核酶的22年

核酶的22年
核酶的22年

I型内含子核酶研究进展

型内含子核酶研究进展* 李志杰 张 翼 ** (武汉大学生命科学学院,武汉430072) 摘要 型内含子核酶作为最早被发现的RNA 催化剂,在过去20年里得到了深入研究.相关研究成果使人们在RNA 的生物学功能、催化特征、结构与折叠特征等方面的认识有了革命性更新.回顾了 型内含子核酶研究的主要进展,重点对近年来在 型内含子核酶的结构和折叠方面所取得的重要成果进行了介绍,分析和总结.关键词 型内含子,核酶,催化,结构,折叠学科分类号 Q71 在 型内含子核酶被发现之前,蛋白质一直被认为是唯一具有催化功能的生物大分子.1982年,Krug er 等[1]报道了在没有蛋白质存在的条件下,四膜虫(T etr ahymena ther mop hilia )26S rRNA 的前体可以在体外自我剪接(autoex cision 或self splicing ),它所含的 型内含子RNA 可以催化核酸主链上的磷酸二酯键断裂和连接反应.在随后的几年中,更多的实验事实证明四膜虫 型内含子具有和蛋白质酶相似的催化能力[2].几类其他的RNA 也相继被证明具有催化活性.为了与蛋白质酶类相区别,化学本质为RNA 的具有催化功能的生物大分子被统称为核酶(ribozyme). 除了 型内含子核酶之外,过去十几年里陆续发现的核酶主要包括:锤头状核酶(hammerhead ribozyme),发卡状核酶(hairpin ribozyme),HDV 核酶(hepatitis delta virus ribozyme),Neurosp ora v arkud satellite 核酶,RNase P 核酶,以及 型内含子核酶等[3]. 近两年来,人们又发现两种重要的有催化活性的RNA:一种是真核生物剪接体所包含的U2和U 6RNA [4],另一种是核糖体大亚基rRNA [5].核糖体大亚基rRNA 是目前发现最大的核酶,它所具有的肽键转移酶活性在已经发现的各种核酶中也显得很特殊,因为无论其他核酶所催化的反应有多复杂,其本质都是磷酸酯键转移反应.另外,人们通过体外演化(in vitro evolution)的方法得到了一些可以催化其他生化反应的人工核酶. 1 型内含子核酶的体外催化 1 1 天然 型内含子核酶所催化的反应 型内含子核酶所催化的典型反应是包括两步 磷酸酯键转移反应的RNA 剪接反应.在这个反应 中需要镁离子、外源鸟苷或其磷酸化衍生物(GM P 、GDP 、GTP).首先,一个外源鸟苷的3!羟基攻击5!剪接位点的磷原子,并与内含子5!的第一个核苷酸形成3!,5!磷酸二酯键;然后,5!外显子的3!羟基攻击3!剪接位点的磷原子,导致内含子的释放和外显子的连接(图1).这个反应机制是由体外剪接研究得到的,实验证明此反应中间产物在体内也存在,表明 型内含子在体内的剪接是通过同样的反应机制.剪接反应释放出5!端连有外源G 的内含子是 型内含子自剪接反应的显著特征 [6] . Fig 1 Self splicing mechanism of group introns [6] 图1 型内含子的自剪接反应[6] 圆圈? #? 所在处为剪接位点. *国家自然科学基金资助项目(30170213). **通讯联系人.武汉大学生命科学学院生物技术系. Tel:027 ********,Fax:027 ******** E mail:yi z hang@https://www.360docs.net/doc/a615939640.html, 收稿日期:2002 11 20,接受日期:2002 12 28

