概率论与数理统计教案(48课时)
概率论与数理统计、概率论03-第48讲 相合性_49
4.相合性准则
定义:设ˆX1,, Xn 为参数的估计量,
若对于任意 ,当n 时,
ˆn P
即 0,有limP n
ˆn
0 成立.
则称ˆn为的相合估计量或一致估计量.
2Hale Waihona Puke 例1:设总体X的k阶矩E( X k ) k (k 2)存在,
X1,, Xn是一样本,证明:
(1)
证明:Pˆ 1.6 2(1(1.6)) 0.11,
0, lim P ˆ 0 不成立. n
所以,ˆ不是的相合估计.
6
例3:设总体X U 0,, X1,, Xn是一样本,
证明ˆ1
2 X 和ˆ2
n
1 n
X n都是的相合估计.
证明:ˆ1 2X P 2E(X) , ˆ1是的相合估计.
7
E ˆ , Dˆ 2
A2是 2 E ( X 2 )相 合 估 计 .
4
(2)因为D( X ) 2 2 12
B2
1 n
n i1
(Xi
X)2
A2
X
2,
根据依概率收敛性质,
B2 A2 X2是2的相合估计.
而S
2
n n 1
B2也是
2的相合估计.
(3) S S2是的相合估计.
5
例2:设总体X ~ N (,1), X1,, Xn是一样本, ˆ Xn ,证明:ˆ不是的相合估计.
Al
1 n
n i1
X il是l的相合估计,l
1,...,k;
(2)B2, S 2是D( X ) 2的相合估计; (3) S是的相合估计.
3
证明:(1)由辛钦大数定律知,对l 1,...,k,
概率论与数理统计教案
重点: 随机变量独立性的概念及应用,用图形定限法和分布函数法求两个独立随 机变量和的分布. 难点: 随机变量独立性的理解及应用,两个独立随机变量和的概率分布的确定.
概率统计练习题第 3 章习题
南通大学理学院教案
周 次 第 周, 第 9 次课 4.2 方差 板书结合多媒体 年 月 日
章节名称 授课方式 课堂讲授
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
1. 切比雪夫(Chebyshev)不等式, 切比雪夫(Chebyshev)大数定律和伯努利(Bernoulli) 大数定律; 2.独立同分布的中心极限定理和棣莫佛—拉普拉斯(De Moivre-Laplace)中心极限 定理; 3.棣莫佛—拉普拉斯中心极限定理在实际问题中的应用.
章节名称 授课方式 课堂讲授
1.4 条件概率 教学时数 3
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
1. 了解条件概率的概念, 掌握概率的乘法公式、 全概率公式, 会应用贝叶斯(Bayes) 公式解决比较简单的问题; 2.理解事件的独立性概念,熟练掌握独立事件的乘法公式.
1.条件概率; 2.计算概率的五大公式之: 乘法公式,全概率公式,Bayes 公式; 3.事件独立性的概念.
重点: 事件的表示;概率的性质. 难点: 复杂事件的表示与分解.
概率统计练习题第 1 章习题
南通大学理学院教案
周 次 第 周, 第 2 次课 1.3 古典概型与几何概型 课堂讲授 教学时数 3 教学手段 板书结合多媒体 年 月 日
章节名称 授课方式
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
章节名称 授课方式
教学手段
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
概率统计1.1-1.3(48学时)(浙大盛骤)
第七章
第八章
参数估计
假设检验
第一章 概率论的基本概念
概率论序言 第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
序言
1.确定性现象 2.统计规律性 3.随机现象
在自然界和人的实践活动中经常遇到各种 各样的现象,这些现象大体可分为两类:一 类是确定的,例如“在一个标准大气压下, 纯水加热到100摄氏度时必然沸腾。”“向上 抛一块石头必然下落。”,“同性电荷相斥, 异性电荷相吸。”等等,这种在一定条件下 有确定结果的现象称为必然现象(确定性现 象);
2. 和事件 : 事件 A、B 至少有一个发生所构成 的
事件叫做事件 A 与事件 B 的和 .记作 A B .
