课题研究数学建模
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库- 让每个人平等地提升自我
课题研究之
数
学
建
模
目录
摘要……………………………………………………………………………Abstract………………………………………………………………………
1.数学建模的定义……………………………………………………………
2.数学建模的建立……………………………………………………………
3. 数学建模的分类……………………………………………………………
4. 数学建模的原则……………………………………………………………可分析与推推导原则………………………………………………………
简化原则……………………………………………………………………
反映性原则…………………………………………………………………
5.应用模式的框架………………………………………………………………
6.数学建模对大学生素质与能力的培养………………………………………问题的提出………………………………………………………………
问题的讨论………………………………………………………………
建模的准备………………………………………………………………
建模………………………………………………………………………
问题的补充…………………………………………………………………
7.设计总结………………………………………………………………………
8.参考文献………………………………………………………………………
[摘要]数学建模与大学生能力的培养密切相关。本文依据现有文稿系统地分析了数学建模的各个方面,数学建模的定义、分类、建立、原则、框架等。同时,通过污染问题的引入和讨论,详细地阐述了建模的思维过程;并从该过程中映射出数学建模对四种重要思维能力的培养和提高,即综合应用分析能力,“双向”翻译能力、联想能力、洞察能力。从而,使数学建模对大学生能力的培养,不言而喻。
[关健词] 数学建模;思维过程;思维能力;环境污染。
[Abstract] Mathematical Modeling and the ability to train college students are closely the basis of the existing draft system to a mathematical analysis of the various aspects of modeling, mathematical modeling of definitions, classifications, establish, in principle, , pollution and the introduction of the discussion, described in detail the thinking process modeling;And from the process of mapping out mathematical modeling of four critical thinking ability training and upgrading, comprehensive application of analytical ability, "two-way" translation, association, penetrating , the mathematical modeling of the students abilities, self-evident.
[Key words]mathematical modeling; Thinking process; Thinking; Environmental pollution.
众所周知,随着科学技术的发展,数学建模的应用也越来越广泛,并涉及多种科学领域。计算机是数学和电子学相结合的产物,它在解决科学计算、模拟方面对数学有重要的作用。数学建模使用计算机使得求解更方便、快捷和精确,进而使得解决问题的领域扩大,从连续、离散确定性领域到随机的非确定性领域,计算机模拟正是处理这类问题的重要方法。同时,数学建模的训练不仅可以提高学生应用数学的意识,而且也是加强数学与实际的联系,实施数学素质教育的一个重要方面。通过数学建模训练,可以培养和提高学生多方面的思维能力。本文拟对数学建模与能力培养加以讨论和分析。
1数学建模的定义
数学建模是针对或参照某种事物系统的主要特征、主要关系,用形式化的数学语言,概括或近似地表述出来的一种数学结构。这里的数学结构,有两方面的具体要求:其一,这种结构是一种纯关系结构,即必须是经过数学抽象地扬弃了一切与关系无本质联系后的系统;其二,这种结构是用数学概念和数学符号来描述的。
2数学模型的建立
把数学方法运用到任一实际问题,都需要把该问题的内在规律用数字、图表或公式、符号表示出来,经过数学的处理,得出供人们分析、预报、决策或控制的定量结果,这个过程就是建立数学模型的过程。这一过程是一个对研究对象进行具体分析和科学抽象的过程,目的在于找到一个能反映问题本质特征的,又是理想化、简单化的数学模型。这就要求我们要善于近似、简化与抽象,即要求我们深刻了解实际问题所属学科领域的基本规律,抓住问题中起关键作用的一些量及其相依关系,灵巧地运用数学概念、符号、式子、规律去刻划其内在的、本质的规律性,这就是从宏观角度构造数模型的方法。从微观方面而言,我们面临的实际问题一般较为复杂,影响某一量变化的因素很多,往往是因素共存的。
3数学建模的分类
根据数学模型的性质和建立数学模型的方法不同,可以对数学建模有各种不同的分类方法:①按模型的来源分:理论模型和经验模型;②按研究对象所在领域分:经济模型、生态模型、人口模型、交通模型等等;③按模型所使用的数学工具可分:函数建模、方程建模、三角建模、概率建模、运筹建模、复数建模、