核酶的发现与应用

U pA G pU 5'外显子3'外显子 内含子 核酶的研究进展 摘要: 80年代初,由美国科学家Cech 和Altman 发现了核酶,随着人类基因工程研究的深入,工作者和基础科学研究人员开始注意到核酶在各方面的应用潜力。 关键词: 概念 分类 剪接机制 反义核酸技术 医学上的应用 应用实例 技术问题 核酶的概念 核酶一词用于描述具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一R NA 分子中的某些部位。核酶的功能很多,有的能够切割RNA, 有的能够切割DN A, 有些还具有RNA 连接酶、磷酸酶等活性。与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。 核酶的分类 剪接型核酶:这类核酶具有核酸内切酶和连接酶两种活性。、作用机制:通过既剪又接的方式除去内含子 。需要鸟苷酸或鸟苷及镁离子参与 剪接机制: I 型内含子的结构特点: 1、拼接点序列为5’U... (3) 2、中部核心结构 3、内部引导序列 pGpA G pU 3'U 5' O H

4、剪接通过转酯反应进行 剪切型核酶:这类核酶催化自身或者异体RNA的切割,相当于核酸内切酶。 这类RNA进行催化反应时只切不接。类型:1) 自体催化剪切型2) 异体催化剪切型。 特点:在Mg 2+ 或其他二价金属离子存在下,在特定的位点,自我剪切,产生5‘-OH 和2’, 3‘-环磷酸二酯末端。 核酶的应用 核酶是在对多种植物病毒卫星RNA及类病毒RNA的自我剪接研究中发现的,数量较少,常见于rRNA的内含子。 核酶的具体作用主要有: 1.核苷酸转移作用。 2.水解反应,即磷酸二酯酶作用。 3.磷酸转移反应,类似磷酸转移酶作用。 4.脱磷酸作用,即酸性磷酸酶作用。 RNA内切反应,即RNA限制性内切酶作用。核酸内切酶可以催化水解多核苷酸内部的磷酸二酯键。有些核酸内切酶仅水解5′磷酸二酯键,把磷酸基团留在3′位置上,称为5′-内切酶;而有些仅水解3′-磷酸二酯键,把磷酸基团留在5′位置上,称为3′-内切酶。能专一性地识别并水解双链DNA上的特异核苷酸顺序,称为限制性核酸内切酶。当外源DNA侵入细菌后,限制性内切酶可将其水解切成片段,从而限制了外源DNA在细菌细胞内的表达,而细菌本身的D NA由于在该特异核苷酸顺序处被甲基化酶修饰,不被水解,从而得到保护。限制性核酸内切酶可被分成三种类型。Ⅰ型和Ⅲ型限制酶水解DNA需要消耗ATP,全酶中的部分亚基有通过在特殊碱基上补加甲基基团对DNA进行化学修饰的活性。Ⅱ型限制酶水解DNA不需要ATP也不以甲基化或其它方式修饰DNA,能在所识别的特殊核苷酸顺序内或附近切割DNA。因此,被广泛用于DNA分子克隆和序列测定。

核酶的发现与基本内容

核酶的发现与基本内容 什么是核酶 核酶(ribozyme)是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA 序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。 核酶的发现 1981年,Thomas Cech和他的同事在研究四膜虫的26S rRNA前体加工去除基因内含子时获得一个惊奇的发现∶内含子的切除反应发生在仅含有核苷酸和纯化的26S rRNA前体而不含有任何蛋白质催化剂的溶液中,可能的解释只能是:内含子切除是由26S rRNA前体自身催化的,而不是蛋白质。 为了证明这一发现,他们将编码26S rRNA前体DNA克隆到细菌中并且在无细胞系统中转录成26S rRNA前体分子。结果发现这种人工制备的26S rRNA前体分子在没有任何蛋白质催化剂存在的情况下,切除了前体分子中的内含子。这种现象称为自我剪接(self-splicing),这是人类第一次发现RNA具有催化化学反应的活性,具有这种催化活性的RNA称为核酶。 这一发现之后不久,在酵母和真菌的线粒体mRNA和tRNA前体加工、叶绿体的tRNA 和rRNA前体加工、某些细菌病毒的mRNA前体加工中都发现了自我剪接现象。 Thomas Cech 和S.Altman因发现了核酶而获得1989年诺贝尔化学奖。 (内含子:断裂基因的非编码区,可被转录,但在mRNA加工过程中被剪切掉。前体:修饰加工前,刚刚转录出来的RNA) 核酶的特点 核酶的功能很多,有的能够切割RNA,有的能够切割DNA,有的还具有RNA连接酶、磷酸酶等活性。与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。 大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。

