pkpm设计参数理解之周期折减系数

pkpm设计参数理解之周期折减系数
pkpm设计参数理解之周期折减系数

大家都知道:对于周期折减系数:

1 框架结构可取0.6~0.7;

2 框架-剪力墙结构可取0.7~0.8;

3 剪力墙结构可取0.9~1.0。

考虑周期折减系数主要目的是为了考虑结构的填充墙的刚度,本人第一次接触到周期折减系数时,一直认为既然考虑了填充墙的刚度,那么结构总体的刚度就是变大,然后在地震来的时候,填充墙可以吸收一部分地震能量,使得结构构件(以框架结构为列,梁柱构件)吸收的地震力作用变小,这样,会使得结构构件配筋变小,更容易满足,这是我一个错误的理解,不知道大家有没有和我一样的。

实则不然,继续以框架结构为列,其基本自振周期T1(s)可按下式计算:T1=1.7ψT(uT)1/2

注:uT假想把集中在各层楼面处的重力荷载代表值Gi作为水平荷载而算得的结构顶点位移;ψT结构基本自振周期考虑非承重砖墙影响的折减系数。

这样的话,考虑了结构的填充墙的刚度之后,T1会减小

根据抗震规范第5.1.5条

水平地震力影响系数为α1 =(Tg/T1)0.9аmax

FEK总=α1Geq=α10.85GE

可以得出T1减小,α1变大,会导致FEK变大,地震力作用变大,然而这部分地震力由框架(梁柱)承担,结构配筋变大,结构偏于安全。

那么,填充墙的刚度在这里面充当什么角色那?在计算自振周期的时候,考虑了他的刚度,导致结构自振周期减小了,然后就导致了地震力放大,当地震力放大之后,填充墙不考虑了,这部分地震力全由框架承担,假若这种情况下,框架都能承担的住的话,那结构真的来地震了,不就没问题了,也就是结构偏于安全了。

借用鲁烟的一句话,就是“填充墙引起地震力增大,但是墙这孙子只点火不灭火,增大的地震力还是梁柱框架承担啊”,再次谢谢鲁烟给我的帮助,解决了我的困惑,也希望大家能发表自己的看法。

把通常所说的结构与填充墙和在一起称之为结构,无阻尼线性模态分析,周期与刚度质量有关,质量不变,考虑填充墙刚度,刚度变大,频率变大,周期变小!需要折减!折减后的整体结构周期更接近于真实周期!

填充墙计算假定是不吸收地震力,但是实际上是他在吸收,他先破坏后才是框架柱(说的是刚接的那种填充墙,事实上填充墙与相连的上梁左右柱很难做到柔性连接)!

或许可以这样子理解楼面恒活载梁上线载从而有了附加的非结构质量,填充墙刚度用周期来折减考虑,可以称之为附加的非结构刚度!

各阶振型周期与规范谱,周期的折减,实际上是tg-6s范围内地震影响系数放大,增大了相应振型周期对应的地震影响系数,规范谱值增大!

所谓填充墙引起地震力增大,应该是周期不变,自振特性不变,地震影响系数tg-6s范围内

变大,地震作用变大了

另附加一句风荷载的周期回代,应输入wzq中的值,不应是折减后的值。

恩,其实这么一想,填充墙真的在结构设计中充当了一个很讨厌烦的角色,结构上需要考虑其荷载,有的填充墙还很重,竖向荷载考虑了,又要考虑他的刚度,放大了水平地震的荷载,然后,他却不发挥一点有利于结构的作用,(实际上也会吸收部分的地震力,使得填充墙先进行破坏),在结构设计上是个累赘,但是又不得不考虑,但一想,这样做结构偏于安全,所谓钱是国家的,命是自己的,考虑了挺好。

"高层建筑混凝土结构技术规程理解与应用"一书中,关于周期折减系数有这样的讲述现摘录如下:高层建筑结构的内力分析时,只考虑了主要结构构件(梁,柱,剪力墙和筒体等)的刚度,没有考虑非承重结构的刚度,因而计算的自振周期较实际的长,按这一周期计算的地震力偏小,为此,规程规定应考虑非承重墙的刚度影响,对计算的自振周期予以折减。

大量工程实测周期表明,实际建筑物自振周期短于计算的周期。尤其是有实心砖墙的框架结构,由于实心砖填充墙的刚度大于框架柱的刚度,影响更为显著,实测周期约为计算周期的0.5~0.6倍,剪力墙结构中由于砖墙少,其刚度远小于钢筋混凝土墙的刚度,实测周期与计算周期比较接近。因此,对采用实心砖墙填充的框架,框架-剪力墙和剪力墙结构提出了计算自振周期的折减系数。”

