飞机升力与阻力详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行基础知识①升力与阻力详解(图文)
升力是怎样产生的
任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?
相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?
让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,
而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。
当飞机的机翼为对称形状,气流沿着机翼对称轴流动时,由于机翼两个表面的形状一样,因而气流速度一样,所产生的压力也一样,此时机翼不产生升力。但是当对称机翼以一定的倾斜角(称为攻角或迎角)在空气中运动时,就会出现与非对称机翼类似的流动现象,使得上下表面的压力不一致,从而也会产生升力。
飞机的阻力
凡是懂得物理知识的人都知道,飞机在飞行的过程中,机体上所受的力是平衡的。飞机的重力与飞机产生的升力平衡,而飞机的发动机的作用则是克服飞机所受的阻力,推动飞机前进,使得飞机相对于空气运动,从而产生升力。大家肯定要想,飞机发动机的功率那么大,难道飞机上所受的阻力有那么大吗?的确,飞机在高速飞行的同时,会因为不同原因受到非常大的阻力。从产生阻力的不同原因来说,飞机所受的阻力可以分为摩擦阻力、压差阻力、诱导阻力、干扰阻力、激波阻力等。
摩擦阻力
当两个物体相互滑动的时候,在两个物体上就会产生与运动方向相反的力,阻止两个物体的运动,这就是物体之间的摩擦阻力。当飞机在空气中飞行时,飞机也会受到空气的摩擦阻力,飞机的摩擦阻力是因为空气的粘性造成的。当气流流过物体时,由于粘性,空气微团与物体表面发生摩擦,阻滞了气流的流动,这就是物体对空气的摩擦阻力,反之,空气对物体也给予了摩擦阻力。摩擦阻力是在边界层中产生的。所谓边界层就是紧贴物体表面,流速由外部流体的自由流速逐渐降低到零的那一层薄薄的空气层。边界层中气流的流动情况是不同的。一般机翼大约在最大厚度之前,边界层的气流各层不相混杂而成层地流动,这部分叫做“层流边界层”。在这之后,气流的活动转变为杂乱无章,并且出现了漩涡和横向流动,这部分叫做“紊流边界层”。从“层流边界层”转变为“紊流边界层”的那一点叫做“转捩点”。
边界层中的摩擦阻力大小与流动情况有很大关系,从大量的实践证明,对于层流流动,物体表面受到的摩擦阻力小,而紊流流动对物面的摩擦阻力大的多。在普通的机翼表面,既有层流边界层,又有紊流边界层,所以为了减小摩擦阻力,人们就千方百计地使物体表面的流动保持层流状态,例如通过在机翼表面上钻孔,吸除紊流边界层,这样就可以达到减阻的目的。另外,提高加工精度,使层流边界层尽量的长,延缓转捩点的出现,甚至抑制它的出
现,也可以起到很好的效果。这些都是飞机设计中的层流机翼的概念。物体表面受到的摩擦阻力还跟物体的表面积有关系,面积越大,阻力也越大。因此在人们试图减小飞行阻力的时候,减小飞机的尾翼或者机翼的面积也是一个有效的方法。当然前提条件是保证产生足够的升力和控制力。例如使用推力矢量技术的飞机,由于有了发动机推力直接用于飞行控制,这样飞机的尾翼就可以减小或者去除,这样就可以大大的减小摩擦阻力。
诱导阻力
机翼同一般物体相似,也有摩擦阻力和压差阻力。对于机翼而言,这二者合称“翼型阻力”。机翼上除翼型阻力外,还有“诱导阻力”(又叫“感应阻力”)。这是机翼所独有的一种阻力。因为这种阻力是伴随着机翼上举力的产生而产生的。也许可以说它是为了产生举力而付出的一种代价。
如果有一架飞机以某一正迎角a作水平飞行,它的机翼上面的压强将降低,而下面的压强将增高,加上空气摩擦力,于是产生了举力Y。这是气流作用到机翼上的力,根据作用和反作用定律,必然有一个反作用力即负举刀力(-Y),由机翼作用到气流上,它的方向向下,所以使气流向下转折一个角度a,这一角度叫“下洗角”。随着下洗角的出现,同时出现了气流向下的速度。这一速度叫做“下洗速(w)”。下洗的存在还可由风洞实验观察出来。
由实验可知:
当飞机飞行时,下翼面压强大、上翼面压强小。由于翼展的长度是有限的,所以上下翼面的压强差使得气流从下翼面绕过两端翼尖,向上翼面流动。当气流绕流过翼尖时,在翼尖那儿不断形成旋涡。旋涡就是旋转的空气团。随着飞机向前方飞行,旋涡就从翼尖向后方流动,并产生了向下的下洗速(w)。下洗速在两个翼尖处最大,向中心逐渐减小,在中心处减到最小。这是因为旋涡可以诱导四周的空气随之旋转,而这又是由于空气粘性所起的作用。空气在旋转时,越靠内圈,旋转得越快,越靠外圈,旋转得越慢。因此,离翼尖越远,气流垂直向下的下洗速就越小。
图示的就是某一个翼剖面上的下洗速度。它与原来相对速度v组成了合速度u 。u与v 的夹角就是下洗角a1。下洗角使得原来的冲角a减小了。根据举力Y原来的函义,它应与相对速度v垂直,可是气流流过机翼以后,由于下洗速w的作用,使v的方向改变,向下转折一个下洗角a1,而成为u。因此,举力Y也应当偏转一角度a1,而与u垂直成为y 1。此处下洗角很小,因而y与y1一般可看成相等。回这时飞机仍沿原来v的方向前进。y1既不同原来的速度v垂直,必然在其上有一投影为Q;。它的方向与飞机飞行方向相反,所起的作用是阻拦飞机的前进。实际上是一种阻力。这种阻力是由举力的诱导而产生的,因此叫做“诱导阻力”。它是由于气流下洗使原来的举力偏转而引起的附加阻力,并不包含在翼型阻