A
B
类似地 , 称事件 A1、A2、 、An 中至少有一个发
、An 的和事件 . 生的事件为事件 A1、A2、 n 记之为 A1 A2 An , 简记为 Ai . i 1 中至少有一个发生的事 件为 称事件 A1、A2、
例如:S2 中事件 A={HHH,HHT,HTH,HTT} 表示 “第一次出现的是正面” S6 中事件 B1={t|t1000} 表示 “灯泡是次品” 事件 B2={t|t 1000}
表示 “灯泡是合格品”
事件 B3={t|t1500}
表示“灯泡是一级品”
• 例:对于试验E2:将一枚硬币抛掷三次, 观察正面H、反面T出现的情况. (1)事件A1:“第一次出现的是正面H”,则 A1={HHH,HHT,HTH,HTT} (2)事件A2:“三次出现同一面”,则 A2={HHH,TTT} (3)事件A3:“出现二次正面”,则 A2={HHT,HTH,THH}
概率论与数理统计教案(48课时)
《概率论与数理统计》课程教案第一章 随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、Bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节 随机事件及事件之间的关系第二节 频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章 随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节 离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节 连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。
概率论与数理统计教案(48课时)
概率论与数理统计教案(48课时)Chapter 1: XXX1.Learning Objectives and Basic Requirements:1) Understand the concepts of random experiments。
sample space。
and random events;2) Master the nships and ns een random events;3) Master the basic XXX。
learn how to XXX;4) Understand the concept of event frequency。
know the XXX random phenomena。
and the XXX.5) XXX。
the law of total probability。
Bayes' theorem。
and their XXX.2.Teaching Content and Time n:n 1: XXXn 2: XXX (2 hours)n 3: XXX (Classical Probability) (2 hours)n 4: XXXn 5: Independence of Events (2 hours)3.XXX:1) Random events and nships een random events;2) XXX;3) Properties of probability;4) nal probability。
the law of total probability。
and Bayes' theorem;5) XXX。
XXX。
XXX.4.XXX:1) Enable students to correctly describe the sample space of random experiments and us random events;2) Pay n to helping students understand the specific meanings of events such as A∪B。
国家精品课 概率论与数理统计教案
国家精品课概率论与数理统计教案国家精品课“概率论与数理统计”教案一、课程概述课程名称:概率论与数理统计授课人:XXX授课对象:本科生课程时长:48学时二、教学目标1. 知识目标:掌握概率论与数理统计的基本概念、原理和方法,理解其在实际问题中的应用。
2. 能力目标:培养学生运用概率论与数理统计知识解决实际问题的能力,提高其逻辑思维和创新能力。
3. 情感态度价值观:培养学生对概率论与数理统计的兴趣,增强其科学素养,为其今后学习、工作打下坚实基础。
三、教学内容与要求1. 概率论基础:介绍概率的基本概念、条件概率、独立性等,要求学生掌握概率的计算和实际应用。