对上述论述也可以这样理解:

1。周期折减系数不改变结构的基本振动特性;

2。是放大地震作用的方法之一;

3。是根据结构早期弹性刚度较大(因有实心砖填充墙),而在地震作用时破坏这种特性,而设置的放大地震作用的参数;

4。采用轻质材时填充墙时,折减系数不折减或少折减。

pkpm结构设计参数

P K P M结构设计参数 P K P M结构设计参数 1.风荷载 风压标准值计算公式为:W K=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压W o略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条: 1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。 2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D 类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。 3)、风压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D类对应的风压高度变化系数最,比C类小20%到50%。 4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约5%到10%。与结构的材料和形式有关。 5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。

在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5O m、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(W o T12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。 2.地震作用 1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。 2)、设计地震分组:新规范把直接影响建筑的设计特征周期T g 的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。 3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。 4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5T g以内与89规范相同,从5T g起改为倾斜下降段,斜率为0.02。对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的基础上调整。

周期折减系数

大家都知道:对于周期折减系数: 1 框架结构可取0.6~0.7; 2 框架-剪力墙结构可取0.7~0.8; 3 剪力墙结构可取0.9~1.0。 考虑周期折减系数主要目的是为了考虑结构的填充墙的刚度,本人第一次接触到周期折减系数时,一直认为既然考虑了填充墙的刚度,那么结构总体的刚度就是变大,然后在地震来的时候,填充墙可以吸收一部分地震能量,使得结构构件(以框架结构为列,梁柱构件)吸收的地震力作用变小,这样,会使得结构构件配筋变小,更容易满足,这是我一个错误的理解,不知道大家有没有和我一样的。 实则不然,继续以框架结构为列,其基本自振周期T1(s)可按下式计算:T1=1.7ψT(uT)1/2 注:uT假想把集中在各层楼面处的重力荷载代表值Gi作为水平荷载而算得的结构顶点位移;ψT结构基本自振周期考虑非承重砖墙影响的折减系数。 这样的话,考虑了结构的填充墙的刚度之后,T1会减小 根据抗震规范第5.1.5条 水平地震力影响系数为α1 =(Tg/T1)0.9аmax FEK总=α1Geq=α10.85GE

可以得出T1减小,α1变大,会导致FEK变大,地震力作用变大,然而这部分地震力由框架(梁柱)承担,结构配筋变大,结构偏于安全。 那么,填充墙的刚度在这里面充当什么角色那?在计算自振周期的时候,考虑了他的刚度,导致结构自振周期减小了,然后就导致了地震力放大,当地震力放大之后,填充墙不考虑了,这部分地震力全由框架承担,假若这种情况下,框架都能承担的住的话,那结构真的来地震了,不就没问题了,也就是结构偏于安全了。 借用鲁烟的一句话,就是“填充墙引起地震力增大,但是墙这孙子只点火不灭火,增大的地震力还是梁柱框架承担啊”,再次谢谢鲁烟给我的帮助,解决了我的困惑,也希望大家能发表自己的看法。

最新PKPM设计参数分析详解

P K P M设计参数分析详 解

第7章 SATWE应用详解 在PKPM系列设计软件中,用于结构分析计算的主要有SATWE、TAT、PK、PMSAP,目前结构设计人员最常用的是有限元分析软件SATWE。本章主要详细叙述SATWE 的使用方法,包括计算参数的取值设置,特殊荷载的设定,计算分析方法的选择,计算结果分析,控制参数的调整,以及结构设计优化等。之所以突出介绍SATWE,其原因如下: 1.SATWE软件使用普遍,用户广泛。 2.SATWE软件功能强大,采用墙元模型,可以完成复杂多高层结构的计算 分析工作,而且操作简单,适应性强。 3.SATWE软件参数较多,可以设置的项目也很多,计算输出的内容十分丰 富,一旦学会了SATWE软件的使用,再去学PK、TAT、PMSAP等就是一 件非茶馆容易的事了。 第7.1节设计参数设置详解 PM建模完成后就进入结构计算分析阶段,SATWE软件可以直接读取建模数据,但是在计算之前还需要做一些前期处理工作,例如补充设置计算分析参数,定义特殊构件和特殊荷载等。点击选择SATWE软件的第一项进入“接PM生成SATWE数据”屏幕弹出图示对话框,如图所示。 软件的参数设置是否正确直接关系到软件分析结果的准确性,这也是学好用好软件的关键一步。本节主要介绍SATWE软件设计参数的取值设置。详细叙述分别如下: 7.1.1总信息 结构总信息共有17个参数,其含义及取值原则如下:

7.1.1.1水平力与整体坐标的夹角(度) 这一参数主要是为了考虑水平力(地震最不利作用与最大风力作用)方向与模型坐标主轴存在较大夹角的影响。一般设计人员实现很难预估算出结构的最不利地震作用方向,因此可以先取初始值00,SATWE计算后会在计算书中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,就应将该角度输入重新计算,以考虑最不利地震作用个方向的影响。 7.1.1.2混凝土容重(KN/m3) 程序钢筋混凝土容重初始值为25.0 KN/m3,以用于一般工程,考虑抹灰装修荷载可以取到26~28 KN/m3。 7.1.1.3钢材容重(KN/m3) 程序钢材容重初始值为78.0 KN/m3,适合于一般工程,考虑钢构件表面装饰和防火涂层重量时,应按实际情况修改此参数。 7.1.1.4裙房层数 对带裙房的高层结构应输入裙房(含地下室)层数,作为带裙房的塔楼结构剪力墙底部加强区高度的判断依据。初始值为0。 7.1.1.5转换层所在层号 为了实现规范对转换构件地震内力放大的规定,如结构有转换层则必须输入转换层号,程序不能自动搜索转换构件和自动判断转换层,须由设计人员指定,程序允许输入多个转换层号,数字之间以逗号或者空格隔开,初始值为0。注意如果结构带有地下室,则转换层号应从地下室起算。 7.1.1.6地下室层数

(完整word版)周期折减系数

多层结构未强调周期折减,这是有一定道理的,因新规范的特征周期TG增长了,按结构自震周期的经验公式: 1 框架结构可取 TI= 0.10X层数; 2 框架-剪力墙结构可取TI= 0.08X层数; 3 剪力墙结构可取 TI= 0.04X层数; 这样,多层结构结构周期不折减地震剪力已经很大了,由其III,IV类土,五层以下房屋更为突出,如再折减,震剪力 可超过AMAX,这显然是不合理的。周期是否折减,要分析而定:一看周期长短,长--折,短--不折或少折, 当自震周期和特征周期很接近,折减就不合理了。二看剪重比,根据大小折或不折。

至于高层建筑结构:高规:3.1.17条规定得很清楚:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折 减系数ψT可按下列规定取值: 1 框架结构可取0.6~0.7; 2 框架-剪力墙结构可取0.7~0.8; 3 剪力墙结构可取0.9~1.0。 对于其他结构体系或采用其他非承重墙体时,可根据工程情况确定周期折减系数 由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范[1]没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可取0.6~0.7[4] [7];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90[2].这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数[4]. 通过笔者的粗浅分析和工程实践摸索,指出影响自振周期的一些主要因素,并对折减系数的取值提出建议,供结构工程师参考。 计算周期与自振周期存在差异的诸多因素 结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面: (一)造成计算周期比自振周期长的诸多原因 1. 填充墙的刚度影响 大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、

PKPM如何调整参数和选用(完整版)讲解

2010版SATWE计算参数选用 一、2010版计算参数的选用(PKPM及SATWE): 免责声明:炒饭个人总结,仅用作参考。以下内容需与PKPM2010版satwe 说明书结合使用。参数在PKPM中如何实现需参考satwe说明书。 1、总信息: A、“水平力与整体坐标夹角”,此参数一般不做修改。而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。 B、PM里的“混凝土容重”框架取26,剪力墙取27。(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。 C、“钢材容重”暂时默认78,未研究。 D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。框架结构均可输入0,其他结构未研究。此参数包含地下室层数。(如3层地下室,4层裙房,此参数应输入7。)E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。 F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。 G、“地下室层数”按实际输入。 H、“墙元细分最大控制长度”取“1”。影响计算精度,对含剪力墙的结构有影响。

