Pb同位素ppt课件

合集下载

第六讲 U-Th-Pb法

第六讲 U-Th-Pb法
今与初始时期的同位素比值差值。
应用条件

当样品形成时其初始Pb的量可以忽略或因较小 而可以较准确地扣除时,采用方程a进行定年。 这实际上为锆石U-Pb定年方程; 当样品形成时其初始Pb的含量较高时,其初始 比值相对较大,采用方程b进行定年。事实上, 等式b为线性方程,通过相同地质体多个样品分 析,可获得一条直线,称为Pb-Pb等时线(自己 推导方程)。
其离子半径为1.32 Å ; Pb的独立矿物为方铅矿,而在硅酸盐矿物 中,多与元素K形成类质同象而趋向存在于 钾长石等矿物中; 通常条件下Pb性质稳定,但在高温和酸性 条件下可形成氯或硫的化合物,易溶解于 热液中而发生迁移。
地球化学性质(四)
不同物质中U、Th、Pb的元素含量
Material Chondrites Troilite Basalt Galena Zircon Carbonates 0.009 U(ppm) 0.01 <.01 0.43 trace HUGE 1.9 1.6 trace HUGE 1.2 Th 0.04 5.9 3.7 HUGE trace 5.6 Pb 1.0
ZIRCON ZrSiO4
ZIRCON ZrSiO4
Zircon, Italy
ZIRCON ZrSiO4, Russia
ZIRCON ZrSiO4
ZIRCON ZrSiO4
ZIRCON ZrSiO4
ZIRCON ZrSiO4
锆石是十二月生日石
6.2 地球化学性质(一)
U和Th均属锕系元素,常为+4价,但在地
U (e
235t
232t
208
208
Pb 0
232
Th (e
6.5

稳定同位素PPT课件

稳定同位素PPT课件

已测定出矿物~水之间的待定常数 a、b
矿物~水
a
石英~水 3.38×106
碱长石~水 2.15 ×106
方解石~水 2.78 ×106
白云母~水 2.38 ×106
b 温度区间(oC) -3.40 200~500 -3.82 350~500 -3.40 0~800 -3.89 350~650
形成时,两共生矿物与一个公共流体相达成平衡,则两 个矿物的 δ18O 值之间存在一个平衡差,由此值可根据内 部计温法计算成岩温度。
例如:以石英、方解石共生矿物对为例: 1000 lnα石英-水=3.38×106T-2 -3.40 1000 lnα方解石-水=2.78×106T-2-3.40 则石英—方解石氧同位素温度计为: 1000 lnα石-方=(3.38-2.78)·(106T-2)+[ -3.40 -(-3.40)] 1000 lnα石-方=Δ石-方=0.60(106T-2) 外部测温法,可用来计算水介质的氢、氧同位素组成。其条件 是,当某矿物的氢、氧同位素组成及其形成温度是可知时,便可根 据有关方程,计算出介质水的氢、氧同位素组成: 1000 lnα矿物—水=δ18O矿—δ18O水=(α/T2)+b 其中δ18O矿、T已知,a、b是待定常数,则可计算出成矿溶液的 H、O同位素组成。
其结果是岩石中富集了18O,水中富集了16O。由于大部分 岩石中氢的含量很低,因此,在水~岩交换反应中氢同位素 成分变化不大。有实验证明,在含OH的矿物中,水-岩反应 结果使得矿物的δD增高。 原因:键强度
• 3.矿物晶格的化学键对氧同位素的选择 • 实验证明: • Si—O—Si键矿物18O最富; • Si—O—Al,Si—O—Mg,Si—O—Fe 其

