分数阶傅里叶变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数阶傅里叶变换的MATLAB 仿真计算以及几点讨论
在Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》中给出了一种快速计算分数阶傅里叶变换的算法,其MATLAB 计算程序可在.tr/~haldun/fracF.m 上查到。现在
基于该程序,对一方波进行计算仿真。⎪⎩⎪⎨⎧<=其它
,01,1)(t t x 注:网上流传较为广泛的FRFT 计算程序更为简洁,据称也是Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》使用的算法。但是根据Adhemar Bultheel 和 Hector E. Martnez Sulbaran 的论文《Computation of the Fractional Fourier Transform 》中提到,Ozaktas 等人的分数阶傅里叶变换的计算程序仅有上述网站这一处,而两个程序的计算结果基本相符。本文使用较为简洁的计算程序,Ozaktas 等人的计算程序在附表中给出。
程序如下:
clear
clc
%构造方波⎪⎩⎪⎨⎧<=其它
,01
,1)(t t x dt=0.05;
T=20;
t=-T:dt:T;
n=length(t);
m=1;
for k=1:n;
% tt=-36+k;
tt=-T+k*dt;
if tt>=-m && tt<=m
x(k)=1;
else
x(k)=0;
end
end
%确定α的值
alpha=0.01;
p=2*alpha/pi
%调用计算函数
Fx=frft(x,p);
Fx=Fx';
Fr=real(Fx);
Fi=imag(Fx);
A=abs(Fx);
figure,
subplot(2,2,1);
plot(t,Fr,'-',t,Fi,':');title(' α=0.01时的实部和虚部π'); axis([-4,4,-1.5,2]);
subplot(2,2,2);
plot(t,A,'-');title('α=0.01时的幅值');
axis([-4,4,0,2]);
分数阶傅里叶变换计算函数如下:
function Faf = frft(f, a)
% The fast Fractional Fourier Transform
% input: f = samples of the signal
% a = fractional power
% output: Faf = fast Fractional Fourier transform
error(nargchk(2, 2, nargin));
f = f(:);
N = length(f);
shft = rem((0:N-1)+fix(N/2),N)+1;
sN = sqrt(N);
a = mod(a,4);
% do special cases
if (a==0), Faf = f; return; end;
if (a==2), Faf = flipud(f); return; end;
if (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end if (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end
% reduce to interval 0.5 < a < 1.5
if (a>2.0), a = a-2; f = flipud(f); end
if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end if (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end
% the general case for 0.5 < a < 1.5
alpha = a*pi/2;
tana2 = tan(alpha/2);
sina = sin(alpha);
f = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)];
% chirp premultiplication
chrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)'.^2);
f = chrp.*f;
% chirp convolution
c = pi/N/sina/4;
Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)'.^2),f);
Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi);
% chirp post multiplication
Faf = chrp.*Faf;
% normalizing constant
Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1);
function xint=interp(x)
% sinc interpolation
N = length(x);
y = zeros(2*N-1,1);
y(1:2:2*N-1) = x;
xint = fconv(y(1:2*N-1), sinc([-(2*N-3):(2*N-3)]'/2)); xint = xint(2*N-2:end-2*N+3);
function z = fconv(x,y)
% convolution by fft
N = length([x(:);y(:)])-1;
P = 2^nextpow2(N);