I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。 J、“地下室强制采用刚性楼板假定”勾选。 K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。 L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。 M、“弹性板与梁变形协调”勾选。梁细分后弯矩变的平缓,计算结果更加合理。 N、“结构材料信息”如实填写 O、“结构体系”如实填写 P、“恒活荷载计算信息”《PKPM从入门到精通》推荐使用模拟施工加载3。但本人尚未弄明白。 Q、“风荷载计算信息”大部分工程选择计算水平风荷载即可。 R、“地震作用计算信息”一般选择计算水平地震作用。结合抗规5.1.1和高规4.3.2确定是否计算竖向地震作用。高规比抗规对此条的要求严一个等级。 S、“规定水平力”一般选“规范方法”。规范方法适用于大多数结构,节点地震作用CQC组合方法适用于极不规则结构,即楼层概念不清晰,剪力差无法做的结构。

整体计算时Satwe后处理结果查看及与规范的关系

整体计算时Satwe后处理结果查看及与规范的关系 何为整体计算? 要知道每个指标的结构假设,即前提条件,反映到实际操作上就是satwe参数设置。 整体计算前提条件——刚性楼板假定 一、每层单位面积重力:高规5.1.8条文说明。(高层多层均适用) 多层11KN/M2也可以. 此处折减与不折减,活荷载均为折减之后的结果。 二、层间位移角:抗规5.5.1 高规:3.7.3 (高层抗震设计时不考虑偶然偏心) (刚度问题)限制结构的水平位移,确保结构具备足够的刚度,避免产生过大的位移。 计算要求:抗震设计时不考虑偶然偏心,不考虑双向地震。 层间位移角不满足规范要求,说明结构较柔。但层间位移角过分小,则说明结构的经济技术指标较差,浪费,宜适当减少墙、柱等竖向构件的截面面积。 层间位移角不满足条件时调整方式:对于八度区,位移较难通过,可以调整中梁刚度放大系数为2,周期折减系数稍微变大一些,放大M=6数值,若位移角还是不满足,加大截面。位移相差较多的时候,应当增加截面,保证结构刚度,位移相差较少的时候,可以通过修改satwe参数达到目的。 荷载影响位移角:知道原因,因此荷载一定要统计准确。 此处地下室层数、荷载等不能填错,注意。 周期折减系数:高规4.3.17,对比周期折减系数不同,对位移的影响。 三、扭转位移比:前提:刚性楼板假定,只控制地震作用下的位移比限值,风荷载不考虑。 理解位移比的含义,位移比:1.2时候,一端为1.0,另一端为1.5 1.6时,比值为4。 规范规定的水平地震作用计算:单向水平地震作用计算;考虑偶然偏心的单向水平地震作用计算;不考虑偶然偏心的双向水平地震作用计算。要分清楚何时采用以上三种计算方式。 两者取不利,结果不叠加。 偶然偏心:高规4.3.3. 即由偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。考虑偶然偏心,也就是考虑由偶然偏心引起的可能的最不利的地震作用。 考虑偶然偏心的影响后,程序将增加计算4个地震工况,即每层的质心沿垂直于地震作用方向偏移5%的地震作用。高层计算位移比时看此工况下的值,计算位移(角)时可不考虑此工况下的情况。 对于高层,见高规3.4.5,注意:要考虑偶然偏心。位移富余很大时,位移比可以放宽。 对于多层:此处有争议,抗规没有提出是否考虑偶然偏心。见抗规3.4.3,3.4.4。以下是中国建筑设计研究院姜总的建议:(当不考虑偶然偏心的位移比大于1.2时,补充偶然偏心的计算;当结构考虑偶然偏心的位移比大于等于1.35时,补充双向水平地震作用计算)。

PKPM SATWE参数设置讲解

SATWE参数设置 一:总信息 1水平力与整体坐标夹角(度):一般为缺省。若地震作用最大的方向大 于15度则回填。 2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。 3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。 4、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别 转换层,需要人工指定。对于高位转换的判断,转换层位置以嵌固端起算,即 以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数 +1)。 7、地下室层数:根据实际情况输入。 8、墙元细分最大控制长度(m):一般为缺省值1。 9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加 到薄弱层号中,如不打勾,则需要用户手动添加。此项打勾与在“调整信息” 页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。 10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建 议选择。在进行结构内力分析和配筋计算时不选择。 11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定 时保留弹性板面外刚度考虑。特别是对于板柱结构定义了弹性板3、6情况。但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。 12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。不勾选的话位 移偏小。 13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼 缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。 14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。 15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程 序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上 的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的 实际。 16、结构材料信息:按实际情况填写。 17、结构体系:按实际情况填写。 18、恒活荷载计算信息: 1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;