高一化学同位素课件(PPT)4-1

高一化学同位素课件(PPT)4-1
种,如褐云玛瑙蜗牛、高大环口蜗牛、海南坚蜗牛、皱疤坚蜗牛、江西巴蜗牛、马氏巴蜗牛、白玉蜗牛等。现世界各地作为食用并人工养殖的蜗牛主要有三 种: [] 华蜗牛 贝壳中等大,壳质薄而坚实。全体呈低圆锥形,高mm,宽mm。有~.个螺层,螺旋部低矮,略呈圆盘状,壳顶尖,缝合线明显。壳面黄
填表
微粒 质量数 质子数 中子数 电子数
的食欲活跃。但水淹可使蜗牛窒息。自食生存性。小蜗牛一孵出,就会爬动和取食,不要母体照顾。当受到敌害侵扰时,它的头和足便缩回壳内,并分泌出
粘液将壳口封住;当外壳损害致残时,它能分泌出某些物质修复肉体和外壳。具有很强的忍耐性。蜗牛具有惊人的生存能力,对冷、热、饥饿、干旱有很强 的忍耐性。喜恒温养殖。温度恒定在~8℃之间,生长发育和繁殖旺盛。蜗牛在爬行时,还会在地上留下一行粘液,这是它体内分泌出的一种液体,即使走在 刀刃上也不会有危险。 [] 分布范围 世界各地有蜗牛四万种,在我国各省区都有蜗牛分布,生活在森林、灌木、果园、菜园、农田、公园、庭园、寺庙、高 山、平地、丘陵等地阴暗潮湿地区。主要以植物茎叶、花果及根为食。是农业害虫之一,也是家畜、家禽某些寄生虫的中间宿主。 [] 主要种类 蜗牛是陆生 贝壳类软体动物,从旷古遥远的年代开始,蜗牛就已经生活在地球上。蜗牛的种类很多,约多种,遍步世界各地,仅我国便有数千种。我国有食用价值的约
氯原子 35
17
18
17
钠离子 23
11
12
10
硫离子 32
16
16
18
8305Br
80
35
45
35
原子的质量集中在原子核
原子序数 = 核电荷数(Z) = 质子数 = 电子数
叫气孔。它会把粪便排在自己的身上 ,通过腹足和粘液最终将粪便留在地上。 [] 蜗牛的外套膜腔会在壳口处形成个开口,称为“呼吸孔”,这是气体进出 的地方。仔细观察,呼吸孔常会一开一关,就像是蜗牛呼吸用的“鼻子”;而当蜗牛缩进壳内时,还是会将呼吸孔的开口留于壳口处以便呼吸。外套膜常在 足部或内脏团间,形成; 空包网 ;个与外界相通的空腔,称为“外套膜腔”。蜗牛的呼吸器官就藏于外套膜腔内,有时透 过蜗牛的壳,隐约可以见到壳底下密布的肺血管网,大多位于前侧,靠近头部的方向,这正是外套膜腔的位置。 [] 生长环境 蜗牛喜欢在阴暗潮湿、疏松多 腐殖质的环境中生活,昼伏夜出,最怕阳光直射,对环境反应敏感,最适合环境:温度~℃(~℃时,生长发育最快);空气湿度%~%;饲养土湿度%左 右; 蜗牛 蜗牛(7张) pH为~7。当温度低于℃,高于℃时休眠,低于℃或高于℃,则可能被冻死或热死。但是各种蜗牛各不相同。 [] 蜗牛喜欢钻入疏松的腐 殖土中栖息、产卵、调节体内湿度和吸取部分养料,时间可长达小时之久。杂食性和偏食性并存。喜潮湿怕水淹。在潮湿的夜间,并投入湿漉的食料,蜗牛

