ξξξ,,,21 为导出组0=AX 的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组b AX =,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2 当参数a ,b 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x有唯一解?有无穷多解?无解?在有无穷多解时,求出通解. 解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:()()23424111110111100122101221(,)01320010132110123110111012210010100010A b a b a b a a a b a +⨯++⨯+⎛⎫⎛⎫ ⎪⎪⎪ ⎪=→⎪⎪----+ ⎪⎪-----⎝⎭⎝⎭---⎛⎫⎪⎪→ ⎪-+ ⎪-⎝⎭行行1行-3行行行2行-1行当1≠a 时,4)(),(==A r b A r ,有唯一解; 当1,1≠=b a 时,3),(=b A r ,2)(=A r ,无解; 当1,1-==b a 时,2)(),(==A r b A r ,有无穷多解.此时,方程组的一般解为 ⎪⎪⎩⎪⎪⎨⎧==--=++-=44334324312211x x x x x x x x x x 令2413,k x k x ==为任意常数,故一般解为向量形式,得方程组通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=10210121001121k k X第五章 特征值和特征向量I 考试大纲要求1、考试内容:矩阵的特征值和特征向量的概念、性质、计算方法和相似变换;矩阵的相似关系及性质;矩阵可对角化的判别及相似对角矩阵;实对称矩阵的特征值和特征向量的性质。
线性代数自考(经管类)

3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算
解
测试点 个维向量线性无关相应的行列式;
解
所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.
线性代数教学大纲(最新版)

《线性代数》教学大纲课程中文名称:线性代数课程英文名称:Linear Algebra课程代码:16200031学时数:51学分数:3先修课程:无适用专业:金融学、会计学、经济学、财政学、保险学、国际经济与贸易、工商管理、管理科学、公共事业管理、计算机科学与技术等全校范围内经济、管理类相关专业。
一、课程的性质和任务1.课程性质《线性代数》是全校经济类和管理类各本科专业的学科基础课。
本课程运用行列式、矩阵等知识研究线性空间、线性方程组及矩阵特征值的理论,其概念、性质及理论具有较强的抽象性和严密的逻辑性。
2.课程任务通过本课程的学习,使学生掌握《线性代数》的基本理论与方法,培养学生的抽象思维和逻辑推理能力,使学生获得应用科学中常用的行列式与矩阵方法、线性方程组、矩阵特征值、二次型等理论知识,并具有熟练的运算能力和解决实际问题的能力,为学生学习后续课程奠定必要的数学基础。
二、本课程与其他课程的联系与分工本课程不仅是现代数学的基础,而且其理论和方法在物理学、计算机科学、经济管理以及工程技术科学中都有重要应用。
本课程是我校《概率论与数理统计》、《投入产出分析》、《运筹学》、《计量经济学》等课程的先修课程。
三、课程教学内容第一章行列式教学目的与要求:1.了解排列、逆序、逆序数和奇、偶排列的定义;了解排列的奇偶性与对换的关系。
2.理解n阶行列式的定义,能用定义计算一些特殊的行列式。
3.掌握行列式的基本性质和计算方法。
4.理解余子式、代数余子式的概念,掌握行列式按行(列)展开法则。
5.掌握克莱姆(Cramer)法则。
教学重点与难点:重点:行列式的概念与性质,行列式按行(列)展开法则,行列式的计算,利用克莱姆法则求解线性方程组。
难点:n阶行列式的概念,高阶行列式的计算。
第一节n阶行列式一、二阶、三阶行列式1.二阶行列式的定义与计算2.三阶行列式的定义与计算二、n级排列与逆序数n级排列的定义,逆序及逆序数的定义,奇排列与偶排列,对换与排列的奇偶性的关系。
自考线性代数教学大纲

《线性代数(经管类)》教学大纲中文名称:《线性代数(经管类)》英文名称:Linear Algebra课程编号:04184课程性质:专业课课程类别:必修课学分:4总学时数:64周学时数:4适用专业及学生类别:经济管理学院和商学院自考学生一课程概述(一)课程性质《线性代数》是经济管理类各专业本科段的一门重要的公共基础理论课。
