实验三:用FFT对信号作频谱分析报告_实验报告材料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三:用FFT对信号作频谱分析实验报告

一、实验目的与要求

学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。

二、实验原理

用FFT对信号作频分析是学习数字信号处理的重要容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N小于等于D。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。

三、实验步骤及容(含结果分析)

(1)对以下序列进行FFT分析:

x1(n)=R4(n)

x2(n)= n+10≤n≤3 8-n 4≤n≤7 0 其它n 4-n 0≤n≤3

x3(n)=

选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。

【实验结果如下】:

实验结果图形与理论分析相符。

(2)对以下周期序列进行谱分析:

x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n]

选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。

【实验结果如下】:

(3)对模拟周期信号进行频谱分析:

x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt)

选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。

【实验结果如下】:

四、【附录】(实验中代码)

x1n=[ones(1,4)]; %产生R4(n)序列向量

X1k8=fft(x1n,8); %计算x1n的8点DFT

X1k16=fft(x1n,16); %计算x1n的16点DFT

%以下绘制幅频特性曲线

N=8;

f=2/N*(0:N-1);

figure(1);

subplot(1,2,1);stem(f,abs(X1k8),'.'); %绘制8点DFT的幅频特性图title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');

N=16;

f=2/N*(0:N-1);

subplot(1,2,2);stem(f,abs(X1k16),'.'); %绘制8点DFT的幅频特性图title('(1a) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');

%x2n 和x3n

M=8;xa=1:(M/2); xb=(M/2):-1:1;

x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)

x3n=[xb,xa];

X2k8=fft(x2n,8);

X2k16=fft(x2n,16);

X3k8=fft(x3n,8);

X3k16=fft(x3n,16);

figure(2);

N=8;

f=2/N*(0:N-1);

subplot(2,2,1);stem(f,abs(X2k8),'.'); %绘制8点DFT的幅频特性图title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');

subplot(2,2,3);stem(f,abs(X3k8),'.'); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');

N=16;

f=2/N*(0:N-1);

subplot(2,2,2);stem(f,abs(X2k16),'.'); %绘制8点DFT的幅频特性图title('(2a) 16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X3k16),'.'); %绘制8点DFT的幅频特性图title('(3a) 16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');

%x4n 和x5n

N=8;n=0:N-1;

x4n=cos(pi*n/4);

x5n=cos(pi*n/4)+cos(pi*n/8);

X4k8=fft(x4n,8);

X4k16=fft(x4n,16);

X5k8=fft(x5n,8);

X5k16=fft(x5n,16);

figure(3);

N=8;

f=2/N*(0:N-1);

subplot(2,2,1);stem(f,abs(X4k8),'.'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');

subplot(2,2,3);stem(f,abs(X5k8),'.'); %绘制8点DFT的幅频特性图title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');

N=16;

f=2/N*(0:N-1);

subplot(2,2,2);stem(f,abs(X4k16),'.'); %绘制8点DFT的幅频特性图title('(4a) 16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X5k16),'.'); %绘制8点DFT的幅频特性图title('(5a) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');

%x8n

相关文档
最新文档