2. 随机变量及其分布:介绍随机变量及其分布函数,常见的随机变量分布类型,以及随机变量的数字特征等。
3. 数理统计基础:介绍数理统计的基本概念、参数估计和假设检验等,要求学生掌握参数估计和假设检验的方法。
4. 回归分析与方差分析:介绍一元线性回归分析、多元线性回归分析和方差分析等,要求学生掌握相关分析和回归分析的方法。
5. 课程实践:组织学生进行实际问题的概率论与数理统计应用,提高其解决实际问题的能力。
四、教学方法与手段1. 理论教学:采用讲授法、讨论法等教学方法,帮助学生理解概率论与数理统计的基本概念和原理。
2. 实验教学:通过实验课程和课程实践,让学生亲自动手操作,加深对理论知识的理解。
3. 教学手段:采用多媒体教学、在线学习等手段,丰富课程内容的表现形式,提高学生的学习兴趣。
五、教学评价与反馈1. 作业评价:布置适量的作业,及时批改和反馈,了解学生对课程内容的掌握情况。
2. 测验与考试:定期进行测验和考试,检查学生的学习成果,促使其巩固所学知识。
概率论与数理统计教案
概率论与数理统计教案教案标题:探索概率论与数理统计教学目标:1. 理解概率论与数理统计的基本概念和原理。
2. 掌握概率论与数理统计的常用方法和技巧。
3. 培养学生的数理思维和问题解决能力。
教学内容:1. 概率论的基本概念和概率计算方法。
a. 概率的定义和性质。
b. 事件与样本空间。
c. 条件概率与乘法定理。
d. 独立事件与加法定理。
e. 随机变量与概率分布。
2. 数理统计的基本概念和统计分析方法。
a. 总体与样本。
b. 抽样与抽样分布。
c. 参数估计与假设检验。
d. 常见的概率分布(如正态分布、二项分布等)。
教学步骤:第一课时:概率论的基本概念和概率计算方法1. 导入:通过一个生活中的例子引入概率的概念,激发学生对概率的兴趣。
2. 讲解概率的定义和性质,引导学生理解概率的基本概念。
3. 通过实例演示事件与样本空间的关系,并引导学生进行概率计算。
4. 引入条件概率与乘法定理,通过实例演示条件概率的计算方法。
5. 引入独立事件与加法定理,通过实例演示独立事件的计算方法。
6. 引入随机变量的概念和概率分布,通过实例演示随机变量的计算方法。
7. 总结本节课的内容,布置课后作业。
第二课时:数理统计的基本概念和统计分析方法1. 复习上节课的内容,解答学生的疑问。
2. 导入总体与样本的概念,通过实例演示总体与样本的关系。
3. 引入抽样与抽样分布的概念,通过实例演示抽样分布的计算方法。
4. 讲解参数估计的基本原理和方法,通过实例演示参数估计的计算方法。
5. 引入假设检验的概念和步骤,通过实例演示假设检验的计算方法。
6. 介绍常见的概率分布,如正态分布、二项分布等,讲解其特点和应用。
7. 总结本节课的内容,布置课后作业。
教学方法:1. 案例分析法:通过实际生活中的案例,引导学生理解概率论与数理统计的概念和方法。
2. 问题导向法:提出问题,引导学生思考和探索解决问题的方法。
3. 合作学习:组织学生进行小组合作,共同解决问题和讨论案例。
概率论与数理统计教案(48课时)(最新整理)
( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。
概率论与数理统计教案(48课时)
概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5)理解条件概率、全概率公式、Bayes公式及其意义。
理解事件的独立性。
本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。
《概率论与数理统计》教案
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
《概率论与数理统计》教案
《概率论与数理统计》教案一、教学目标1. 了解概率论与数理统计的基本概念,理解随机现象的统计规律性。
2. 掌握概率论的基本计算方法,包括组合、排列、概率公式等。
3. 熟悉数理统计的基本方法,包括描述性统计、推断性统计、假设检验等。
4. 能够运用概率论与数理统计的方法解决实际问题。
二、教学内容1. 概率论的基本概念:随机试验、样本空间、事件、概率等。
2. 概率计算方法:组合、排列、概率公式、条件概率、独立性等。
3. 数理统计的基本概念:总体、样本、描述性统计、推断性统计等。
4. 假设检验:卡方检验、t检验、F检验等。
5. 实际问题应用:概率论与数理统计在实际问题中的举例分析。
三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。
2. 案例分析法:通过具体案例,让学生了解概率论与数理统计在实际问题中的应用。