酶的应用与发展论文

酶的应用与发展论文集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

摘要:生物工程是现代科技的一项高新技术,是当今最有发展前景的学科之一。而酶工程是生物工程的重要组成部分,酶作为生物催化剂,它广泛应用于食品、酿造、淀粉糖、制革、纺织、印刷、医药、石油化工等20多个领域。它可提高产品品质、改进产品工艺、降低劳动强度、节约原料和能源、保护环境,并产生巨大的经济效益和社会效益。关键字:酶工程酶的固定化酶的应用前景 从世界范围而言,酶制剂总量的55%是水解酶,主要用于焙烤食品、酿酒、淀粉加工、酒精和纺织等工业;35%是蛋白酶,主要用于洗涤剂、制革和乳品工业;其余是药用酶制剂、试剂级酶制剂和工具酶。 1酶工程 酶工程技术是利用酶和细胞或细胞器所具有的催化功能来生产人类所需产品的技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器。 酶的生产 酶的生产是各种生物技术优化与组合的过程,分为生物提取法、生物合成法和化学合成法三种,其中生物提取法是最早采用而沿用至今的方法,它是指采用各种提取、分离、纯化技术从动物、植物、器官、细胞或微生物细胞中将酶提取出来;生物合成法是20世纪60年代以来酶生产的主要方法,是指利用微生物细胞、植物细胞或动物细胞的生命活动而获得人们所需酶的技术过程;而化学合成法因其成本高,且只能合成那些已经弄清楚化学结构的酶,所以难以进行工业化生产,至今仍处在实验室研究的阶段。

酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节。其提纯手段一般是依据酶的分析大小、形状、电荷性质、溶解度、专一结合位点等性质而建立。要得到纯酶,一般需要将各种方法联合使用。最常用的纯化方法有根据溶解度特性的沉淀法;根据电荷极性的离子交换层析、等电点聚焦电泳等;根据大小或重量的离心分离、透析、超滤等;根据亲和部位的亲和层析、共价层析等。 酶的固定化技术 酶的固定化技术是把从生物体内提取出来的酶,用人工方法固定在载体上,这是是酶工程的核心,它使酶工程提高到一个新水平。自从1969年世界上第一次使用固相酶技术以来,至今已有40多年的历史。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以原则上能在批量操作或连续操作中重复使用酶。 固定化酶具有如下性质:酶的稳定性提高;最适pH值改变;酶的活性和催化底物有所变化;最适温度有所提高,对抑制剂和蛋白酶的敏感性降低;反应完成后可通过简单的方法回收,且酶活力降低不多,这样可使酶重复使用[3]。同时由于酶没有游离到产品中,便于产品的分离和纯化;实现批量或连续操作模型的可能,可进行于产业化、连续化、自动化生产。 2酶的应用现状 在食品业的应用