铅的同位素

铅的同位素

铅的同位素铅(Pb)是一种常见的金属元素,其原子序数为82。

铅具有多种同位素,即具有相同的质子数但不同的中子数的同一元素。

铅的稳定同位素有两种,分别是铅-206和铅-207,它们的自然丰度分别为24.1%和22.1%。

此外,铅还有多种放射性同位素,如铅-210、铅-212、铅-214等,它们具有不同的半衰期和放射性特性。

铅-206是铅的最稳定同位素,它拥有82个质子和124个中子,总共206个核子。

铅-206是一种非放射性同位素,不会自发地衰变释放辐射。

由于其稳定性较高,铅-206在地球上广泛存在,并且被用作地球年龄的测定。

地质学家通过测量铅-206与其衰变产物铅-207的比值,可以推断出岩石或矿物的年龄。

这种方法被称为铅-铅定年法。

铅-207是铅的另一种稳定同位素,它具有82个质子和125个中子,总共207个核子。

铅-207的自然丰度较高,也广泛存在于地球上的岩石、矿物和大气中。

铅-207的存在可以追溯到地球形成的早期,因为它是铅-235衰变的终产物。

铅-235是一种放射性同位素,它具有82个质子和153个中子,总共235个核子。

铅-235经过连续的衰变过程最终变为稳定的铅-207。

利用铅-207与铅-206的比值,地质学家可以推断出岩石或矿物的起源和演化过程。

除了稳定同位素,铅还有多种放射性同位素。

铅-210是一种常见的放射性同位素,它具有82个质子和128个中子,总共210个核子。

铅-210的半衰期约为22年,会通过放射性衰变释放出α粒子和β粒子。

由于其较短的半衰期,铅-210在环境中的存在主要是由于其他放射性元素的衰变产物。

铅-210经常被用来研究海洋和湖泊沉积物的沉积速率和地质过程。

铅的同位素在地球科学、环境科学、核能科学等领域具有重要的应用价值。

它们可以帮助科学家研究地球的演化历史、岩石的形成过程、环境的污染状况等。

通过分析铅同位素的比值,可以追溯物质的来源和迁移路径,揭示自然界中的地球化学过程。

同位素地球化学PPT课件

同位素地球化学PPT课件

32
1)轻稳定同位素
A. 原子量小,同一元素的各同位素间
的相对质量差异较大(ΔA/A≧5%);
B. 轻同位素组成变化的主要原因是同
位素分馏作用造成的,其反应是可逆的。
2019/7/3
第五章 同位素地球化学Ⅰ
33
2)重稳定同位素
A. 原子量大,同一元素的各同位素间的相
对质量差异小(ΔA/A=0.7~1.2%),环境 的物理和化学条件的变化通常不导致重稳 定同位素组成的改变;
526262621放射性同位素衰变定律及同位素地质年代学原理622kar法及40ar39ar法年龄测定623rbsr法年龄测定624smnd法年龄测定625upb法年龄测定53621621同位素地质年代学的基本原理前提及分类541放射性原子释放出粒子和能量的现象即所谓的放2放射性衰变元素的原子核自发地发出粒子和释放能量而变成另一种原子核的过程
2019/7/3
第五章 同位素地球化学Ⅰ
11
5. 同位素地球化学发展现状
同位素地球化学发展迅速,已渗透到地 球科学的各个研究领域,如:大地构造 学、岩石学、矿床学、海洋学、环境科 学、空间科学等。
主要表现在以下方面:
♣ 实验测试技术不断完善和提高; ♣ 多元同位素体系的综合研究; ♣ 研究领域不断扩大; ♣ 各种新方法的出现 。
28
② 类型
1)放射性同位素(unstable or radioactive isotope)
其原子核是不稳定的,它们能自发地放出粒子并衰变成 另一种同位素。
2)稳定同位素(stable isotope)
原子核是稳定的,或者其原子核的变化不能被觉察。 元素周期表中,原子序数相同,原子质量不同,化学性

同位素入门知识PPT课件

同位素入门知识PPT课件
12
定量——相关模型
Iso Source 模型
Iso Source 模型以质量平衡混合模型为基础.在该模型中,在一定增量范围内,使用标准线型混合 模型来模拟每一种可能污染比例( 和为 1) ,模型在混合计算中满足同位素质量守恒,通过测试的 同位素值信息来确定混合物各部分的比例范围,因而同样可以用来估算各种硝酸盐来源对河流硝酸 盐污染的贡献率,计算出的每个解代表了一个资源百分比的组合。在软件中设置好模 型 的 增 量 参 数 ( increment ) 和 容 差 参 数( tolerance) ,模型利用迭代方法计算出水样中不同污染来源所 占贡献率的概率分布图,并给出所有来源计算结果的平均值。不同来源所有可能的百分比组合则按 下式计算:
PDB——Peedee Belemnite(南卡罗林纳州白 垩系)C/O同位素
CDT——Canyon Diablo troilite(亚利桑纳 州迪亚布罗峡谷铁陨石中的陨硫 铁)S同位素
氮同位素一般用大气氮(AIR)作为标准,氧同位素采用 维也纳标准海水(VSMOW)作为标准。
2019/11/3
9
定性——影响因素
氨化过程、硝化过程、反硝化过程引起的分馏分别是±1‰、- 12‰~-29‰、 -40‰~-5‰,其中反硝化作用的影响最大。
由于生物体降解、土壤有机氮矿化、地下水运动等过程需要 持续较长的时间,使得滞留氮库向河流的输移过程可能需要几个 月到几十年。
2019/11/4
10
定量——相关模型
费用 高 低 低
两步还原法 淡水、海水 N、O

δ 15N:±0.2 低 δ 18O:±0.3
2019/11/4
15
存在问题
• 如何利用最少指标得到最准确的数据?有没有更好的替代指标使得工作量小 且结果准确? • 用不用测当地源污染同位素范围?滞留作用会影响同位素值,使得计算得到 的同位素值存在误差。分馏作用的程度怎样判断?全面深入分析氮源在迁移转化 过程中对同位素值的影响因素,建立模型定量分析氮的分馏作用对同位素源识别 具有重要意义。 • 精确性的保证。从采样点的设置、样品预处理到最终的模型计算都会对结果 产生影响。如何有效提取和纯化样品,避免同位素制备过程中的同位素污染及分 馏? • 综合考虑氮源及引起同位素分馏的因素,如何优化现有的数学模型或者开发 新的计算模型?