3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的思考能力。
4. 实践操作法:引导学生利用统计软件进行数据分析和处理,提高学生的实际操作能力。
四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括投影仪、计算机等。
2. 教材和辅导资料:选用合适的教材和辅导资料,为学生提供丰富的学习资源。
3. 统计软件:安装统计分析软件,如Excel、SPSS等,方便学生进行实践操作。
五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。
2. 期中考试:设置期中考试,检验学生对概率论与数理统计知识的掌握程度。
3. 课程设计:布置课程设计项目,让学生运用概率论与数理统计的方法解决实际问题。
4. 期末考试:全面考察学生对概率论与数理统计知识的掌握程度。
六、教学资源1. 教材:选用权威、适合教学的的概率论与数理统计教材。
2. 辅导资料:提供习题集、案例分析集等辅导资料,帮助学生巩固知识。
3. 在线资源:推荐优秀的在线课程、教学视频、学术文章等,方便学生自主学习。
4. 软件工具:介绍和使用统计软件工具,如R、Python等,提高学生数据分析能力。
《概率论与数理统计》教案
《概率论与数理统计》教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量随机事件发生可能性大小的数。
掌握概率的基本性质,如additivity(可加性)和symmetry(对称性)。
1.2 条件概率与独立性引入条件概率的概念,理解在给定一些信息的情况下,事件发生的概率。
学习独立事件的定义,掌握独立性原理,了解如何通过乘法规则计算联合概率。
第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机现象的数值化描述。
学习离散随机变量和连续随机变量的区别,以及如何列出随机变量的可能取值。
2.2 概率分布学习概率分布的概念,掌握如何计算随机变量取某个值的概率。
掌握期望值和方差的计算方法,了解它们在描述随机变量集中趋势和离散程度方面的作用。
第三章:多维随机变量及其分布3.1 联合随机变量引入多维随机变量的概念,理解多个随机变量共同作用的概率分布。
学习如何列出联合随机变量的可能取值,以及如何计算联合概率。
3.2 独立随机变量掌握独立多维随机变量的概念,了解独立性在概率论中的重要性。
学习如何计算两个独立随机变量的联合分布,以及如何推导条件概率。
第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,理解在足够多次试验中,随机变量的样本平均将趋近于其期望值。
学习弱大数定律和强大数定律的表述,以及它们在实际应用中的意义。
4.2 中心极限定理掌握中心极限定理的内容,了解当样本量足够大时,样本均值的分布将趋近于正态分布。
学习如何应用中心极限定理进行近似计算,以及其在统计学中的重要性。
第五章:数理统计的基本概念5.1 统计量与样本介绍统计量的概念,理解统计量是用来描述样本特征的函数。
学习如何计算样本均值、样本方差等基本统计量。
5.2 抽样分布与估计掌握抽样分布的概念,了解不同统计量的抽样分布特性。
学习点估计和区间估计的定义,了解如何根据样本数据估计总体参数。
《概率论与数理统计》教学大纲(48学时)
《概率论与数理统计》教学大纲一、课程基本信息课程名称:概率论与数理统计课程类别:大类培养(理)、必修学分/学时:3学分,48学时(理论学时:44学时,习题课学时:4学时)适用对象:理工科类各专业本科生开课单位/教研室:应用数学学院、高等数学教研室二、课程设置目的与教学目标1、课程目的:概率论与数理统计是研究随机现象客观规律性的数学学科,它的理论和方法已广泛地应用于自然学科,技术科学和社会科学的各个领域。
随着科学技术的迅速发展,它在工农业,军事,经济管理,工程技术,生物,医学,气象,海洋,地质等领域中的作用日益显著,随着计算机的日益普及,它正成为处理信息,制定决策的重要理论和方法。
概率论与数理统计的理论和方法向各领域渗透已成为近代科学技术发展的一个特征,因此,在高等院校工、经、管等学科各专业本科的教学计划中已被列为一门重要的基础理论课。
2、教学目标:通过本课程的学习,使学生掌握概率统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计分析和解决实际问题的能力,为以后学习专业课和从事实际工作时处理随机现象打下良好的基础。