自振周期折减系数

自振周期折减系数 1 概念 由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 2 影响自振周期因素 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可0.6~0.7[2];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90。这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数。结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面: 3 计算周期长的原因 1.填充墙的刚度影响 大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、单片墙体长度、墙体完整性(开洞情况)、与框架的连接情况息息相关。定性地说,填充墙的数量多、单片墙体长度大、墙体开洞少且小、与框架连接好,它对框架结构的刚度增加大,反之就小。 我国的框架填充墙的发展趋势是,逐步取消粘土砖(保护粘土资源、能源、环境等的要求),采用多样化轻质填充砌体、轻墙板取而代之。采用不同材料的填充墙,由于填充墙材料的刚度、变形性能、延性的不同,其对结构的空间刚度影响显然不相同。在其它条件相同时,采用轻质填充墙比粘土砖填充墙对结构的刚度影响小。 一般框架结构都要有填充墙,当砖填充墙多,可能会成为影响结构自振周期的主要的直接因素。 2.基坑回填土及混凝土刚性地坪对底层框架柱的侧限作用通常,在计算模型中,多层钢筋混凝土框架结构的底层柱高(计算高度),一般取基顶至一层楼盖顶之间的距离,见下图1.由于基顶至室内、外之间回填土必须严格夯实。例如压

PKPM 设计参数

楼层组装—设计参数 a.总信息 1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。 2.结构主材(钢筋混凝土,砌体,钢和混凝土)。 3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。4.底框层数,地下室层数按实际选用。 5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。 7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。 b.材料信息 1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。 2.钢材容重取 78。 3.梁柱主筋类别,按设计需要选取。优先采用三级钢,可以节约钢材。 SATWE设计参数 a.总信息 1.水平力与整体坐标夹角(度),通常采用默认值。(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数) 2.混凝土容重取 26-27,钢材容重取 78。 3.裙房层数,转换层所在层号,地下室层数,均按实际取用。(如果有转换层必须指定其层号)。 4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。 5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。 6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。若选“内部”则只把墙元上、下边的节点作为出口节点,墙元的其他节点均作为内部节点被凝聚掉,这时,带动口的墙元两侧边中部的节点为变形不协调点。这是对剪力墙的一种简化模拟,其精度略逊于前者,但效率高,实用性好。在为配筋而进行的工程计算中,对于多层,由于剪力墙较少,应选择“出口”,对于高层,由于剪力墙较多,工程规模较大,可选“内部”。 7.结构材料信息(钢筋混凝土结构,钢与混凝土混合结构,有填充墙钢结构,无填充墙钢结构,砌体结构),根据结构材料的不同进行选择。 8.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,板柱剪力墙),根据结构体系的不同进行选择。 9.恒活荷载计算信息[不计算恒活荷载(不计算竖向力),一次性加载(按一次加载方式计算竖向力),模拟施工加载1,模拟施工加载2]。 “模拟施工加载1”方式较好地模拟了在钢筋混凝土结构施工过程中,逐层加载,逐层找平

周期折减系数确定

周期折减的目的是为了充分考虑非承重填充砖墙刚度对结构自振周期的影响。因为周期小的结构,其刚度较大,相应吸收的地震力也较大。若不做周期折减,则结构偏于不安全。根据《高规》3.3.17 条规定,当非承重墙体为实心砖墙时,ψT可按下列规定取值:框架结构0.6~0.7;框架-剪力墙结构0.7~0.8;剪力墙结构0.9~1.0。实际取值时可根据填充墙的数量和刚度大小来取上限或下限。当非承重墙体为空心砖或砌块时,ψT可按下列规定取值:框架结构0.8~0.9(我们都取0.8——爱莲注);框架-剪力墙结构0.9~1.0;剪力墙结构可取0.95。当结构的第一自振周期T1≤Tg时,不需进行周期折减,因为此时地震影响系数由程序自动取结构自振周期与特征周期的较大值进行计算。 周期折减系数是根据建筑中隔墙的多少及刚度来取值的。因为隔墙不参与结构的抗震计算,但它们的存在会使得结构周期变小,也就是说,有隔墙的建筑在pkpm结构计算周期的时候都把周期算大了。根据隔墙的多少,可以把周期折减系数取值为0.7~1.0。 周期折减系数就是了考虑填充墙对结构的影响,由于填充墙的存在,使得结构在早期弹性阶段会有很大的刚度因此会吸收很大的地震力。但因为计算软件只计算了梁,柱,钢筋砼墙等构件的刚度(并没有考虑填充墙的刚度),并由此刚度求得结构自振周期。使得实际的刚度比计算的刚度大。实际周期比计算周期小,若以计算周期来计算地震力,地震力会偏小,使结构偏不安全,因此对地震力再放大些是很有必要的。 应该注意的是:周期折减系数不改变结构的自振特征,只改变地震影响系数,折减系数视填充墙的多少而定。 周期折减系数是根据隔墙数量及材料有关系。一般厂房类隔墙较少可取 0.9,办公或住宅隔墙偏多一般可取0.7~0.8;采用轻质隔墙与粘土砖或砌块,其周期折减亦应适当考虑。