核糖体与核酶知识

1. 核糖体(riboso me) 核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。 按核糖体存在的部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。按存在的生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。原核细胞的核糖体较小, 沉降系数为70S,相对分子质量为2.5x103 kDa,由50S和30S两个亚基组成; 而真核细胞的核糖体体积较大, 沉降系数是80S,相对分子质量为3.9~4.5x103 kDa, 由60S和40S两个亚基组成。 在真核细胞中, 核糖体进行蛋白质合成时,既可以游离在细胞质中, 称为游离核糖体, 也可以附着在内质网的表面, 称为膜旁核糖体或附着核糖体。真核细胞含有较多的核糖体, 每个细胞平均有106~107个, 而原核细胞中核糖体较少每个细胞平均只有15×102~18×103个。 典型的原核生物大肠杆菌核糖体是由50S大亚基和30S小亚基组成的。在完整的核糖体中,rRNA约占2/3, 蛋白质约为1/3。50S大亚基含有34种不同的蛋白质和两种RNA分子,相对分子质量大的rRNA的沉降系数为23S,相对分子质量小的rRNA为5S。30S小亚基含有21种蛋白质和一个16S的rRNA分子。 真核细胞核糖体的沉降系数为80S,大亚基为60S,小亚基为40S。在大亚基中,有大约49种蛋白质,另外有三种rRNA∶28S rRNA、5S rRNA 和5.8S rRNA。小亚基含有大约33种蛋白质,一种18S的rRNA。 2. 基因扩增(gene a mp li fica tion) 细胞内选择性复制DNA, 产生大量的拷贝。如两栖类卵母细胞在发育的早期,rRNA基因的数量扩增到1000多倍。基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码28S、18S和5.8S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个,而在相同生物的其它类型细胞中,这些rRNA基因的拷贝数只有几百个。卵母细胞中有如此众多的rRNA基因拷贝,为卵细胞在受精后的发育过程中合成大量核糖体创造了条件。 至于卵母细胞中rRNA基因扩增的机制,有人认为可能是通过从染色体上分离出来的环状DNA分子,这种环状DNA中含有rRNA基因,但是第一个含有rRNA基因的环状DNA是如何形成的尚不清楚。由于环状DNA 能够通过滚环复制(rolling circle replication)的方式进行复制,因而能够产生大量的rRNA基因。 3. 5S rRNA基因(5S rRNAgene)

超氧化物歧化酶(SOD)的发现及其应用

超氧化物歧化酶(SOD)的发现及其应用 早在1930年,Keilin和Mann就发现了SOD,不过,当时他们仅认为是一种蛋白质,并命名为血铜蛋白。直到1969年,McCord和Fridovich在研究对黄嘌呤氧化酶时,发现SOD具有酶的活性,并正式把它命名为superoxidedismutse,中文名即为超氧化物歧化酶。 超氧化物歧化酶 一、超氧化物歧化酶(SOD)分类及作用 根据分子中所含的金属辅基不同,SOD可分为Cu,Zn-SOD,Fe-SOD,Mn-SOD 和Ni-SOD四类。其中Cu,Zn-SOD主要存在于真核细胞的细胞浆中,如猪血、鸭血、猪肝等动物血液和内脏器官等组织中;Mn-SOD存在于真核细胞的线粒体、细菌中;Fe-SOD只存在于原核细胞中,如海藻中的螺旋藻、铁钉叶等;Ni-SOD 是最近发现只存在于某些极少数原核细菌中。 SOD是机体内天然存在的超氧自由基清除因子,它可以把有害的超氧自由基转化为过氧化氢和氧气,生成的过氧化氢会被过氧化氢酶(CAT)和过氧化物酶(POD)分解为完全无害的水。因而SOD是机体内防止自由基损伤的第一道防线,,是生物体内最重要的抗氧化酶。SOD作为机体内最有效、最重要的抗氧化酶之一,能有效清除老年机体代谢过程中所产生的超氧自由基,延缓衰老。 二、自由基 自由基是一类非常活跃的化学物质,是个有不成对(奇数)电子的原子或原子团。其中最重要的是超氧自由基,它可聚集体表、心脏、血管、肝脏和脑细胞中。如果沉积在血管壁上,会使血管发生纤维性病变,导致动脉管硬化,高血压,心肌梗塞;沉积在脑细胞时,会引起老年人神经官能不全,导致记忆、智力障碍以及抑郁症,甚至老年性痴呆等,是造成人类衰老和疾病的元凶。而在衰老的皮肤和脑中存在的脂褐素和蜡样质,可使皮肤变黑和粗糙,这两种物质也是由自由

