化学气相沉积(中文版)2016年

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 低气压(133.3Pa)下的CVD较长的平均自由路径可 减少气相成核几率,减少颗粒,不需气体隔离,孔 洞少,成膜质量好
•但是反应速率较低,需要较高的衬底温度
晶圆装 载门
低压化学气相沉积系统
压力计
晶圆
加热线圈
至真空帮 浦
制程气体入口 温度
晶舟 中心区 均温区
石英 管
距离
等离子体增强型化学气相沉积 (PECVD)
• 保形覆盖是指无论衬底表面有什么样的 倾斜图形,在所有图形的上面都能沉积有 相同厚度的薄膜
到达角度
180° B
270° A
90° C
薄膜的厚度正比于到达角的取值范围
阶梯覆盖性与保形性
CVD 薄膜
c
a
结构 基片
h b
d
w
严重时会形成空洞
金属
介电质
金属 金属
介电质
空洞
介电质
金属 4
金属层间介电质3
化学气相沉积(CVD)
化学气相沉积(CVD)概念
• 化学气相沉积(Chemical Vapor Deposition)
• 气体或蒸气在晶圆表面产生化学反应,并 形成固态薄膜的沉积方法.
沉积制程
气源分子到达晶圆表面 气源分子在表面移动
气源分子在表面反应
成核作用:岛状 物形成
沉积制程
岛状物成长 岛状物合并
• 射频在沉积气体中感应等离子体场以提 高反应效率,因此,低温低压下有高的 沉积速率.
• 表面所吸附的原子不断受到离子与电子 的轰击,容易迁移,使成膜均匀性好,台阶覆 盖性好
等离子体增强型化学气相沉积 (PECVD)
制程反 应室
制程反 应室
晶圆
RF功率产生器 等离子体
副产品被 泵浦抽走
加热板
保形覆盖
• 大型有机分子 • TEOS分子不是完整对称的 • 可以与表面形成氢键并物理吸附在基片表面 • 表面迁移率高 • 好的阶梯覆盖、保形性与间隙填充 • 广泛使用在氧化物的沉积上
两种主要CVD源材料的主要特点
硅烷成本低,沉积速率较快
因为TEOS比硅烷热分解产物的黏附系数小一个数量 级,所以TEOS在表面的迁移能力与再发射能力都很 强,台阶覆盖性较好.
成膜质量好,但如果铝层已沉积,这个温度是不允许的
PE-TEOS 对O3-TEOS
等离子体增强-TEOS 臭氧-TEOS
阶梯覆盖率: 50% 保形性: 87.5%
阶梯覆盖率: 90% 保形性: 100%
CVD 氧化层 vs. 加热成长的氧化层
SiO2 Si
热成长薄膜
Si 硅裸片晶圆
SiO2 Si
四乙氧基硅烷(TEOS)
H
• 室温下为液态 • 化学性能不活泼 • 安全
HC H
HC H
HH
O
HHΒιβλιοθήκη Baidu
H C C O Si O C C H
HH
O
HH
HC H
HC H
H
CVD 源材料吸附:四乙氧基硅烷 (TEOS)
• 四乙氧基硅烷 (tetra-ethyl-oxy-silane, TEOS ,Si(OC2H5)4),也称正硅酸四乙酯
O3 TEOS BPSG
氮化硅阻擋層
金屬硅化物
多晶硅
二氧化硅的CVD沉积方法
TEOS为源的低温PECVD二氧化硅
• Si(OC2H5)4+O2→SiO2+副产物
比用气体硅烷源更安全,因为TEOS室温下为液体, 而且化学性能不活泼,所沉积薄膜保形性好。
中温(650~750℃)LPCVD二氧化硅
• Si(OC2H5)4+O2→SiO2+4C2H4+2H2O
金属 3
金属层间介电质2
影响阶梯覆盖的因素
• 源材料的到达角度 • 源材料的再发射 • 源材料的表面迁移率
黏附系数
黏附系数
• 源材料原子和基片表面产生一次碰撞的过 程中,能与基片表面形成一个化学键并被 表面吸附的机率
黏附系数
源材料 SiH4 SiH3 SiH2 SiH TEOS WF6
黏附系数 3x10-4至3x10-5
• APCVD易于发生气相反应,沉积速率较快,可超 过1000Å/min,适合沉积厚介质层.
但由于反应速度较快,两种反应气体在还 未到达硅片表面就已经发生化学反应而产生生 成物颗粒,这些生成物颗粒落在硅片表面,影响 硅片表面的薄膜生长过程,比较容易形成粗糙 的多孔薄膜,使得薄膜的形貌变差.
低压化学气相沉积法(LPCVD)
在一般的掺杂浓度下,同样的掺杂浓度下, 多晶硅 的电阻率比单晶硅的电阻率高得多,主要是由于晶粒间 界含有大量的悬挂键,可以俘获自由载流子,但在高掺 杂情况下, 多晶硅的电阻率比单晶硅的电阻相差不大.
高掺杂多晶硅作为栅电极和短程互联线在MOS集 成电路得到广泛应用。
常常将钨、钛、钴(考虑到离子注入后的退火,这里 只能用难熔金属)等硅化物做在多晶硅薄膜上,形成具有 较低的方块电阻(相对于单独的多晶硅而言)。
0.04 至 0.08 0.15 0.94 10-3 10-4
CVD 源材料
• 硅烷 (SiH4) • 四乙氧基硅烷 (tetra-ethyl-oxy-silane, TEOS ,Si(OC2H5)4)
CVD 源材料: 硅烷
• 自燃性的 (自己会燃烧), 易爆的, 以及有毒的 • 打开没有彻底吹除净化的硅烷气体管路,
可能引起火灾或是小爆炸,并形成微细的 二氧化硅粒子使气体管路布满灰尘
硅烷分子结构
H H
Si H
H
H H Si H
H
CVD源材料吸附: 硅烷
• 硅烷分子完全对称的四面体 • 不会形成化学吸附或物理吸附 • 但硅烷高温分解或等离子体分解的分子碎
片, SiH3, SiH2, or SiH, 很容易与基片表面形 成化学键,黏附系数大 • 表面迁移率低, 通常会产生悬突和很差的阶 梯覆盖
CVD工艺应用
• 多晶硅 • SiO2 • Si3N4 •W • 硅化钨 • TiN
多晶硅的特性与沉积方法
多晶硅薄膜是由小单晶(大约是100nm量级)的晶粒 组成,因此存在大量的晶粒间界
多晶硅薄膜的沉积,通常主要是采用LPCVD工 艺,在580~650下热分解硅烷实现的
• SiH4(吸附)=Si(固)+2H2(气)
岛状物成长, 横截面图
连续薄膜
CVD制程
• APCVD:常压化学气相沉积法 • LPCVD:低压化学气相沉积法 • PECVD :等离子体增强型化学气相沉
积法
APCVD反应器示意图
N2
制程气体
N2
晶圆
晶圆
加热器
输送带清洁装置
排气
输送带
常压化学气相沉积法(APCVD)
• APCVD制程发生在大气压力常压下,适合在开放 环境下进行自动化连续生产.
相关文档
最新文档