三、教学内容及要求四、教学基本要求先修课程:高等数学;教学方法:课堂授课、作业。
考核方式:一般采用闭卷统考,课程成绩由考试卷面成绩和平时成绩综合构成,采用百分制, 以考试卷面成绩为主。
平时成绩主要考虑作业和阶段测验的情况,在总成绩中所占的比例不超过30%。
五、选用教材及主要参考资料1、选用教材:[1] 同济大学数学系.概率统计简明教程(第二版). 北京.高等教育出社,2012.[2] 盛骤,谢式千,潘承毅.概率论与数理统计(第3版).北京.高等教育出社,2001.2、参考资料:[1] 茆诗松,周纪芗.概率论与数理统计(第2版).北京.中国统计出版社,2003.[2] 耿素云、张立昂.概率统计题解. 北京.北京大学出版社,1999.[3] 薛留根.概率论解题方法与技巧. 北京.国防工业出版社,1996.[4] 禇维盘等.概率论与数理统计指导与提高.西安.西北工业大学出版社,2001.执笔:赵攀审核:顾大勇制订时间:2012年8月。
[经济学]概率论与数理统计教案
概率论与数理统计教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量事件发生可能性的数值。
掌握概率的基本性质,如总概率公式、概率的互补性等。
1.2 随机事件与样本空间理解随机事件的概念,区分必然事件、不可能事件和随机事件。
学习样本空间的定义,掌握计算样本空间的方法。
1.3 条件概率与独立性学习条件概率的定义,理解条件概率与随机事件的关系。
掌握独立事件的定义,学会判断事件的独立性。
第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机事件的结果。
学习随机变量的分类,如离散随机变量和连续随机变量。
2.2 离散随机变量的概率分布学习离散随机变量的概率分布,如二项分布、泊松分布等。
掌握概率质量函数的性质,学会计算随机变量的概率分布。
2.3 连续随机变量的概率密度学习连续随机变量的概率密度,如正态分布、均匀分布等。
掌握概率密度函数的性质,学会计算随机变量的概率密度。
第三章:数理统计的基本概念3.1 统计量与参数学习统计量的定义,理解统计量是用来描述样本特征的量。
掌握参数的概念,学会估计总体参数。
3.2 抽样分布与中心极限定理学习抽样分布的定义,理解抽样分布的性质。
掌握中心极限定理的内容,学会应用中心极限定理。
3.3 估计量的性质与有效性学习估计量的性质,如无偏性、有效性等。
学会判断估计量的有效性,掌握选择最佳估计量的方法。
第四章:假设检验与置信区间4.1 假设检验的基本概念学习假设检验的定义,理解假设检验的目的。
掌握假设检验的基本步骤,学会构造检验统计量。
4.2 常用的假设检验方法学习常用的假设检验方法,如t检验、卡方检验等。
学会选择合适的检验方法,并掌握检验的判断准则。
4.3 置信区间的估计学习置信区间的定义,理解置信区间的作用。
掌握置信区间的计算方法,学会构造置信区间。
第五章:回归分析与相关分析5.1 回归分析的基本概念学习回归分析的定义,理解回归分析的目的。
《概率论与数理统计》(全英语)教学大纲课程名称概率
《概率论与数理统计》(全英语)教学大纲课程名称:概率论与数理统计学时:48学时学分:2.5分先修课程:高等数学,线性代数开课院系:上海交通大学理学院数学系教材:华章统计学原版精品系列:概率统计(英文版·第4版), [美]德格鲁特(Morris H.DeGroot),[美]舍维什(Mark J.Schervish)著Morris H.DeGroot ,Mark J.Schervish 编, 机械工业出版社, 2012教学参考:[1] M.N. DeGroot, M.J. Schervish, Probability and Statistics, 3rd ed. Boston, MA; London:Addison-Wesley, 2002[2] Jay.L. Devore, Probability and Statistics, 5th ed. Higher Education Press, 2010[3] H. Jeffreys, Theory of Probability, 3rd ed. Oxford: Oxford University Press, 1998[4] J.T. McClave, T. Sincich, A First Course in Statistics, 7th ed. Upper Saddle River, NJ: PrenticeHall; London: Prentice-Hall International, 2000[5] S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists,2nd