RNA酶的发现

RNA酶的发现 “酶是细胞内高效和高度专一的生物催化剂,酶的本质是蛋白质”,在生物化学及有关教科书中对酶都是这样叙述的。毫无疑问,这种说法是正确的,因为已研究的数千种酶,它们无一例外都是由氨基酸组成的蛋白质。然而,有一个实验事实引起了科学家的关注,许多真核生物的DNA转录成mRNA 时,其原始转录产物的分子量比转译成相应蛋白质的mRNA的分子量要大得多,说明DNA的原始转录产物(亦称mRNA前体)是通过某种加工后才成为成熟的mRNA的,这种成熟的mRNA才能转译成蛋白质。那么这种后加工过程是怎样进行的呢?科学家们发现在mRNA前体分子中总是有一些不连续的小片段核苷酸序列,称居间序列(IVS),在mRNA成熟过程中,它们被切除了,是否是这些IVS行使剪切mRNA前体转变成熟的mRNA的功能?之后,在真核细胞DNA转录成rRNA前体和tRNA前体时都发现了它们在成熟过程中切除了部分序列,因此如何证明这种“自我剪接”现象成为众多科学家关注的对象。 1981年,美国科罗拉多大学CechT.R.实验室用一种原生动物四膜虫的26S rRNA前体做实验时发现,在rRNA成熟过程中确实剪下了一个IVS序列, 长度为413个碱基,他们把它称为L 19RNA,就是这个L 19 RNA可剪切rRNA前体 使它成为成熟的rRNA,因此L 19 RNA具有类似于酶的催化作用。经他们反复研究后证实,在这一剪接过程中确实没有酶或其他蛋白质的参与,也不需要能量物质ATP或GTP,完全是rRNA前体自身的催化反应,由于这是一种核糖核酸催化核糖核酸的反应,因此他们把具有催化功能系列的IVS称谓核酶(Ribozyme)。这一惊人的发现不久被一系列的实验所证实,为此年轻科学家Cech于1989的获得诺贝尔化学奖。 随着研究的不断深入,科学家们发现这种由核糖核酸组成的核酶的催化性质与由氨基酸组成的蛋白类酶具有十分相似之处,例如核酶也是高度专一 的,四膜虫中L 19RNA只催化底物多聚核糖核酸,对五聚脱氧胞苷酸(dpC 5 )或 五聚脱氧腺苷酸(dpA 5)不但没有活性而且还是L 19 RNA的抑制剂。由此可见, 酶与核酶除了它们的一级结构组成不同外,作为生物催化剂的催化特征与作用特点是相同的。 迄今为至,科学家已发现了7类自然界存在的核酶,即第一类内含子、第二类内含子、核糖核酸酶P的RNA亚基、锤头型核酶、发夹型核酶、肝炎

核酶的发现与应用

姓名:乔艳红学号:1241410052 年级:2010级班级:一班 学院:生命科学学院时间:2011年11月9日

核酶的发现与应用 一、核酶的发现 1981年,Thomas Cech和他的同事在研究四膜虫的26S rRNA前体加工去除基因内含子时获得一个惊奇的发现∶内含子的切除反应发生在仅含有核苷酸和纯化的26S rRNA前体而不含有任何蛋白质催化剂的溶液中,可能的解释只能是:内含子切除是由26S rRNA前体自身催化的,而不是蛋白质。为了证明这一发现,他们将编码26S rRNA前体DNA克隆到细菌中并且在无细胞系统中转录成26S rRNA前体分子。结果发现这种人工制备的26S rRNA前体分子在没有任何蛋白质催化剂存在的情况下,切除 了前体分子中的内含子。这种 现象称为自我剪接 (self-splicing),这是人类第一 次发现RNA具有催化化学反 应的活性,具有这种催化活性 的RNA称为核酶。这一发现 之后不久,在酵母和真菌的线 粒体mRNA和tRNA前体加 工、叶绿体的tRNA 和rRNA前体加工、某些细 菌病毒的mRNA前体加工中都发现了自我剪接现象。Thomas Cech 因发现了核酶而获得1989年诺贝尔化学奖。核酶的发现在生命科学中具有重要意义,在进化上使我们有理由推测早期遗传信息和遗传信息功能体现者是一体的,只是在进化的某一进程中蛋白质和核酸分别执行不同的功能。核酶的发现为临床的基因治疗提供了一种手段,具有重要的应用前景。 二、核酶的概念 核酶一词用于描述具有催化活性的RNA, 即化 学本质是核糖核酸(RNA), 却具有酶的催化功 能。核酶的作用底物可以是不同的分子, 有些作 用底物就是同一RNA分子中的某些部位。核酶 的功能很多,有的能够切割RNA, 有的能够切割 DNA, 有些还具有RNA 连接酶、磷酸酶等活性。 与蛋白质酶相比,核酶的催化效率较低,是一种 较为原始的催化酶。