它是为培养各种与经济和管理有关的人才而设置的。
线性代数是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性的一门学科。
它为研究和处理涉及许多变元的线性问题提供了有力的数学工具,应用十分广泛。
通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵的特征值和特征向量、二次型等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程(如运筹学,现代管理学,计算机等)及进一步扩大数学知识面奠定必要的数学基础。
(二)课程设计思路本课程标准是根据《线性代数(经管类)自学考试大纲》的精神和要求编写的,章节安排、自学要求、重点难点都符合大纲要求。
结合我校学生状况、教学资源等实际,以课程基本理念为指导,在总结教学经验和研究成果的基础上,对课程目标分别从知识与技能、过程与方法、等方面进行具体明确的阐述。
在讲述中,以理论课为主,课后布置适当作业巩固课堂内容,在每一章结束后适当安排习题课,对于各章在自学考试的重点难点以及作业中出现的问题,及时加以指导,强化巩固各章的教学内容,并穿插讲解历年自考真题。
各章学时分配第一章行列式 8第二章矩阵18第三章向量空间 12第四章线性方程组 6第五章特征值与特征向量12第六章实二次型 8合计 64二、课程教学目标及基本教学要求通过本课程的教学,要求学生:1.理解行列式的性质,会计算行列式;2.熟练掌握矩阵的各种运算;3.学会判别向量组的线性相关与线性无关。
经管类34学时《线性代数》教学大纲

经管类34学时《线性代数》教学大纲线性代数(linearalgebra)(34学时)一、简要说明本大纲面向本三批院校农科及经济、管理类各专业,总学时34,学分2分后,线性代数属于必修课程。
二、课程的性质、地位与任务线性代数是讨论有限维空间线性理论的课程,它具有较高的抽象性与逻辑性和广泛的实用性,是高等农业院校教学计划中的一门基础理论课。
由于线性问题广泛存在于技术科学的各个领域,某非线性问题在一定条件下.可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科,尤其在计算机日益普及的今天,该课程的地位与作用更显得重要。
通过这门课程的学习,使学生获得该课程的基本知识和必要的基本运算技能,同时使学生在运用数学方法分析问题和解决问题的能力方向面得到进一步的培养和训练,为学习有关专业课程和扩大数学知识面提供必要的数学基础,为培养我国社会主义现代化建设所需要的高级人才服务。
三、教学基本要求和方法在传授科学知识的同时,必须通过各个教学环节逐步培育学生具备一定的逻辑推理能力、抽象思维能力、空间想象能力和自学能力,还要特别注意培育学生具备比较娴熟的运算能力和综合运用科学知识回去分析总是问题和解决问题的能力。
四、课程考核方式本课程采用出勤、平时作业和期末考试相结合的方式,满分为100分。
期末考试成绩占考核成绩的60%~70%;出勤、平时作业占考核成绩的30%~40%。
五、授课教材和主要参考书目(一)授课教材《工程数学――线性代数》(第五版)同济大学数学教研室编成,高等教育出版社,2021.5(二)主要参考书(1)《线性代数》张良云主编,高等教育出版社,2021(2)《线性代数》(第三版)赵树主编,中国人民大学出版社,2021(3)《线性代数》陈殿友,之术洪亮编成,清华大学出版社,2021六、教学内容与学时分配(一)理论教学内容第一章行列式(6学时)第一节二阶与三阶行列式第二节全排列及其逆序数第三节n阶行列式的定义第五节行列式的性质第六节行列式按行(列)展开第七节克拉默法则第二章矩阵及其运算(6学时)第一节矩阵第二节矩阵的运算第三节逆矩阵第四节矩阵分块法第三章矩阵的初等变换与线性方程组(8学时)第一节矩阵的初等变换第二节矩阵的秩第三节线性方程组的求解第四章向量组的线性相关性(6学时)第一节向量组及其线性组合第二节向量组的线性相关性第三节向量组的秩第四节线性方程组的解的结构第五节向量空间第五章相似矩阵及二次型(8学时)第一节向量的内积、长度及正交性第二节方阵的特征值与特征向量第三节相似矩阵第四节对称矩阵的对角化第五节二次型及其标准型(二)实验教学内容编写人:信息与机电工程系石志高讲师。
线性代数经管类教学大纲

线性代数经管类教学大纲线性代数是一门重要的数学学科,广泛应用于经济管理领域。
本文将探讨线性代数在经管类教学中的大纲设计。
一、引言线性代数是一门研究向量空间、线性变换和矩阵的数学学科。