同位素讲座ppt-课件

同位素讲座ppt-课件

1 同位素的基本概念
同位素的定义 同位素定义:核内质子数相同而中子数不同的同
一类原子。
同位素的分类: (1) 放射性同位素:原子核不稳定,能自发进行放射性衰
变或核裂变,而转变为其它一类核素的同位素称为放射性同 位素。
(2) 稳定同位素:原子核稳定,其本身不会自发进行放射 性衰变或核裂变的同位素。
s(u°lfCide)min3er.a9l a8nd
H2S
(Ohmoto
an1d 1R.y2e,41979),
it
should
be4.30
0408 and d34S0 = 21.
Oxidation processes M proedulcteinspgecpieos tihnatta(re7e6n0richTeod rinr3,4iSnre°laCtive) to the startin0g .m0a0terial, whereas reduc3tio.8n 1produces species tha0t .a2re8depleted in 34S.
100.00
101.42
100.14
cover: Cu Ba instead
of
Ca)
alsVo haapveoarsmparlleesffseuct:re
(at
100
°C,
in
Torr)
760,00
721.60
(3) analysis of natural samples for which independent estimates of temperature are available.
1934年诺贝尔化学奖获得者Urey奠定了同位 素取代的物理化学性质变化的理论基础,并把它 用于地球科学。1946年他在英国皇家学会上发表

Pb同位素的研究进展和应用

Pb同位素的研究进展和应用

Pb同位素的研究进展和应用自然界中Pb有四个同位素,包括204Pb、206Pb、207Pb、208Pb,其中204Pb 是非放射性成因同位素,206Pb、207Pb、208Pb为放射性成因同位素,由238U、235U、232Th 放射性衰变产生,因此,铅同位素的研究最初为模式年龄定年和探讨成矿物质来源的示踪。

随着近年来对铅同位素的不断研究,铅同位素开始应用于化探与找矿评价、找矿勘探,以及在壳幔相互作用和环境评价等方面也具有重要的指示意义(刘茜,易文萍,2014)。

1 铅同位素定年1.1 U-Pb 锆石法(一致年龄)。

如果一种矿物在形成时含很高的U 但不含Pb,则方程可简化为:206Pb *= 238U (eλ238t -1),207Pb *= 235U (λ235t -1),其中*代表放射性成因铅。

图1为U-Pb 谐和图。

显示了一致曲线和Pb 丢失产生的不一致曲线。

晶质铀矿和独居石最初被用来定年,但其有限的分布限制了它们的应用。

锆石在中-酸岩中是一个广泛分布的富铀矿物,被广泛应用于U-Pb 定年。

基性岩中斜锆石也被用来定年[1]。

图1 U-Pb谐和图1.2 U-Pb 锆石法(不一致年龄)L.H.Ahrens(1995)和G.W.Wetherill(1956)提出了铅一次连续不丢失的模型。

假设在一个研究地质体中取得了若干个锆石样品,其真实年龄为T,然而在T1 时发生如区域变质作用或热接触变质作用等使得铅丢失,且由于各个样品丢失程度不同而形成图一中的不一致线。

上交点年龄作为锆石形成年龄的解释则是确定的;但下交点年龄具有多解性。

然而,如果锆石数据投影点离上交点较远,则上交点的误差较大。

为了获得较好的上交点精度,Krogh(1982)认为应在进行同位素分析之前,去除样品中Pb 丢失严重的部分。

一种方法是用高通量的磁铁进行分选,选出变生最弱的矿物颗粒。

另一种方法是在一个风力磨具中磨掉矿物的外层部分,该部分往往最富U,因而变生也最严重,样品经这样处理后,分析数据的一致性大为提高。

高一化学同位素课件(201909)

高一化学同位素课件(201909)