核酶的发现与应用

核酶的发现与应用 一、核酶的发现 1968年Francis Crick在他的论文“基因密码的起源”一文中提到“可能第一个酶是具有复制能力的RNA”时,没有人予以注意。 20年后,在1987年第52届冷泉港定量生物学国际讨论会上Alan Weiner做会议总结时又重复了20年前Francis Crick的话,会议注意力已集中到最近发现的具有酶活性的RNA分子上。 1981年,Cech发现四膜虫rRNA的前体在没有蛋白质的情况下能专一地催化寡聚核苷酸底物的切割与连接,具有分子内催化的活性。 1983年,Altman等发现大肠杆菌RNaseP的蛋白质部分除去后,在体外高浓度镁离子存在下,与留下的RNA部分(M1 RNA)具有与全酶

相同的催化活性。 1986年,Cech又证实rRNA前体的内含子能催化分子间反应。 核酶的发现对于所有酶都是蛋白质的传统观念提出了挑战。1989年,核酶的发现者T.Cech和S.Ahman被授予诺贝尔化学奖。 二、核酶的应用 (一)应用于生命起源的研究 体内选择技术的应用已经找到了一些催化基本生化反应(如RNA 剪切、连接、合成以及肽键合成等)的核酶,这些结果支持了在蛋白质产生以前核酶可能参与催化最初的新陈代谢的设想。 (二)在医学领域中的应用 1、通过识别特定位点而抑制目标基因的表达,抑制效率高,专一性强。 2、免疫源性低,很少引起免疫反应。 3、针对锤头核酶而言,催化结构域小,既可作为转基因表达产物,也可以直接以人工合成的寡核苷酸形式在体内转运。 4、用于RNA的修复,核酶、反义核酸和小分子RNA(snRNA)是RNA修复的常用工具。核酶是天然的具有催化能力的RNA分子,能特异性地催化RNA剪接。经过基因工程改造的核酶,可以位点特异性地切割任意给定的RNA分子。 5、核酶抗肝炎病毒的研究:目前人们已进行了核酶抗甲型肝炎病毒(HAV)、乙型肝炎病毒( HBV)、丙型肝炎病毒( HCV)以及HDV作用的研究。人工设计核酶多为锤头状结构,少部分是采用发夹状核酶。 6、抗人类免疫缺陷病毒Ⅰ型(HIV-Ⅰ)核酶。1998年,美国加利福尼

酶的应用与发展论文

摘要:生物工程是现代科技的一项高新技术,是当今最有发展前景的学科之一。而酶工程是生物工程的重要组成部分,酶作为生物催化剂,它广泛应用于食品、酿造、淀粉糖、制革、纺织、印刷、医药、石油化工等20多个领域。它可提高产品品质、改进产品工艺、降低劳动强度、节约原料和能源、保护环境,并产生巨大的经济效益和社会效益。 关键字:酶工程酶的固定化酶的应用前景 从世界范围而言,酶制剂总量的55%是水解酶,主要用于焙烤食品、酿酒、淀粉加工、酒精和纺织等工业;35%是蛋白酶,主要用于洗涤剂、制革和乳品工业;其余是药用酶制剂、试剂级酶制剂和工具酶。 1酶工程 酶工程技术是利用酶和细胞或细胞器所具有的催化功能来生产人类所需产品的技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器。 1.1酶的生产 酶的生产是各种生物技术优化与组合的过程,分为生物提取法、生物合成法和化学合成法三种,其中生物提取法是最早采用而沿用至今的方法,它是指采用各种提取、分离、纯化技术从动物、植物、器官、细胞或微生物细胞中将酶提取出来;生物合成法是20世纪60年代以来酶生产的主要方法,是指利用微生物细胞、植物细胞或动物细胞的生命活动而获得人们所需酶的技术过程;而化学合成法因其