在经济管理领域,线性代数被广泛应用于数据分析、优化模型和决策科学等方面。
因此,设计一份合理的线性代数经管类教学大纲对于培养学生的数学思维和解决实际问题的能力至关重要。
二、基础概念1. 向量和矩阵:介绍向量和矩阵的基本概念,包括行向量、列向量、矩阵的加法和乘法等。
通过实例引导学生理解向量和矩阵在经济管理中的应用。
2. 线性方程组:讲解线性方程组的概念和求解方法,包括高斯消元法和矩阵求逆法。
通过实例引导学生理解线性方程组在经济管理中的应用,如市场供需分析和经济模型建立。
三、线性变换和特征值1. 线性变换:介绍线性变换的定义和性质,包括线性变换的可逆性和不可逆性。
通过实例引导学生理解线性变换在经济管理中的应用,如投资组合优化和风险管理。
2. 特征值和特征向量:讲解特征值和特征向量的概念和计算方法,以及它们在线性变换中的作用。
通过实例引导学生理解特征值和特征向量在经济管理中的应用,如市场风险评估和公司绩效分析。
四、矩阵分析和线性规划1. 矩阵分析:介绍矩阵的特征值分解和奇异值分解,以及它们在矩阵分析中的应用。
通过实例引导学生理解矩阵分析在经济管理中的应用,如市场营销策略和供应链管理。
2. 线性规划:讲解线性规划的基本概念和求解方法,包括单纯形法和对偶理论。
通过实例引导学生理解线性规划在经济管理中的应用,如生产计划和资源分配。
五、矩阵和数据分析1. 矩阵和向量空间:介绍矩阵和向量空间的关系,以及它们在数据分析中的应用。
通过实例引导学生理解矩阵和向量空间在经济管理中的应用,如市场调研和客户分群。
2. 主成分分析:讲解主成分分析的原理和计算方法,以及它在数据降维和特征提取中的应用。
通过实例引导学生理解主成分分析在经济管理中的应用,如金融风险评估和市场预测。
《线性代数》教学大纲06-07.doc

《线性代数》教学大纲英文名称:Linear Algebra学分:2.5学分学时:40学时先修课程:高等数学教学对象:理工科、管理类专业学生教学目的:通过本课程教学使学生获得后继课程中经常出现的矩阵、线性方程组、二次型、线性空间与线性变换等方面的理论知识,熟练掌握矩阵运算、运用初等变换求解线性方程组以及线性无关向量组正交规范化等基本方法。
教学要求:掌握n阶行列式,矩阵,向量组,二次型与线性空间与线性变换等概念,会计算n阶行列式,会进行矩阵的各种运算,求矩阵的秩,会判别向量组的线性相关性,求解线性方程组, 判别相似矩阵,将矩阵对角化及判定二次型的正定性等。
教学内容:第一章行列式(5课时)§ 1. n阶行列式§2. n阶行列式的性质§ 3.行列式的计算§ 4.克莱姆(Cramer)法则基本要求:要求学生掌握n阶行列式的概念与性质,并能熟练运用它们完成一些简单的n阶行列式的计算。
S占./»»»•n阶行列式的概念、性质与应用。
难点:用性质计算n阶行列式的值。
第二章矩阵(8课时)§ 1.矩阵的概念§ 2.矩阵的运算§3.可逆矩阵§4.分块矩阵§5.矩阵的初等变换与初等矩阵基本要求:熟练掌握矩阵的运算,理解乘法运算的不可交换性。
掌握逆阵概念及其存在的充分必要条件,会用伴随矩阵法与初等变换法求逆阵。
理解矩阵分块在矩阵运算中的作用,会在实际运算中利用矩阵分块的思想去解决问题。
建议在讲授本章时适当结合专业知识,例如矩阵的代数运算在钢结构及测量平差中的应用,逆阵在荷载组合中的应用等等。
£占.矩阵的乘法运算;可逆矩阵概念;初等变换与初等矩阵。
难点:初等变换与初等矩阵关系;第三章向量组的线性相关性与矩阵的秩(9课时)§ 1. n维向量§2.线性相关与线性无关§3.向量组的秩与等价向量组§ 4.矩阵的秩相抵标准型§ 5. n维向量空间§ 6,向量的内积与正交矩阵基本要求:掌握向量组的线性相关和线性无关概念,要求学生正确理解这一概念及有关结论并能做一些简单的判断与证明题。
线性代数(经管类)教学考试大纲

线性代数(经管类)教学测试大纲课程编号:4184学时数:72学时学分数:4学分适用专业:经济管理类各专业先修课程:具备高中数学的基础知识考核方式:国家自考一、课程的性质和任务1.课程的性质、地位和任务“线性代数(经管类)”是经济管理类专业(本科段)的一门重要的公共基础课程,是为培养各种和经济和管理有关的人才而设置的。
线性代数是讨论有限维空间的线性理论的一门科学,为处理线性问题提供了有力的工具。
在当今科学技术飞速发展,特别是计算机科学和信息技术的使用日新月异,科学管理理念日益加强的时代,作为描述和研究实际问题的有力工具,线性代数的理论和方法已渗透到各个科技领域以及经济学和管理科学,在工程技术和国民经济的许多领域都有广泛使用。
