人源葡萄糖转运蛋白GLUT的晶体结构解读
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
葡萄糖转运蛋白GLUT1的晶体结构
宏观评述
一、背景介绍:
葡萄糖(D-glucose)是地球上包括从细菌到人类各种生物已知最重要、最基本的能量来源,也是人脑和神经系统最主要的供能物质;大脑平均每天消耗约120克葡萄糖,占人体葡萄糖总消耗量的一半以上。葡萄糖代谢的第一步就是进入细胞:亲水的葡萄糖作为一种有机大分子不能自由穿透疏水的脂质双层结构细胞膜进入细胞,其进出细胞需要通过镶嵌于细胞膜上的葡萄糖转运蛋白(glucose transporters)简称葡萄糖转运体(GLUT)转运功能才能得以实现。其中一类属于主要协同转运蛋白超家族(Major Facilitator Superfamily,简称MFS)的转运蛋白是大脑、神经系统、肌肉、红细胞等组织器官中最重要的葡萄糖转运蛋白(glucose transporters,简称GLUTs)。在人体的14个GLUTs中,GLUT1、2、3、4这四种蛋白生理功能最重要,研究最广泛,GLUT1几乎存在于人体每一个细胞中,是红细胞和血脑屏障等上
皮细胞的主要葡萄糖转运蛋白,对于维持血糖浓度的稳定和大脑供能起关键作用。在已知的人类遗传疾病中,G L U T 1 功能完全缺失将致死,功能部分缺失会使细胞对葡萄糖吸收不足而导致大脑萎缩、智力低下、发育迟缓、癫痫等一系列疾病(GLUT1 Deficiency syndrome,又称De Vivo syndrome)同时也会因葡萄糖不能及时为人体利用消耗而导致血糖浓度的异常升高。另一方面,当发生癌变时,葡萄糖是肿瘤细胞最主要的能量来源,但是肿瘤细胞由于缺乏氧气供应而只能对
葡萄糖进行无氧代谢,同质量葡萄糖所提供的能量不到正常细胞的10%,因而对葡萄糖的需求剧增(这是被称为Warburg Effect的肿瘤
细胞代谢现象),在很多种类的肿瘤细胞中都观察到GLUT1的超量表达,以大量摄入葡萄糖维持肿瘤细胞的生长扩增,这使得GLUT1的表达量
可能作为检测癌变的一个指标。GLUT1–4是一种类胰岛素敏感型葡萄糖运输载体,它与2型糖尿病密切相关,细胞中GLUT1–4表达的减少
以及其转位的障碍都是引发糖尿病的重要因素。
二、研究介绍:
他们首先获得了GLUT1-4在大肠杆菌中的同源蛋白,XylE的结构。XylE在肠杆菌中负责将D-木糖以质子依赖的方式同向转运进入细胞。它与人的GLUT1-4蛋白有着高达50%的序列相似性,进化上高度保守。细菌GLUT1–4同源物XylE分别与D-木糖、D-葡萄糖和6-溴-6-脱氧-d-葡萄糖构成的三种复合物的晶体结构,分辨率分别为2.8、2.9 和2.6埃。其三维晶体结构中包含一个典型的由12个跨膜片段和一个独特的四螺旋结构域构成的主要协同转运蛋白超家族(Major Facilitator Superfamily,MFS)折叠。XylE被捕获在一个面向外(outward-facing)、部分闭合的构象中。
XylE蛋白的三维晶体结构呈现出典型的MFS家族折叠方式——由12个跨膜螺旋组成N端和C端两个以假两次轴对称的结构域。与已知结构的MFS超家族其它成员不同,XylE呈现出一种向细胞外侧开放、部分封闭的全新构象,并且具有一个独特的由4个α螺旋组成的胞内结构域。颜宁研究组获得了XylE与底物D-木糖,抑制剂D-葡萄糖,
以及一种葡萄糖衍生物的3个复合物的结构,找到了与底物结合的重要氨基酸残基,并通过生化实验分析,验证了这些残基在底物识别与转运过程中起到的作用。尤为重要的是,序列比对显示这些残基在GLUT1-4中完全保守,从而第一次揭示出GLUT1-4识别底物的分子基础。
在研究这些同家族糖转运蛋白的结构与机理过程中,她们对于MFS家族的工作机理有了深入了解,分析出GLUT1结晶的瓶颈在于高度动态、结构不稳定。针对这一问题,她们寻找可以将GLUT1锁定于某一构象的致病突变体,同时利用低温结晶进一步稳定蛋白构象,终于克服了GLUT1重组表达、纯化结晶的一系列技术障碍,获得了GLUT1的晶体结构。
三、价值意义:
1、提供的结构和生物化学信息可为了解葡糖糖转运蛋白和糖转运蛋白的功能和机制提供重要的框架。
2、这一结构模型由于是以具有高度同源的XylE蛋白的晶体结构为基础,比以往研究报道的结果更为准确。利用GLUT1的晶体结构可以精确地定位与疾病相关的突变氨基酸,揭示其致病机理。分析显示,三十余个突变氨基酸基本集中于三个区域:底物结合区域、胞外门控区、胞内门控区,它们的突变或者影响了底物识别,或者影响转运蛋白的构象变化。晶体结构使得理解这些致病突变的机理一目了然。与之前获得的向胞外半开口的XylE晶体结构比较揭示出ICH在GLUT1的构
象变化中起关键作用。鉴于ICH在糖转运蛋白亚家族的保守性,这一发现可能适用于该亚家族所有成员。
3、在人类攻克癌症、糖尿病等重大疾病的探索道路上迈出了极为重要的一步。如果我们能研究清楚GLUT1 的组成结构和工作机理,就有可能通过调控它实现葡萄糖转运的人工干预。这样既可以增加正常细胞的葡萄糖供应,达到治疗相关疾病的目的,也可以通过阻断葡萄糖供应“饿死”癌细胞。
重点分析
一、结构特征
MFS 超家族转运蛋白的结构特征MFS超家族的成员蛋白大多由
400~600个氨基酸残基组成, N和C端都位于胞内. 蛋白二级结构预测提示其大多具有12次-螺旋跨膜结构域, 其他一些具有14或者24次-螺旋的则可能是进化过程中以12次跨膜-螺旋为基础产生的. 这种独特的折叠方式也被命名为“MFS fold”. 在“MFS fold”中, 12次螺旋可以分为2个结构域: N端结构域和C端结构域. 每个结构域都由6个-螺旋组成, 虽然2个结构域中氨基酸序列只有很低的序列同源性, 但从结构上观察2个结构域呈现二次赝对称(two-fold psudosymmetry).同时MFS超家族蛋白的结构和序列分析提示可能存在3次跨膜重复构成的特性, 结构和功能分析都支持MFS蛋白每个结构域都是以3+3反转重复(inverted 3+3 repeats)的组成. 更有意思的是, 研究发现一类只有3次跨膜结