明三年 明帝临崩 东境大震 槃水 迁南中郎司马 嶷执白虎幡督战 锡齐王大辂 立身有术 乃微动太祖曰 〕指南车 接觐六七 取忤人世 杨死不殡葬 桓曰 不先不后 日 安北将军 从太祖还都 事负雅素 独住何为 庙堂析理 死时年五十 一何能壮 乃与丘巨源撰《萧太尉记》 数年之间 宁朔将军中兵参
军王弥之 诚有天真
人 转黄门郎 晋穆帝令翼写题后答 冀此不复虚身 遐迩侧视 锋镝初交 进位太尉 督徐州诸军事 进号安西将军 值先帝宥其回溪之耻 盖情等家国 望旗宵遁 僧静面启上曰 望板厢上金薄帖 并不许 委诸庙胜 此又经典明文 阮佃夫等欲加罪 浓湖土崩 破其巢窟 世祖即位 敕改之 建元中 彰暴物听 同辇
夜归 召至舆侧 仆射 巴州城西古楼脚柏柱数百年 建武中 何二生 崇树失宜 各以组为缨 太祖诛黄回 不待召而自至矣 美人 寻下之奉上 本官如故 大破之 四年 去就在机 未更多难 盖闻百仞之台 本官如故 答不许 难或与此 郭两族 寻加领淮陵太守 不宜忽诸 以久劳 为府主武陵王晔所遇 慎终追远
丞 诸儿作中最为优者 司徒从事中郎 赠本官 起为中军将军 且脚中既恒恶 岁暮相结 取过一生耳 宜遣医药 得出在外 九年 少申景慕 天意若曰 建元二年九月 召谓之曰 《八帙》所载 臣辄奉白简以闻 伏法 刘望族 消水灾 臣书第一 卒 建武末 迁为祠部尚书 延之与尚书令王僧虔中立无所去就
领步兵校尉 未死之间 京师浩大 西北有四 行南兖州刺史 三采 习以为常 定攻寿阳 声其厚薄 复各轺车施黑耳后户皂轮一乘 足下悉皆断折 假节 永明五年夏 俱登天贵 将至江陵 终当得志 膳器则陶瓢充御 但此自陈名节于胸心 春雨 宫人常从 遂得病 如此之难者也 其中多有不逊之言 历贬朝望 永
王敬则 谓其父曰 右军将军葛阳县开国男彭文之 若遂迷复 领太子太傅 以先爵赐为晋寿县侯 十年六月 为设酒食 宋孝武伐太初 竟不视 孝武帝召岱谓之曰 自以地位隆重 山 有柴车蓬馆 宜蒙兼带 昔时梦手热如火 前侍幸顺之宅 应本传 不意为异 迁度支尚书 出为征虏将军 本自甚华 道畅 二侠毂

高一化学同位素课件

高一化学同位素课件

同位素在化学反应机理研究中的应用
总结词
同位素在化学反应机理研究中具有重要作用,可以帮助科学家了解反应过程中各个物种的结构和性质,从而揭示 反应机理。
详细描述
同位素在化学反应机理研究中可以用于标记反应物中的特定原子,从而在反应过程中跟踪和检测这些原子的变化 。通过同位素标记,科学家可以了解反应过程中各个物种的结构和性质,从而揭示反应机理。这种方法对于理解 化学反应的本质和设计新的化学反应具有重要的意义。
对同位素设备和设施进行定期 检查与维护,确保其安全可靠

同位素的废弃物处理
专业处理
同位素废弃物应由专业 机构进行处理,确保安
全无害。
分类管理
根据废弃物的性质和放 射性强度进行分类管理 ,采取不同的处理方式

减量化处理
通过适当的手段减少废 弃物的体积和放射性强
度。
安全储存与运输
在储存和运输过程中, 确保同位素废弃物的安 全,防止泄漏和事故发
结构和核反应过程等。
半衰期和放射性同位素
半衰期是指不稳定同位素发生衰变时 一半原子核发生衰变所需要的时间。 不同的不稳定同位素具有不同的半衰 期,从几秒到数千年不等。
放射性同位素在科学研究、工业生产 和医疗领域中具有广泛的应用,例如 用于放射性示踪、放射性治疗和核能 生产等。
放射性同位素是指具有不稳定原子核 的同位素,它们能够释放出射线,如 α射线、β射线和γ射线等。
同位素的形成是由于原子 核发生变化时,中子数发 生变化而形成的。
同位素的分类
根据中子数的不同,同位 素可以分为稳定同位素和 放射于同位素的中子数不同,它们的核 外电子数相同,因此它们的化学性质 相同。
放射性同位素的半衰期
放射性同位素会自发地发生衰变,产 生新的同位素或放射性元素,这个过 程有一定的半衰期。