学习本课程,不仅使学生掌握本课程的基本理论和方法,为学习测试计划中的多门后继课程提供必需的基础知识,而且有利于提高学习者的数学修养,养成善于抽象思维和逻辑推理的习惯,从而能提高学习者分析和解决实际问题的能力。
2.本课程的基本要求和重点基本要求:(1)理解行列式的性质,会计算行列式;(2)熟练掌握矩阵的各种运算;(3)会判别向量组的线性相关性和线性无关性,理解向量组的秩和矩阵的秩的概念及其关系;(4)掌握线性方程组的解的结构和求解方法;(5)会求实方阵的特征值和特征向量,理解方阵可对角化的条件,掌握方阵对角化的计算方法;(6)了解实二次型概念和正定二次型的判别方法。
本课程的重点是行列式计算、矩阵运算和解线性方程组。
学生在学习过程中,要切实掌握有关内容的基本概念、基本理论和基本方法。
通过做相当数量的练习,具有比较熟练的运算能力,同时培养抽象思维能力和逻辑推理能力,并不断提高自学能力。
3.本课程和有关课程的联系学习本课程,要求考生具备高中数学的基础知识。
本课程是经济管理类(本科段)各专业的公共基础课程,学习本课程又为经济管理类的各专业的后继课程(如经济学等)奠定必要的数学基础。
二、教学内容和要求第一章行列式(8学时)1.行列式的定义.要求达到“识记”层次.1.1 熟练计算二阶和三阶行列式.1.2 清楚行列式中元素的余子式和代数余子式的定义.1.3 了解行列式的按其一行(列)展开的递归定义.1.4 熟记三角行列式的计算公式.2. 行列式的性质和计算.要求达到“简单使用”层次.2.1掌握并会熟练运用行列式的性质。
线性代数(经管类完整版)教学大纲

《线性代数》(经管类)课程教学大纲学时数:36学分数:2适用专业:经济类本科执笔:吴赣昌编写日期:2009年6月课程的性质、目的和任务本课程是高等学校经济类本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。
通过本课程的学习,要使学生获得行列式、矩阵、线性方程组、矩阵的特征值与特征向量、二次型等方面的基本概念、基本理论和基本运算技能,为后续课程的学习奠定必要的代数基础。
在课程的教学过程中,要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。
课程教学的主要内容与基本要求一、行列式主要内容:二阶行列式与三阶行列式,n阶行列式的定义;行列式的性质,行列式按行(列)展开法则;克莱姆法则。
基本要求:1、会求n元排列的逆序数;2、深入领会n阶行列式的定义;3、熟练掌握行列式的性质,并且会正确使用行列式的有关性质化简行列式,利用“三角化”计算行列式;4、理解行列式元素的子式、余子式和代数余子式的概念,灵活掌握行列式按行(列)展开法则(降价法);5、理解克莱姆法则,并会用克莱姆法则判定线性方程组解的存在性、唯一性及求出方程组的解。
二、矩阵主要内容:矩阵的概念及应用,熟悉几种特殊矩阵:行矩阵、列矩阵、对角矩阵、单位矩阵数量矩阵;矩阵的运算:线性运算、乘法、线性变换、转置及其运算规律,方阵的幂,对称矩阵与共轭矩阵;逆矩阵的概念,伴随矩阵及其与逆矩阵的关系,逆矩阵的运算性质,矩阵方程及其解法,*矩阵多项式及其运算;分块矩阵的概念,分块矩阵的运算;矩阵的初等变换,初等矩阵,求逆矩阵的初等变换法;矩阵的秩及其求法。
基本要求:1、深入理解矩阵的概念及应用;2、了解单位矩阵、对角矩阵、三角矩阵、共轭矩阵、对称矩阵和反对称矩阵以及它们的性质;3、掌握矩阵的线性运算、乘法运算、线性变换、转置运算,以及它们的运算规律,了解方阵的幂、方阵的行列式;4、理解逆阵的概念,掌握逆阵的性质,以及矩阵可逆的充要条件,会用伴随矩阵求逆阵;5、了解分块矩阵及其运算;6、了解共轭矩阵;7、掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念;8、清楚矩阵秩的概念,重点掌握用矩阵的初等变换求矩阵的秩和逆矩阵。
(完整版)线性代数第六章实二次型(自考经管类原创)

正定 半正定 负定 半负定 不定
二、正定矩阵
n元实二次型f xT Ax,及对称矩阵A一一对 应,能够判定A为正定矩阵,则f 必为正定二 次型.正定矩阵有哪些性质,怎样判定?
正定矩阵的性质 定理 对角矩阵为正定矩阵当且仅当中所 有对角元全大于零. 例 E为正定矩阵.
定理(必要条件) 对称矩阵A为正定矩阵,则A 中所有对角元必全部大于零. 反之,若存着对角元aii 0, 则A必然不正定. 例2 f 4x12 6x22 +15x32 x1x2 2x2 x3是否正定? 定理 正定矩阵的合同矩阵必为正定矩阵. 定理 同阶正定矩阵之和必为正定矩阵.