成本高,且只能合成那些已经弄清楚化学结构的酶,所以难以进行工业化生产,至今仍处在实验室研究的阶段。 1.2酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节。其提纯手段一般是依据酶的分析大小、形状、电荷性质、溶解度、专一结合位点等性质而建立。要得到纯酶,一般需要将各种方法联合使用。最常用的纯化方法有根据溶解度特性的沉淀法;根据电荷极性的离子交换层析、等电点聚焦电泳等;根据大小或重量的离心分离、透析、超滤等;根据亲和部位的亲和层析、共价层析等。 1.3酶的固定化技术 酶的固定化技术是把从生物体内提取出来的酶,用人工方法固定在载体上,这是是酶工程的核心,它使酶工程提高到一个新水平。自从1969年世界上第一次使用固相酶技术以来,至今已有40多年的历史。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以原则上能在批量操作或连续操作中重复使用酶。 固定化酶具有如下性质:酶的稳定性提高;最适pH值改变;酶的活性和催化底物有所变化;最适温度有所提高,对抑制剂和蛋白酶的敏感性降低;反应完成后可通过简单的方法回收,且酶活力降低不多,这样可使酶重复使用[3]。同时由于酶没有游离到产品中,便于产品的

RNA酶的发现

RNA 酶的发现 “酶是细胞内高效和高度专一的生物催化剂,酶的本质是蛋白质”,在生物化学及有关教科书中对酶都是这样叙述的。毫无疑问,这种说法是正确的,因为已研究的数千种酶,它们无一例外都是由氨基酸组成的蛋白质。然而,有一个实验事实引起了科学家的关注,许多真核生物的DNA转录成mRNA 时,其原始转录产物的分子量比转译成相应蛋白质的mRNA勺分子量要大得多,说明DNA勺原始转录产物(亦称mRNA前体)是通过某种加工后才成为成熟的mRNA勺,这种成熟的mRNA才能转译成蛋白质。那么这种后加工过程是怎样进行的呢?科学家们发现在mRNA前体分子中总是有一些不连续的小片段核苷酸序列,称居间序列(IVS),在mRNA?熟过程中,它们被切除了,是否是这些IVS行使剪切mRN厕体转变成熟的mRNA勺功能?之后,在真核细胞DNA专录成rRNA前体和tRNA前体时都发现了它们在成熟过程中切除了部分序列,因此如何证明这种“自我剪接”现象成为众多科学家关注的对象。 1981年,美国科罗拉多大学CechT.R.实验室用一种原生动物四膜虫的26S rRNA前体做实验时发现,在rRNA成熟过程中确实剪下了一个IVS序列,长度为413个碱基,他们把它称为L I9RNA就是这个L I9RNA可剪切rRNA前体使它成为成熟的rRNA因此L19RNA具有类似于酶的催化作用。经他们反复研究后证实,在这一剪接过程中确实没有酶或其他蛋白质的参与,也不需要能量物质ATP或GTP 完全是rRNA前体自身的催化反应,由于这是一种核糖核酸催化核糖核酸的反应,因此他们把具有催化功能系列的IVS 称谓核酶(Ribozyme)。这一惊人的发现不久被一系列的实验所证实,为此年轻科学家Cech于1989的获得诺贝尔化学奖。 随着研究的不断深入,科学家们发现这种由核糖核酸组成的核酶的催化性质与由氨基酸组成的蛋白类酶具有十分相似之处,例如核酶也是高度专一的,四膜虫中L19RNA只催化底物多聚核糖核酸,对五聚脱氧胞苷酸(dpC5)或五聚脱氧腺苷酸(dpAJ不但没有活性而且还是L19RNA的抑制剂。由此可见,酶与核酶除了它们的一级结构组成不同外,作为生物催化剂的催化特征与作用特点是相同的。 迄今为至,科学家已发现了7 类自然界存在的核酶,即第一类内含子、第二类内含子、核糖核酸酶P的RNA亚基、锤头型核酶、发夹型核酶、肝炎 6病毒核酶和VS核酶,前3种常含数百个核苷酸,因此称大分子核酶,后4 种含