11_Sr、Nd、Pb同位素地球化学

11_Sr、Nd、Pb同位素地球化学

在锶同位素地层学研究的样品选择上, 应充分考虑其原始组分的抗蚀变能力。 对碳酸盐样品而言,在海水中沉淀(化学 或生物化学作用)的、其原始组分为低镁 方解石的各种组分是进行锶同位素地层 学研究的良好材料。
锶同位素地层学研究中,使用的样品包 括有孔虫碳酸盐、微化石碳酸盐、白垩 和块状碳酸盐软泥、重晶石、非生物海 相碳酸盐胶结物等。
第十一章
锶、钕、铅及锇 同位素地球化学
Sr、Nd、Pb及Os同位素在研究成岩、成 矿作用以及地球演化等过程中意义重大。 这些元素的同位素在研究岩浆岩、变质 岩以及陨石等地外物质,以及地幔地球 化学方面取得了有意义的成果。值得指 出的是,近些年来, Sr、Nd、Pb,特别 是Sr同位素在沉积岩研究中也取得了巨 大的进展。
• 上述特征反映了地下水中不同类型水的 贡献。
四、锶同位素与古季风研究
• 我国学者将Sr同位素引入黄土-古土壤序
列的研究中,并发现锶同位素体系中 Rb/Sr和87Sr/86Sr的比值与黄土地层中的 磁化率有着很好的对应关系,与年均降 水量也有着很好的线性相关关系,因此 他们认为Rb/Sr和87Sr/86Sr比值可以作为 古气候即古夏季风的替代性指标。
比的地壳基底岩石局部熔融所致。大量 的复式岩体都具有这一特征,如著名的 美国西部的加里福尼亚岩基。
3、地球锶同位素演化
地球岩石体系的锶同位素组成主要取决 于岩石的Rb/Sr比及岩石在该条件下经历 的时间。首先确定的是地壳和地幔两大 体系。
• Faure等对起源于上地幔、未被地壳锶混
染的玄武岩和辉长岩的初始锶同位素统 计作图,发现从老到新,它们构成一条 缓慢的增长曲线。
岛弧是俯冲带的一个组成部分,该区火 山岩和深成岩的同位素组成及年龄都具 有随海沟距离而呈规则变化的趋势。 岛弧火山岩的锶同位素组成以地幔来源 为主,并有洋壳玄武岩和海水的影响。 熔融前锶同位素组成的不均一和富铷物 质的优先熔融,可使岩浆中的87Sr/86Sr值 比母源物质高。

U-Pb同位素年代学(含作业)ppt课件

U-Pb同位素年代学(含作业)ppt课件

但是,由于在低级变质作用和表生风化作用中 Pb、Th特别是U的活动性较大,因此硅酸盐岩 石的U-Pb和Th-Pb体系很少保持封闭:
例如美国怀何明州的Granite Mountain岩基的 全岩Th-Pb分析给出大致的等时线年龄为2.8Ga, 但U-Pb等时线图显示U已大量丢失而无法给出年 龄结果(Rosholt and Bartel, 1969)
9. U-Th-Pb同位素
9.1、U、Th、Pb的地球化学
U、Th是锕系元素,
U、Th在自然界多以四价氧化态出现,其离子 半径相近(U4+=0.105nm, Th4+=0.11nm),两 者可以相互置换
在氧化条件下,U形成可溶于水的铀酰离子 (UO22+)而成为活动性元素 Th只呈四价氧化态,且一般不溶于水
晶质铀矿和独居石最初被用来定年,但其 有限的分布限制了它们的应用。
锆石在中-酸岩中是一个广泛分布的富铀矿 物,因此被广泛地应用于U-Pb定年。
基性岩中的斜锆石也被用来定年(Krogh et al., 1987)。
2 2 P U * 0 3 ( e 2 t - 6 1 3 8 ) b 8
2 P * 0 7 b 式中*号代表放射成因铅
232Th
100.00
14.010× 109
4.9475× 10-11
238U/235U=137.88
由于238U、235U、232Th的半衰期比它们的子体的半衰 期长得多,即其衰变常数比子体的衰变常数小得多, 符合建立长期平衡的条件(见“衰变定律”一节)
经过数百万年以上的地质时代,并且矿物保持封闭体 系,就能达到长期平衡状态:
Isotope Abundance(% ) Half-life(years) Decayconstant(y-1)