pkpm中要检查的参数

高层建筑结构设计必须检查的计算结果输出信息 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。(A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%,B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的75%。注:楼层层间抗侧力结构受剪承载力是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。)见wmass.out 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。 新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。 新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80% 新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D 的规定。 D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2 D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效 侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。 上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。目前,有三种方案可供选择:(1)高规附录E.0.1建议的方法——剪切刚度Ki=GiAi/Hi (2)高规附录E.0.2建议的方法——剪弯刚度Ki=Vi /△i (3)抗震规范3.4.2和3.4.3条文说明中建议的方法 Ki=Vi/△ui 选用方法如下: (1)对于多层(砌体、砖混底框),宜采用刚度1; (2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2; (3)多数结构宜采用刚度3。(所有的结构均可用刚度3) 竖向刚度不规则结构的程序处理: 抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数; 新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其上三层平均值的80%时,该楼层地震剪力应乘1.15增大系数; 新抗震规范3.4.3条规定,竖向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。 1)针对这些条文,程序通过自动计算楼层刚度比, 来决定是否采用1.15的楼层剪力增大系数;并且允许用户强制指定薄弱层位置,对用户指定的薄弱层也采用1.15的楼层剪力增

PKPM计算参数

PKPM计算参数 一、总信息 1.水平力与整体坐标夹角: 一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。 根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用。当计算出来的角度大于15度时,应返填入此项。 2.砼容重:25 结构类型框架结构框剪结构剪力墙结构 重度 25 2 6 27 3.钢材容重:一般取78,如果考虑饰面设计者可以适量增加。 4.裙房层数:

高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施,因此该层数必须给定。 层数是计算层数,等同于裙房屋面层层号。 5.转换层所在层号: 该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。(层号为计算层号) 6.地下室层数: 程序据此信息决定底部加强区范围和内力调整。 当地下室局部层数不同时,以主楼地下室层数输入。 地下室一般与上部共同作用分析; 地下室刚度大于上部层刚度的2倍,可不采用共同分析; 地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。当相对刚度为负值,地下室完全嵌固。 7.墙元细分最大控制长度: 可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或1.5。 8.墙元侧向节点信息: 内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。对于多层结构,应选此项。 外部节点:按外部节点处理时,耗机时和内存资源较多。对于高层结构,可选此项。 9.恒活荷载计算信息: 一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。 模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。于是就有了下一种竖向荷载加载法。 模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算。采用这种方法计算出的传给基础的力比较

混凝土结构周期折减系数取值分析

混凝土结构周期折减系数取值分析 摘要:简述周期折减的意义和重要性;通过估算结构中非结构构件与主体结构的刚度,找出周期折减系数取值的计算方法,并举例说明。 关键词:非结构构件;侧移刚度;周期与刚度 Abstract: this cycle reduction of significance and meaning; Through the estimating structural components and central Africa the main structure of the stiffness, and find out the cycle reduction coefficient method, and give an example. Key words: the structure component; Lateral stiffness; Cycle and stiffness 中图分类号:TU37文献标识码:A 文章编号: 在进行多高层钢筋混凝土结构内力位移分析时,由于计算模型的简化,我们只考虑了主要结构受力构件(梁、柱、剪力墙和筒体等)的刚度,而没有考虑非承重结构的刚度,此时结构在弹性阶段的计算自振周期较实际自振周期偏长,按这一周期计算的地震力偏小。因此在结构计算过程中,应根据具体情况,对计算自振周期进行折减,其目的是为了充分考虑非承重填充墙刚度对结构自振周期的影响。因为自振周期小的结构,其刚度较大,相应吸收的地震力也较大。若不做周期折减,则结构偏于不安全。 根据《全国民用建筑工程设计技术措施》(结构)第8.8节规定,当考虑填充墙对结构周期的影响时,周期折减系数ψT可按下列规定取值:框架结构0.6~0.8;框架-剪力墙结构0.7~0.9;剪力墙结构0.9~1.0。 《高层建筑混凝土结构技术规程》3.3.17条的条文说明中描述:设计人员应根据实际工程情况(填充墙的数量和刚度大小)来取值。 应该注意的是:周期折减系数不改变结构的自振特征,只改变地震影响系数,折减系数视填充墙的多少而定。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。所以,周期折减系数是钢筋混凝土结构设计所需要解决的一个重要问题。焀响自振周期因素是诸多方面的,加之多层钢筋混凝土结构实际工程的复杂性,规范没有、也不可能对折减系数给出一个确切的数值。本文主要针对当主要考虑填充墙的刚度影响时,结构周期折减系数取值的计算方法。 1.主体结构的侧移刚度