ed. SanDiego, CA; London: Harcourt/Academic, 2000[6] V.K. Rothagi, S.M. Ehsanes, An Introduction to Probability and Statistics, 2nd ed.New York, Chichester: Wiley, 2001Probability and Statistics (English)Curriculum IntroductionCourse Title: Probability and Statistics (English)Total Hours: 48Credit: 2.5Pre-Course:Calculus, Linear AlgebraDepartment of giving course: Department of mathematics in Shanghai Jiaotong UniveristyTextbook:Probability and Statistics ( fourth edition), [美]德格鲁特(Morris H.DeGroot),[美]舍维什(Mark J.Schervish)著Morris H.DeGroot ,MarkJ.Schervish 编, 机械工业出版社, 2012Reference:[1] M.N. DeGroot, M.J. Schervish, Probability and Statistics, 3rd ed. Boston, MA; London: Addison-Wesley, 2002[2] Jay.L. Devore, Probability and Statistics, 5th ed. Higher Education Press, 2010[3] H. Jeffreys, Theory of Probability, 3rd ed. Oxford: Oxford University Press, 1998[4] J.T. McClave, T. Sincich, A First Course in Statistics, 7th ed. Upper Saddle River, NJ: Prentice Hall; London: Prentice-Hall International, 2000[5] S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists,2nd ed. San Diego, CA; London: Harcourt/Academic, 2000[6] V.K. Rothagi, S.M. Ehsanes, An Introduction to Probability and Statistics, 2nd ed. New York, Chichester: Wiley, 2001<<概率论与数理统计>>是一门从数量方面研究随机现象规律性的数学学科,它已广泛地应用于工农业生产和科学技术之中,并与其它数学分支互相渗透与结合。
《概率论与数理统计》(46学时)课程教学大纲2
《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
同时,也为一些后续课程的学习提供必要的基础。
三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。
[经济学]概率论与数理统计教案
概率论与数理统计教案一、引言1.1 课程背景概率论与数理统计是经济学、金融学等领域的基石,对于培养学生严谨的科学态度、提高数据分析能力具有重要意义。
本课程旨在帮助学生掌握概率论与数理统计的基本概念、原理和方法,为后续课程打下坚实基础。
1.2 教学目标(1)理解概率论与数理统计的基本概念;(2)掌握随机变量、概率分布、期望、方差等基本原理;(3)学会运用数理统计方法分析实际问题;(4)培养学生的数据分析能力和科学思维。
二、概率论基本概念2.1 随机试验与样本空间(1)随机试验的定义及特点;(2)样本空间的定义及表示方法;(3)样本点、事件及其关系。
2.2 概率公理体系(1)概率的定义;(2)概率公理;(3)条件概率与独立事件的概率。
三、随机变量及其分布3.1 随机变量的定义及其分类(1)随机变量的定义;(2)离散型随机变量与连续型随机变量;(3)随机变量的数学期望。
3.2 离散型随机变量的概率分布(1)概率质量函数;(2)期望、方差的计算;(3)常见离散型随机变量的分布列。
3.3 连续型随机变量的概率分布(1)概率密度函数;(2)期望、方差的计算;(3)常见连续型随机变量的分布函数。