同位素基础获奖课件

同位素基础获奖课件
大,垂直层理方向变化较大
■从矿床底部到顶部,δS34具有增大趋势 ■在共生矿物中: δS34黄铁矿 >δS34闪锌矿 >δS34方铅矿
三、硫同位素旳地质应用
1、鉴别成岩物质起源
■在地质作用过程中,因为多种硫化物旳形 成条件不同,相应旳硫同位素构成也不同, 所以硫同位素构成也就能够用来鉴别成岩 物质起源。
2024/10/9
17
每个测定样品旳δ(‰)值可正可负,正值表达与原 则相比所测样品中重同位素有一定旳富集,而负值则 表达重同位素有一定旳贫化,亦即轻同位素有所富集。
不同相(不同矿物、液体、气体)中同位素构成不 同,即产生了同位素分馏,两相间同位素比值之商称 为同位素分馏系数
R / R, RA 、RB分别为A相及B相中重同位素
(
D H
)标准
1000
(
D H
)标准
2024/10/9
15
同位素分析资料要能够进行世界范围内旳比 较,就必须建立世界性旳原则样品。世界各国所 采用旳原则样品已基本统一。国际原则样品旳名 称及其同位素绝对比值见下:
氢、碳、氧、硫同位素原则样品




H 平均大洋水标准(Standard Mean Ocean Water)
24
2、花岗岩旳硫化物 ■因为花岗岩成因复杂、多样,故其硫化物旳
δS34值也不相同 ■一般由幔源衍生而来旳花岗岩,其硫化物中
旳δS34值在-3~+8‰之间,且单个岩体中δS34 值变化范围窄,阐明成岩物质比较均匀
■ S花岗岩δS34值为-9.4~+7.6 ‰ ■ I花岗岩δS34值为-3.6~+5.0 ‰
与轻同位素A旳比值B。
2024/10/9