2a12x1x2 + 2a13x1x3 + ···+ 2an-1,nxn-1xn
为二次型.
取 aij = aji , 则
2aijxixj = aijxixj + ajixjxi ,
nn
于是 二次型可写成 f (x1, x2,..., xn )
aij xi x j .
i1 j1
a11 a12 a1n
令
y1 y2
x1 x2
2x2 x3
y3 x3
即作可逆变换
x1 x2
y1+2 y2 y2 +y3
+2y3
x3 = y3
x1 1 2 2 y1
即经可逆变换
x2
=
0
1
1
y2
x3 0 0 1 y3
将二次型化为标准形y12 6 y22 4 y32
O
定义 规范形中k称为二次型的正惯性指数,k r称 为负惯性指数,正负惯性指数的差2k r称为二次 型的符号差.
定理 对称矩阵A与B合同当且仅当它们有相同的 秩和相同的正惯性指数.
《线性代数》课程教学大纲(经济管理类)

《线性代数》课程教学大纲一、课程基本信息二、课程教学目标《线性代数》是学生所必备的基础理论知识和重要的数学工具。
它的主要目的和任务是通过本课程的教学,使学生了解和掌握行列式、矩阵、线性方程组、二次型等基本概念,基本原理理论和基本计算方法,并具有熟练的矩阵运算能力和用矩阵方法解决实际问题的能力,同时使学生的抽象思维能力和数学建模能力受到一定的训练。
本课程主要教学内容包括行列式、矩阵、向量的线性相关性,线性方程组,矩阵的特征值,二次型等。
另外,有关的习题课、应用线性代数知识解决实际问题的数学建模课也是教学的重要部分。
1.学好基础知识。
理解和掌握课程中的基本概念和基本理论,知道它的数学思想方法、意义和用途,以及它与其它概念、规律之间的联系。
2.掌握基本技能。
能够根据性质法则、公式正确地进行运算。
能够根据不同问题的情景,寻求和设计合理简捷的运算途径。
3.培养思维能力。
能够对研究的对象进行观察、比较、抽象和概括。
能运用课程中的概念、定理及性质进行合乎逻辑的推理。
能对计算结果进行合乎实际的分析、归纳和类比。
4.提高解决实际问题的能力。
能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。
能够自觉地运用所学的知识方法理念去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。
三、教学学时分配《线性代数》课程理论教学学时分配表四、教学内容和教学要求第一章行列式(10)(一)教学要求通过本章相关内容的学习,了解行列式的概念;理解克莱姆法则,并且会用克莱姆法则解相应的方程组;掌握行列式的性质和行列式的展开定理,及正确计算行列式。
(二)教学重点与难点教学重点:n阶行列式的性质,行列式按行(列)展开定理教学难点:n阶行列式的计算(三)教学内容第一节排列与逆序数1.n阶排列及奇(偶)排列的定义2.逆序数第二节 n阶行列式1.二阶、三阶行列式的定义2.n阶行列式的定义3. 一些特殊的n阶行列式计算第三节行列式性质1.行列式的性质2.利用行列式性质计算行列式第四节行列式按行(列)展开1. 余子式2. 行列式按行(列)展开法则3. 范德蒙行列式第五节克莱姆法则本章习题要点:1.n阶行列式的计算2.行列式按行(列)展开3.用克莱姆法则解相应方程组第二章矩阵及其运算(8学时)(一)教学要求通过本章内容的学习,使学生了解单位矩阵、对角矩阵、上(下)三角矩阵、对称矩阵与反对称矩阵的概念以及它们的性质,理解矩阵以及逆矩阵的概念。
《线性代数》(考试大纲)

高等教育自学考试衔接考试(课程代码02198)《线性代数》考试大纲课程目标:线性代数课程是高等教育自学考试工科类专业的一门重要的基础理论课,它是为培养满足工科类专业人才的需要而设置的。
通过本课程的自学,使考生系统地学习并获得有关行列式、矩阵、n维向量、线性方程组、矩阵的特征值与特征向量、实二次型的基本知识、必要的基本理论和常用的基本方法。
在此过程中,注重培养考生的抽象思维能力好逻辑推理能力,不断提高自学能力,并为后继课程的学习提供必要的数学基础。