四、数理统计基本概念与方法4.1 统计量与抽样分布(1)统计量的定义;(2)抽样分布的概念及性质;(3)常用抽样分布。
4.2 估计理论(1)点估计与区间估计;(2)参数估计的性质;(3)置信区间的构造方法。
4.3 假设检验(1)假设检验的基本概念;(2)检验统计量与拒绝域;(3)常用假设检验方法。
五、线性回归分析5.1 线性回归模型及其参数估计(1)线性回归模型的定义;(2)最小二乘法;(3)参数估计的性质。
5.2 线性回归模型的检验与预测(1)模型的检验;(2)模型的预测;(3)回归分析的应用实例。
本教案根据学生的认知规律和课程要求进行编写,每个章节都包含了基本概念、原理和方法的讲解,以及相关的应用实例。
教师在授课过程中可根据实际情况调整教学内容和进度,以提高学生的学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》课程教案第一章 随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、Bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节 随机事件及事件之间的关系第二节 频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章 随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节 离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节 连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。
e) 注意正态分布的标准化以及计算查表问题;五.思考题和习题思考题:1. 函数,0()1,0x x e x F x e x -⎧<⎪=⎨-≥⎪⎩是否是某个随机变量的分布函数? 2. 分布函数()F x 有两种定义——{}{}P X x or P X x <≤,主要的区别是什么?3. 均匀分布与几何概率有何联系?4. 讨论指数分布与泊松分布之间的关系。
5.列举正态分布的应用。
习题:第三章 多维随机变量及其分布一.教学目标及基本要求(1) 了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2) 会用联合概率分布计算有关事件的概率,会求边缘分布。
(3) 掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。
(4) 会求两个独立随机变量的简单函数(如函数X+Y , max(X, Y), min(X, Y))的分布。
二.教学内容及学时分配第一节 二维随机变量二维随机变量及其分布,离散型随机变量及其分布律、连续型随机变量及其密度函数、它们的性质、n 维随机变量 2学时第二节 边缘分布边缘分布律、边缘密度函数 2学时第三节 条件分布 1学时第四节 相互独立的随机变量两个变量的独立性,n 个变量的独立性 1学时第四节 二维随机变量的函数的分布已知(X,Y)的分布率p ij 或密度函数(,)x y ϕ,求(,)Z f X Y =的分布律或密度函数()Z z ϕ。
特别如函数形式:,max(,),min(,)Z X Y Z X Y Z X Y =±==。
2学时三.本章教学内容的重点和难点a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;b) 边缘密度函数的计算公式:()(,)X x x y dyϕϕ+∞-∞=⎰的运用,特别是积分限的确定和变量x 的取值范围的讨论;c) 随机变量独立性的判定条件以及应用独立性简化计算,如由边缘分布律或密度函数可以确定联合分布律或联合密度函数;d) 推导Z X Y =+的密度函数的卷积公式:()(,)X Y t x t x dx ϕϕ+∞+-∞=-⎰,正确使用卷积公式; e) 在X ,Y 独立性的条件下,推导max(,),min(,)Z X Y Z X Y ==的密度函数,注意它们在可靠性方面的应用。
四.教学过程中应注意的问题a) 注意联合分布函数能决定任意随机变量X 或Y 的分布(边缘分布),反之则不能确定(X ,Y)的联合分布,由正态分布可以说明;b) 在判断两个随机变量是否独立过程中,如果存在某点00(,)x y ,使得:0000(,)()()P X x Y y P X x P Y y ==≠==或0000(,)()()X Y x y x y ϕϕϕ≠,则称变量X 与Y 不独立;c) 一般计算概率使用如下公式:(,)((,))(,)x y G P X Y G x y dxdy ϕ∈∈=⎰⎰,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题思考题:1. 由随机变量,X Y 的边缘分布能否决定它们的联合分布?2. 条件分布是否可以由条件概率公式推导?3. 事件的独立性与随机变量的独立性是否一致?4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。