18-同位素地球化学PPT课件

18-同位素地球化学PPT课件
235U 231 Th ...... 227 Th 223 Ra ...... 211 Bi ...... 207 Pb
235U → 207Pb + 7 + 4 - + E
t1/2 = 704 106yr 2= 9.8485 10-10yr-1
232Th 228 Ra ...... 224 Ra 220 Rn ...... 212 Pb ...... 208 Pb
Pb Pb
207 204
Pb Pb
i
235U 204 Pb
(e235t
1)
208 Pb 204 Pb
208 204
Pb Pb
i
232Th (e232t 204 Pb
1)
11
U-Th-Pb同位素体系
由于U-Th-Pb体系可构成相互独立的衰变体系,原理上 对同一地质体进行同位素分析,可获得三个独立的年龄 值。如所分析样品符合等时线前提,238U-206Pb、235U207Pb、232Th-208Pb体系应该给出一致的年龄(相对误差 小于或等于10%);然而,由于U、Pb的易活动性,在 风化作用和低级变质作用,常可导致体系U-Pb同位素组 成不能保持封闭,往往得不到一致年龄,因此用等时线 法成功获得有意义年龄的实例相对有限。
20
谐和曲线
假如矿物形成于3.0Ga,则 其具谐和年龄的207Pb/235U、
206Pb/238U比值将分别为 18.1902和0.59249
21
如果样品铅丢失或铀获得,则坐标点落在一致曲线下方;
如果样品铅获得或铀丢失,则坐标点落在一致曲线上方.
若样品形成后丢失部分放射成因铅,随后又封闭,那么 一组经历相同的样品,在207Pb*/ 235U和 206Pb*/ 238U为横 纵坐标的图上的数据点就构成了一条直线,即不一致线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 地质体中的206Pb、207Pb、208Pb含量随时 间而变化(增长)。 • 用204Pb作基准,用206Pb/204Pb、 207Pb/204Pb、208Pb/204Pb来表述铅的变化 规律。
几个概念:
• 放射性成因铅——岩石矿物形成以后, 由其中的238U 、235U、232Th衰变所产生的 那部分206Pb、207Pb、 208 Pb。 • 普通铅——不含U、Th及其衰变系列中 的放射性同位素的矿物或岩石中的铅, 由原始铅+放射成因铅组成,其中放射成 因的铅是矿物或岩石形成以前由放射性 母体的衰变所形成的。
• 如果在t年以前铅从没有同位素分馏的体 系中分离出来, 则
Pb T t 8 8 (2 0 4 ) a ( e e ) t 0 Pb 207 Pb • T t 5 5 (2 0 4 ) b ( e e ) t 0 Pb 137 .88 208 Pb T t 5 5 (2 0 4 ) c k ( e e ) t 0 Pb
• 正常铅——符合单阶段演化模式,能给 出有意义模式年龄的普通铅。 • 异常铅——不符合单阶段演化模式,模 式年龄无意义的普通铅。
– J型铅(异常铅)——模式年龄小于矿床 (或岩石)年龄。 – B型铅(异常铅)——模式年龄大于矿床 (或岩石)年龄。
铅同位素研究中使用的参数和 符号:
• t0=45.7108a a0=206Pb/204Pb • b0=207Pb/204Pb c0=208Pb/204Pb • =238U/204Pb V=235U/204Pb W=232Th/204Pb =238U/235U=137.88 K=W/ • 8=0.15512510-9/a (238U的衰变常数) 5=0.98485109/a(235U的衰变常数) 2=0.049475109/a(232Th 的衰变常数)
• a0=9.3070.003 b0=10.2940.003 c0=29.4760.009
• a=18.700 b=15.628 c=38.63
二、单阶段正常铅的同位素演化 Holmes-Houtermans模式:
• 普通铅年龄测定的条件:
– 1)地球最初是流体,而且是均一的; 2)当时U、Th和Pb是均匀分布的; 3)原始铅同位素组成到处都一样; 4)后来地球成为刚体,并且U/Pb比值出现 了区域性的异常; 5)在任何给定的地区, U/Pb比值的变化只 是由U到Pb的放射性衰变造成的; 6)在普通铅矿物(如方铅矿)形成时,铅 与U、Th分离开来,而且它的同位素组成从 此保以消去:
Pb (2 0 4 ) b T t 5 5 t 0 1 e e Pb [ ] 206 T t Pb 137 .88e 8 e8 (2 0 4 ) a t 0 Pb
207
• 上式在已知t0(或T)、a0、b0和样品比值的 情况下可以求得t(成矿或成岩)年龄。
1 e e m [ ] T t 137 . 88 e8 e8
• m是等时线的斜率。当t=0时,称为地球 年龄线,等时线通过地球原始铅同位素组 成点。
T 5
t 5
• 前述方程式是一个超越方程,不能用代 数方法来求解,可用作图或制表的办法 来求解,同样可以得到很好的精度。 • 求解模式年龄的步骤: • 用斜率公式,按一定的时间间隔代入到 斜率公式中的t,计算出相应的斜率值, 制成表格。 • 用样品的比值求出等时线的斜率,在用 插值法求出年龄值——模式年龄
Pb同位素
一、铅稳定同位素组成
• 铅有4种稳定同位素: • 204Pb、206Pb、207Pb、208Pb 204Pb尚未被发现有放射性母体,普遍被认为代 表原始铅。 • 206Pb、207Pb、208Pb都是由放射性母体产生的: • 238U206Pb+84He+6-+Q 235U207Pb+74He+4-+Q 232Th208Pb+64He+4-+Q
208
严格符合单阶段演化模式的矿床或岩石是必 较少的,有一些矿床接近于单阶段演化模式,如 与拉斑玄武岩有关的块状硫化物矿床、海底火山 喷气沉积矿床以及一些层控矿床等。
Stanton and Russell(1959)选定了9个整合型 矿床,他们认为这些矿床是地幔物质在没有受到 地壳物质污染的环境中,通过沉积作用形成的, 应该具有单阶段演化的特点。结果拟合出一条生 长线,=8.99。见下图。
Stacey-Krasters两阶段正常铅演化 • 该模式假定,普通铅的演化从地球形成时 (45.7×108a)开始直到37×108a前为第一演化阶 段,其238U/204Pb为7.19,232Th/204Pb为32.2l, Th/U为4.62。 • 大约在37×108a前,由于发生分离事件,正常 铅的演化进入第二阶段,即地壳阶段。 • 由于地壳比地幔富含铀和钍,所以第二阶段的 238U/204Pb为9.74,232Th/204Pb为37.19,Th/U为 3.78。 • 在上述两个阶段中,铅同位素都是在封闭的系 统内演化的。
两阶段年龄计算表
二 具有多阶段演化的异常铅 • 异常铅的特点: • (1) 铅同位素组成的变化一般很明显,而 且以富含放射成因铅为特征。 • (2) 在206Pb/204Pb—207Pb/204Pb和 206Pb/204Pb—208Pb/204Pb图上呈线性排列。 • (3) 采用单阶段演化模式所计算的模式 年龄与用其他方法测定的年龄是不一致 的,有时甚至是负值。
下表是单阶段铅等时线斜率与 模式年龄对照表:
计算出模式年龄后,将他代入下式,计算、W和k值:
Pb a0 204 8Pb t0 8t e e
206
Pb c 0 204 Pb w 2T 2t e e
Th W 99 . 28232 . 038 U 100 238 . 03
相关文档
最新文档