第一章行列式第一节行列式的定义识记:行列式的定义掌握:熟练计算二阶与三阶行列式及简单的n阶行列式。
第二节行列式的性质识记:行列式的性质与计算掌握:掌握并会熟练运用行列式的性质。
第三节行列式按一行(或一列)展开识记:行列式的按一行(或一列)展开定义。
领会:了解行列式的按其第一列展开的递归定义。
掌握:掌握行列式的基本方法。
第四节行列式按k行(或k列)展开识记:清楚行列式中元素的余子式和代数余子式的定义。
领会:余子式和代数余子式计算。
第五节克拉默法则识记:知道克拉默法则掌握:会用克拉默法则求解简单的线性方程组。
克拉默法则。
要求达到“简单应用”层次。
第二章矩阵第一节矩阵的定义识记:矩阵的定义。
要求达到“识记”层次。
了解:知道三角矩阵、对角矩阵、单位矩阵和零矩阵的定义。
第二节矩阵运算识记:矩阵运算及其运算规律。
要求达到“综合应用”层次掌握:掌握矩阵相等与加、减法的定义及其可运算的条件和运算律,掌握矩阵乘法的定义和可乘条件;掌握矩阵乘法的运算法则;注意矩阵乘法不满足交换定律和消去律,知道矩阵乘法与数的乘法的区别。
第三节矩阵分块识记:知道分块矩阵的定义。
掌握:分块矩阵的加法、数科和乘法运算。
第四节可逆矩阵识记:理解可逆矩阵的概念与性质。
方阵的逆矩阵,要求达到“领会”层次。
理解方阵的伴随矩阵的定义。
掌握:熟练掌握方阵可逆条件和求逆运算律,会用伴随矩阵求二阶和三阶矩阵的逆矩阵。
自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2013年自考《线性代数(经管类)》教材大纲第一章行列式(一)考核知识点1.行列式定义。
2.行列式的性质与计算。
3.克拉默(Cramer)法则。
(二)自学要求学习本章,要确切了解行列式的定义;理解行列式的性质;熟练掌握行列式的计(特别是低阶的数字行列式和具有特殊形状的文字或数字行列式),会计算简单的行式;理解克拉默法则在线性方程组求解理论中的重要性。
本章的重点;行列式的性质与计算。
难点;n阶行列式的计算(三)考核要求1.行列式的定义。
要求达到“识记”层次。
1.1熟练计算二阶与三阶行列式。
1.2清楚行列式中元素的余子式和代数余子式的定义。
1.3了解行列式的按其第一列展开的递归定义。
1.4熟记三角行列式的计算公式。
2.行列式的性质与计算。
要求达到“简单应用”层次。
2.1掌握并会熟练运用行列式的性质。
2.2掌握行列式的基本方法。
2.3回计算具有特殊形状的数字和文字行列式以及简单的n阶行列式。
2.4低阶范德蒙德行列式的计算。
3.克拉默法则。
要求达到“简单应用”层次。
3.1知道克拉默法则。
3.2会用克拉默法则求解简单的线性方程组。
第二章矩阵(一)考核知识点1.矩阵的各种运算的定义及其运算律。
重点是矩阵的乘法。
2. 分快矩阵的定义及其运算。
3.逆矩阵的定义与性质,伴随矩阵,方阵可逆的判别条件。
4.矩阵的初等变换和初等矩阵。
5.可逆矩阵的逆矩阵的求法。
6.矩阵的秩的定义与求法。
(二)自学要求学习本章,要求掌握矩阵的各种运算及其运算法则;知道方阵可逆的充分必要条件;会求可逆矩阵的逆矩阵;熟练掌握矩阵的初等变换;理解矩阵的秩定义,会求矩阵的秩。
本章的重点;矩阵运算及其矩阵的求法,矩阵的初等变换。
难点;逆矩阵的求法及矩阵的概念。
(三)考核要求1.矩阵的定义。
要求达到“识记”层次。
1.1理解矩阵的定义。
1.2知道三角矩阵、对角矩阵、单位矩阵和零矩阵的定义。
1.3清楚矩阵与行列式是两个有本质区别的概念,清楚矩阵与行列式符号的区别。
2.矩阵运算及其运算规律。
要求达到“综合应用”层次2.1掌握矩阵相等与加、减法的定义及其可运算的条件和运算律,2.2理解数乘矩阵运算的定义。
注意kA与的区别,熟练运用,其中n是方阵A的阶数。
2.3掌握矩阵乘法的定义和可乘条件;掌握矩阵乘法的运算法则;注意矩阵乘法不满足交换定律和消去律,知道矩阵乘法与数的乘法的区别。
2.4会用方阵行列式的乘法与数的乘法的区别。
2.5知道矩阵转置的定义和转置的运算律,特别注意。
2.6知道对称矩阵和反对称矩阵的定义。
3.方阵的逆矩阵。