关于周期折减系数的笔记1

一.规范条款 《高》3.3.17 当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数ψT 可按下列规定取值: 1 框架结构可取 0.6~0.7; 2 框架-剪力墙结构可取 0.7~0.8; 3 剪力墙结构可取0.9~1.0。 对于其他结构体系或采用其他非承重墙体时,可根据工程情况确定周期折减系数 二.在SATWE中的计算过程 (荷载+质量)换算为重力代表值→代入刚度矩阵方程→计算周期→ (过程中未使用周期折减系数概念,即周期折减系数对于WZQ中的前几阶周期无任何影响)计算得到的周期x周期折减系数=反应谱法所需的周期→带入反应谱中计算地震作用→计算配筋和位移 (过程中使用周期折减系数概念,前几阶周期变小,即反应谱向左移动,地震作用加强) 三.对配筋位移的影响 1.地震作用的加强,对配筋和位移是加大的。 2.宏观原因:周期折减系数越小,非结构体系等填充墙的作用越明显,对于地震作用的抵 抗越强。同时反应谱法中的地震作用也增强。 刚度提高+地震作用增强→配筋提高。 刚度提高+地震作用增强→位移提高。刚度提高较少位移,地震作用增强增大位移,两种结合,地震作用增强增大位移的程度更大,所以一般情况下为位移提高(核对几个框架而言) 四.对风荷载的影响 在SATWE中,周期折减系数在“地震作用”标签栏中,因此对于风荷载是没有影响的,只是在配筋是,采用MAX包络,地震作用+风荷载共同决定 风荷载中的采用的周期,采用“风荷载”标签栏中填的周期数字,与周期折减系数无关。 《荷载》7.4.1结构的自振周期应按结构动力学计算,近似的基本自振周期T1可按附录E计算。 7.4.2 对于一般悬臂型结构,例如构架、塔架、烟囱等高耸结构,以及高度大于30m,高宽比大于1.5且可忽略扭转影响的高层建筑,均可仅考虑第一振型的影响 因此周期折减系数对于风荷载是没有影响的,与周期折减系数无关。 如果,一定采用周期折减系数后的周期计算风荷载 w k=βzμsμz w0风荷载 βz→脉动增大系数ξ 由《荷载》7.4.3表得到

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

PKPM设计基础时的参数分析和最小配筋率使用注意 独立基础的最小配筋率问题比较复杂,有以下资料供参考: 1.当独立基础底板厚度有规定:挑出长度与高度比值小于 2.5。因此不能当做一般的卧于地基上的板来看待2.满足1的要求是基础底面反力可以看作是线性的。也就是说不考虑基础底板的弯曲或剪切变形。 3.基础底版有最小配筋要求即10@200,这比原来的8@200已经提高。 4.基础底版是非等厚度板,计算配筋率只能按全面积计算,不能按单位长度计算。 本人认为独立基础底板配筋不用按最小配筋率控制。

JCCAD程序中作了选项,如果输入最小配筋率则会按全截面演算最小配筋率。当进行等强代换后程序还会重新演算最小配筋率。 我院总工要求结构设计人员的一些注意事项 6、对小塔楼的界定应慎重,当塔楼高度对房屋结构适宜高度有影响时,小塔楼应报院结构专业委员会确定 7、施工图涉及到钢网架、电梯及其它设备予留的孔洞、机坑、基础、予埋件等一定要写明:“有关尺寸在浇筑混凝土之前必须得到设备厂家签字认可方可施工。” 8、砌体结构不允许设转角飘窗。 9、钢结构工程设计必须注明:焊缝质量等级,耐火等级,除锈等级,及涂装要求。 10、砌体工程设计必须注明设计采用的施工质量控

