龙格库塔法RKF45Matlab实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙格库塔法RKF45的Matlab实现
2007-08-16 14:03:32| 分类:MatLab/Maple/Mat|字号订阅
4阶5级龙格库塔法用于解一阶微分方程(组),对于高阶微分方程,可以将其转换为一阶微分方程组求解。原程序由John.H.Mathews编写(数值方法matlab版),但只能解微分方程,不能解微分方程组。由LiuLiu@uestc修改,使之能够解微分方程组。该程序精度比matlab自带的ode45更高。
rkf45.m:
function [Rt Rx]=rkf45(f,tspan,ya,m,tol)
% Input:
% - f function column vector
% - tspan[a,b] left & right point of [a,b]
% - ya initial value column vector
% -m initial guess for number of steps
% -tol tolerance
% Output:
% - Rt solution: vector of abscissas
% - Rx solution: vector of ordinates
% Program by John.Mathews, improved by liuliu@uestc
if length(tspan)~=2
error('length of vector tspan must be 2.');
end
if ~isnumeric(tspan)
error('TSPAN should be a vector of integration steps.');
end
if ~isnumeric(ya)
error('Ya should be a vector of initial conditions.');
end
h = diff(tspan);
if any(sign(h(1))*h <= 0)
error('Entries of TSPAN are not in order.') ;
end
a=tspan(1);
b=tspan(2);
ya=ya(:);
a2 = 1/4; b2 = 1/4; a3 = 3/8; b3 = 3/32; c3 = 9/32; a4 = 12/13;
b4 = 1932/2197; c4 = -7200/2197; d4 = 7296/2197; a5 = 1;
b5 = 439/216; c5 = -8; d5 = 3680/513; e5 = -845/4104; a6 = 1/2;
b6 = -8/27; c6 = 2; d6 = -3544/2565; e6 = 1859/4104; f6 = -11/40;
r1 = 1/360; r3 = -128/4275; r4 = -2197/75240; r5 = 1/50;
r6 = 2/55; n1 = 25/216; n3 = 1408/2565; n4 = 2197/4104; n5 = -1/5;
big = 1e15;
h = (b-a)/m;
hmin = h/64;% 步长自适应范围下限
hmax = 64*h;% 步长自适应范围上限
max1 = 200;% 迭代次数上限
Y(1,:) = ya;
T(1) = a;
j = 1;
% tj = T(1);
br = b - 0.00001*abs(b);
while (T(j)
if ((T(j)+h)>br), h = b - T(j); end
%caculate values of k1...k6,y1...y6
tj = T(j);
yj = Y(j,:);
y1 = yj;
k1 = h*feval(f,tj,y1);
y2 = yj+b2*k1;
if big k2 = h*feval(f,tj+a2*h,y2); y3 = yj+b3*k1+c3*k2; if big k3 = h*feval(f,tj+a3*h,y3); y4 = yj+b4*k1+c4*k2+d4*k3; if big k4 = h*feval(f,tj+a4*h,y4); y5 = yj+b5*k1+c5.*k2+d5*k3+e5*k4; if big y6 = yj+b6*k1+c6.*k2+d6*k3+e6*k4+f6*k5; if big k6 = h*feval(f,tj+a6*h,y6); err = abs(r1*k1+r3*k3+r4*k4+r5*k5+r6*k6); ynew = yj+n1*k1+n3*k3+n4*k4+n5*k5; % error and step size control if ( (err Y(j+1,:) = ynew; if ((tj+h)>br), T(j+1) = b; else T(j+1) = tj + h; end j = j+1; tj = T(j); end if (max(err)==0), s = 0; else s1 = 0.84*(tol.*h./err).^(0.25);% 最佳步长值 s=min(s1); end if ((s<0.75)&(h>2*hmin)), h = h/2; end if ((s>1.50)&(2*h if ( (big end % [Rt Rx]=[T' Y]; Rt=T'; Rx=Y; 使用方法: 首先编写方程(组)文件(注意与ode45不同,这儿方程组为1Xn数组: function dx= fun(t,x) dx=zeros(1,2); dx(1)=x(1)+x(2)*2+0*t; dx(2)=3*x(1)+x(2)*2+0*t; 然后使用: [Rt,Rx]=rkf45(@fun,[0,0.2],[6;4],100,1e-7)