习题:第四章 随机变量的数字特征一.教学目标及基本要求(1) 理解数学期望和方差的定义并且掌握它们的计算公式;(2) 掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用期望或方差的性质计算某些随机变量函数的期望和方差。
(3) 熟记0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期 望和方差;(4) 了解矩、协方差和相关系数的概念和性质,并会计算。
二.教学内容及学时分配第一节 数学期望离散型、连续型随机变量的数学期望、随机变量函数的数学期望、数学期望的应用、数学期望的性质 3学时第二节 方差方差的概念及计算、方差的性质、常见分布的数学期望及方差简单归纳2学时第三节 协方差与相关系数 2学时第四节 矩和协方差矩阵 1学时三.本章教学内容的重点和难点a) 数学期望、方差的具体含义;b) 数学期望、方差的性质,使用性质简化计算的技巧;特别是级数的求和运算。
c) 期望、方差的应用;四.本章教学内容的深化和拓宽将数学期望拓展到数学期望向量和数学期望矩阵;协方差及相关系数概念和公式拓宽到n 维随机变量的协方差矩阵和相关系数矩阵。
五.教学过程中应注意的问题a) 一个随机变量并不一定存在数学期望和方差,也有可能数学期望存在,而方差不存在,如柯西分布是最著名的例子;b) 数学期望的一个具体的数字,不是函数;c) 由方差的定义知,方差是非负的;d) 独立性和不相关性之间的关系,一般地,X 与Y 独立,则X 与Y 不相关,反之则不然,但对于正态分布,两者却是等价的;六.思考题和习题思考题:1. 假定一个系统由5个电子元件组装而成,假定它们独立同服从于指数分布,将它们串接起来,求系统的平均寿命,若将它们并行连接,其系统的平均寿命是多少?并比较其优劣。
2. 方差的定义为什么不是||E X EX3. 工程上经常遇到计算误差,它是否与方差是同一个概念?4.协方差与相关系数有什么本质上的区别?X Y ,反之呢?对正态分布又如5.随机变量X与Y独立可以推导cov(,)0何呢?习题:第五章大数定律和中心极限定理一.教学目标及基本要求了解切比雪夫不等式、大数定律和中心极限定理。
二.教学内容及学时分配第一节大数定律第二节中心极限定理2学时三.本章教学内容的重点和难点大数定律和中心极限定理的含义;四.本章教学内容的深化和拓宽中心极限定理的条件拓宽。
五.教学过程中应注意的问题1)大数定律的变形,大数定律的证明关键是使用了切比契夫不等式;2)注意中心极限定理的条件和结论,如何使用这一结论解决应用题;习题:第六章样本及抽样分布一.教学目标及基本要求(1)理解总体、样本和统计量的概念;了解经验分布函数(2)掌握样本均值、样本方差及样本矩的计算。
(3)了解卡方分布、t-分布和F分布的定义及性质,了解分位数的概念并会查表计算概率。
(4)掌握在正态总体下样本均值、样本方差、t统计量的分布及性质。
二.教学内容及学时分配(1)第一节总体与样本第二节统计量(包括经验分布函数) 2学时第三节几个常用的分布正态分布,2χ-分布,t-分布,F-分布)、抽样分布定理、分位数 2学时 三.本章教学内容的重点和难点a) 数理统计与概率论在研究问题和方法上的根本区别;b) 总体、样本的概念;c) 统计量的定义和常用的统计量;d) 正态分布以及由正态分布导出的三大统计分布,抽样分布定理,分位数的概念。
e) 2χ-分布、t -分布和F -分布的定义四.教学过程中应注意的问题a) 正态分布的标准化:若2~(,)X N a σ,则~(0,1)X aN σ-;b) “独立正态变量之和仍为正态变量”和中心极限定理的应用;c) 对三大统计分布定义深入分析,补充例子加以说明,如14,,X X 取自正态总体2(0,2)N ,的一个样本,令221234(2)(34)Y a X X b X X =-+-,求系数,a b ,使Y 服从2χ-分布,并求自由度;d) 查常用分布数值表是实际计算中不可缺少的一步,务必掌握;e) 掌握统计学的思想应该从正态总体出发,因为数理统计学的许多基本理论是在正态总体的假定下建立起来的;六.思考题和习题思考题:1. 样本平均值、中位数、众数的定义和区别。