制等级。(一般采用B级)。 11、砌体结构不宜设置少量的钢筋混凝土墙。 12、砌体结构楼面有高差时,其高差不应超过一个梁高(一般不超过500mm)。超过时,应将错层当两个楼层计入总楼层中。 二.结构计算 13、结构整体计算总体信息的取值: (1)混凝土容重(KN/m3)取26~27,全剪结构取27,若取25,对于剪力墙需输入双面粉层荷载。(2)地下室层数,取实际地下室层数,当含有地下室计算时,不指定地下室层数是不对的,请审核人把关 (3)计算振型数,取3的倍数,高层建筑应至少取9个,考虑扭转耦联计算时,振型应不少于15个,对多塔结构不应少于塔数×9。计算时要检查Cmass-x及

框架结构自振周期折减系数

框架结构自振周期折减系数

————————————————————————————————作者:————————————————————————————————日期:

由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范[1]没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可取0.6~0.7[4] [7];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90[2].这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数[4]. 通过笔者的粗浅分析和工程实践摸索,指出影响自振周期的一些主要因素,并对折减系数的取值提出建议,供结构工程师参考。 计算周期与自振周期存在差异的诸多因素

pkpm中结构类型及设计参数整理

目录 1.结构类型 (1) 2.设计参数控制 (2) 2.1受压构件的长细比: (2) 2.2受拉构件的长细比 (3) 2.3柱顶位移和柱高度: (5) 2.4钢梁的挠度和跨度: (6) 2.5单层厂房排架柱计算长度折减系数: (8) 2.6多台吊车组合时的荷载折减系数: (11) 2.7门式刚架梁按压弯构件验算平面内稳定性 (12) 2.8摇摆柱内力放大系数 (12) 2.9当实腹梁与作用有吊车的柱刚接时,该柱按照柱上端为自由的阶形柱确定计算 长度系数 (13) 2.10轻屋盖厂房按“低延性,高弹性承载力性能化”设计 (14) 3.1 关于净截面、毛截面、有效截面、有效净截面的理解及其应用: (15) 1.结构类型 1)单层钢结构厂房,不适用于《门规》的单层钢结构厂房,程序将按照《抗规》内容进行

控制。 2)门式刚架轻型房屋钢结构,选择此选项时,不再按《抗规》9.2章内容控制,仅执行《门规》。 3)多层钢结构厂房,按《抗规》附录H.2进行计算与控制。 4)钢框架结构,按《抗规》内容进行控制。 a.“门式刚架轻型房屋钢结构”,其中“门式”,主要有两种形式:双坡、单坡。门式刚架不仅仅只针对轻钢,也包括普钢。轻钢门规仅仅是门式刚架 结构中的轻钢部分。 b.轻钢的界定:“主承重结构为单跨或多跨实腹式门式刚架”、“单跨或多跨实腹式门式刚架”、“轻钢屋盖和轻钢外墙”、“起重量不大于20t的A1~A5工 作级别桥式吊车或没有吊车(当然也可以是单梁吊车)”、“悬挂吊车起重量 不超过3t”、“单层”、“跨度一般不宜超过36m”、“高度一般不宜超过12m”、 “柱距一般不宜超过9m”。后面三条,一般超过36米就不宜在选用轻钢规 范设计了。刚架高度、柱距可根据实际情况选择规范,并不是限定的那么 严格。 c.门式轻钢,多用于生产车间、仓库、厂房钢结构。设计时,首先要确定规范的采用,不能一概而论的所有门式的就都是轻钢。一些大吨位吊车,格 构柱等的门式结构为重(普)钢结构,需按《钢结构设计规范》来采用。 d.钢架排架的最明显区别: 排架结构:柱底与基础刚接、梁和柱顶铰接;钢架结构:柱底与基础刚接,梁和柱顶刚接。 e.冷弯薄壁性钢结构:用各种冷弯型钢制成的结构。冷弯薄壁型钢由厚度为 1.5~6毫米的钢板或带钢,经冷加工(冷弯、冷压或冷拔)成型,同一截面 部分的厚度都相同,截面各角顶处呈圆弧形。 2.设计参数控制 2.1受压构件的长细比: 受压构件长细比的规律:1、主要构件要求严、次要构件要求松;2、一定范围内:受压力/FyA 比值越大时,长细比越严格(当比值小于等于50%时,允许长细比可适当放大《钢规》5.3) 《轻钢》规定不宜大于表3.5.2-1规定的限值 表3.5.2-1 受压构件的长细比限值 《冷弯薄壁》受压构件的长细比不宜超过表4.3.3中所列数值; 表4.3.3 受压构件的容许长细比

相关文档
最新文档