要求达到“领会”层次。
3.1理解可逆矩阵的概念与性质。
3.2熟练掌握方阵可逆条件和求逆运算律,知道是A可逆的充要条件。
3.3理解方阵的伴随矩阵的定义。
会用两个基本结论:。
3.4会用伴随矩阵求二阶和三阶矩阵的逆矩阵。
3.5会解矩阵方程。
4.分块矩阵。
要求达到“识记”层次4.1知道分块矩阵的定义。
4.2理解分块矩阵的加法、数科和乘法运算以及分块矩阵的转置运算。
4.3会求准对有矩阵的逆矩阵和准三角矩阵的行列式。
5.矩阵的初等变换与初等方阵。
要求达到“简单应用”层次。
5.1理解矩阵的初等变换和初等方阵的定义及其相互之间的关系。
5.2知道初等方阵的逆矩阵5.3知道矩阵等价的概念和矩阵的等价标准形。
5.4会利用矩阵的初等行变换求可逆矩阵的逆矩阵。
6.矩阵的秩的定义。
要求达到“领会”层次。
6.1理解矩阵的秩的定义。
6.2知道方阵满秩的概念及其性质。
7.矩阵的物件求法。
要求达到“简单应用”层次。
7.1会根据定义求比较简单的矩阵的秩。
7.2会用矩阵的初等行变换化矩阵为阶梯形矩阵,并求出矩阵的秩。
第三章向量空间(一)考核知识点1.n维向量及其线性运算,n维向量空间的概念。
2.向量的线性组合的定义和线性组合系数的计算。
3.向量的线性相关和线性无关的概念及其判别法。
4.向量组等价的概念。
5.向量组的极大无关组与向量组的秩的定义及其求法。
6.向量组的秩与矩阵的秩的关系。
7.子空间及其基、维数和坐标的概念。
(二)自学要求学习本章,要求知道n维向量的概念;掌握向量是同维向量组的线性组合的概率和组合系数的求法;理解向量组线性相关与线性无关的定义和判别法;理解向量组的极大无关组的定义和向量组的秩的定义;会求向量组的极大无关和向量组的秩;清楚向量组的秩与矩阵的秩之间的关系。
知道向量空间的定义和向量空间的基与维数和坐标的概念。
本章重点;线性组合系数的求法;向量组线性相关和线性无关的定义及其判别法;求向量组的秩。
难点;向量组线性相关和线性无关的判别法;向量组秩的概念。
(三)考核要求1.n维向量的定义和向量组的线性组合。
要求达到“简单应用”层次。
1.1知道n维向量的定义。
1.2掌握向量的线性运算法则。
1.3理解向量是向量组的线性组合(即某向量可用某向量组线性表出)性方程组形式表示法。
1.4掌握求线性组合系数的方法。
2.向量组的线性相关与线性无关。
要求达到“简单应用”层次。
2.1理解向量组线性相关和线性无关的定义。
2.2掌握求线性相关系数的方法(解齐次线性方程组)。
3.向量组的极大无关组合向量许的秩。
要求达到“简单应用”层次。
3.1理解两个向量组等价的概念。
3.2理解向量组的极大线性无关组的定义及其与原始向组的等价关系,的极大线性无关组3.3理解向量组的秩的概念,并会求向量组的秩。
4向量组的秩与矩阵的秩的关系。
要求达到“识记”层次4.1知道矩阵的行秩与列秩的定义及其矩阵的秩的关系。
4.2熟知关于矩阵的秩的重要结论。
5.向量空间。
要求达到“识记”层次。
5.1知道向量空间及其子空间的定义。
5.2知道向量空间的基和维数的概念。
5.3会求向量在某个基下的坐标。
第四章线性方程组(一)考核知识点1.齐次线性方程组有非零解的充要条件。
2.齐次线性方程组解的性质与解空间、基础解系和通解的概念。
3.齐次线性方程组的基础解系和通解的求法。
4.非齐次线性方程组有解及有惟一解的充要条件。
5.非齐次线性方程组解的性质与解的结构。
6.非齐次线性方程的通解的求法。
(二)自学要求学习本章,要求熟练掌握齐次线性方程组的解空间、基础解系及通解的含义和求法,熟练掌握非齐次线性议程组的有解判别法和通解的求法。
本章重点:齐次线性方程组有非零解的充要条件;非齐次线性方程组有解的充要条件;会用矩阵的初等行变换求解线性议程组。
难点:齐次线性方程组的基础解系的求法。
(三)考核要求1.齐次线性方程组有非零解的充要条件。
要求达到“领会”层次。
1.1理解齐次线性方程组有非零解的充要条件。
2.齐次线性方程组解的性质与解空间。
要求达到“领会”层次。
2.1理解齐次线性方程组解的性质。
2.2理解齐次线性方程组的解空间的概念。
3.齐次线性方程组的基础解系与通解。
要求达到“综合应用”层次。
3.1理解齐次线性方程组的基础解系的定义,会判定基础解系所含向量的个数。
3.2掌握用矩阵初等行变换求齐次线性方程组的基础解系的方法;会化齐次线性方程组的系数矩阵为简化行阶梯形矩阵;会写出方程组的通解。
4.非齐次线性方程组有解的充要条件。
要求达到“领会”层次。
4.1理解非齐次线性方程组有解的判别定理。
4.2掌握非齐次线性方程组有惟一解,有无穷多解的判别方法。
4.3会讨论含参数的非齐次线性方程组的求解问题。
5.非齐次线性方程组解的性质、解的结构和通解的求法。
要求达到“综合应用”层次。
5.1理解非齐次线性方程组的解与它对应的齐次线性方程组(即导出组)的解之间的关系。
5.2熟练掌握非齐次线性方程组的通解的求法。
第五章特征值与特征向量(一)考核知识点1.实方阵的待征值和待征向量的定义、性质与计算。
2.同阶实方阵相似的定义与性质。
3.方阵的相似对角化。
4.实向量的内积、长度及其正交性。
5.正交向量组与正交矩阵。
6.施密特正交化方法。
7.实对称矩阵的正交相似对角化。
(二)自学要求学习本章,要求熟练掌握实方阵的特征值和特征向量的定义与求法;了解特征值与特征向量的性质;清楚两个同阶方阵相似的定义和性质;理解方阵与对角矩阵相似的条件并会用相似变换化方阵为对角矩阵;会计算两个实向量的内积和向量的长度,会判定两个向量是否正交;了解正交向量组的定义,会用施密特方法把线性无关向量组化为等价的正交单位向量组;了解正交矩阵的定义、性质及其判定方法;了解实对称矩阵的特征值和特征向量的性质;会用正交矩阵化实对称矩阵为对角矩阵。
本章重点:求实方阵的特征值和特征向量;方阵可相似对角化的条件和方法;方阵的相似对角化;实对称矩阵的正交相似对角化。
难点:方阵与实对称矩的相似标准形的求法。
(三)考核要求1.特征值和特征向量。
要求达到“简单应用”层次。
1.1理解实方阵的特征值和特征向量的定义。
1.2理解实方阵的特征值和特征向量的性质,会求给定矩阵的特征值和特征向量。
2.相似矩阵的实义与性质。
要求达到“领会”层次。
2.1理解矩阵相似的定义和相似矩阵的基本性质。
3.方阵相似对角化。
要求达到“简单应用”层次。
3.1熟知n阶实方阵相似于对角矩阵的充分必要条件。
3.2熟知n阶实方阵相似于对角矩阵的一个充分条件:A有n个互不相同的特征值。
3.3掌握用相似变换化方阵为对角矩阵的方法。
4.向量内积和正交矩阵。
要求达到“领会”层次。
4.1清楚向量内积的定义和基本性质,会计算向量的内积。
4.2知道向量的长度的定义和把非零向量单位化。
4.3理解两个向量正交的概念,会判定两个非零向量是否正交。
4.4知道标准正交向量组的定义及其线性无关性。
4.5熟练掌握正交矩阵的定义及其性质。
4.6掌握线性无关向量组的施密特正交化方法。
5.实对称矩阵的性质。
要求达到“识记”层次。
5.1知道实对称矩阵的特征值和特征向量的性质。
5.2知道实对称矩阵必正交相似于对角矩阵。
6.实对称矩阵的正交相似标准形。
要求达到“简单应用”层次。
6.1会求实对称矩阵的正交相似标准形。
第六章实二次型(一)考核知识点1.实二次型的定义及其矩阵表示。
2.矩阵合同的定义。
3.实二次型的标准形。
4.惯性定理与实二次型的规范形。
5.正定二次型和正定矩阵的概念与判定方法。
(二)自学要求学习本章,要求理解实二次型的定义及其矩阵表示;了解实二次型的标准形;了解全同矩阵的概念;会用正交变换化二次型为标准形;了解用配方法化二次型为合同标准化;知道惯性定理;理解正定二次型和正定矩阵的定义。
掌握正定二次型和正定矩阵的判别方法。
本章重点:化二次型为标准形以及正定二次型和正定矩阵的判别方法。
难点:用正交变换化二次型为标准形。
(三)考核要求1.实二次型的定义及其矩阵表示。
要求达到“领会”层次。
1.1知道实二次型的定义及其矩阵表示。
2.实二次型的标准形。
要求达到“领会”层次。
2.1知道实二次型的标准形。
2.2知道矩阵合同的定义。
3.化实二次型为标准形。