第六章核糖体和核酶

1. 发现核糖体及核糖体功能鉴定的两个关键技术是什么? 答: 核糖体最早是Albert Claude于1930s后期用暗视野显微镜观察细胞的匀浆物时发现的,当时称为微体(Microsomes),直到1950s中期,George Palade在电子显微镜下观察到这种颗粒的存在。当时George Palade和他的同事研究了多种生物的细胞,发现细胞质中有类似的颗粒存在,尤其在进行蛋白质合成的细胞中特别多。后来Philip Siekevitz用亚细胞组份分离技术分离了这种颗粒,并发现这些颗粒总是伴随内质网微粒体一起沉积。化学分析揭示,这种微粒富含核苷酸,随之命名为ribosome,主要成分是核糖体RNA(rRNA),约占60%、蛋白质(r蛋白质)约占40%。核糖体的蛋白质合成功能是通过放射性标记实验发现的。将细胞与放射性标记的氨基酸短暂接触后进行匀浆,然后分级分离,发现在微粒体部分有大量新合成的放射性标记的蛋白质。后将微粒体部分进一步分离,得到核糖体和膜微粒,这一实验结果表明核糖体与蛋白质合成有关。两个关键技术是亚细胞组份分离技术和放射性标记技术。 2.说明人体单倍体染色体组中四种rRNA基因的组成、排列方式和拷贝数。答: 在人基因组的四种rRNA基因中,18S、5.8S和28S rRNA基因是串联在一起的,每个基因被间隔区隔开,5S的rRNA基因则是编码在另一条染色体上。前3个基因组成一组,分布在人的13、14、15、21、22 等5条染色体上。在间期核中,所有这5条染色体rRNA基因区域,转录时聚集在一起,形成一个核仁。在人体单倍体染色体组中,每组rRNA基因有200个拷贝。每一拷贝为一个rDNA转录单位。这3个基因是纵向串联排列在核仁组织者的DNA上。真核细胞核糖体的5S rRNA基因则是独立存在于一个或几个染色体上,拷贝数达几千个。在人的细胞中,该基因的拷贝有24000个之多,它们串联排列在1号染色体接近末端处。 3.根据3H标记的尿嘧啶和放线菌素D研究人的培养细胞前体rRNA的合成,推测出前体rRNA的加工过程,请问3H标记的尿嘧啶和放线菌素D各起什么作用? 答: 3H标记的尿嘧啶是追踪RNA的,而加入放线菌素D是为了阻断RNA的合成,这样随着RNA加工的进程,rRNA分子越来越小,便于判断。如果不阻断RNA合成,新合成的45SrRNA就会干扰判断。在上述的研究中发现,当人的细胞同3H标记的尿嘧啶共培养25分钟后,被标记rRNA 的沉降系数是45S,加入放线菌素D阻断RNA的合成后,标记的45S rRNA首先转变成32S的rRNA,随着培养时间的延长,逐渐出现被标记的28S、18S的rRNA。 4. 有人用核糖体重组实验得到一些重要的结论,你能说出一、二吗? 答: 这些结果包括以下几个方面:①30S亚基的蛋白质专同16S rRNA结合; 50S 亚基的蛋白质只同23S rRNA结合,如果把30S亚基rRNA和50S 亚基的蛋白质相混合,则不能装配成有功能的亚基。②从不同种细菌提取30S 亚基的rRNA 和蛋白质,可装配成有功能的30S 亚基,这表明不存在种间差异。③原核生物核糖体与真核生物核糖体的亚基彼此不同,由二者的rRNA和蛋白质重组后的核糖体没有功能。④大肠杆菌的核糖体与玉米叶绿体核糖体亚基重组后具有功能。⑤由于不同生物的线粒体核糖体大小不同,由55S到80S不等,而原核生物的核糖体基本稳定,所以线粒体的核糖体亚基同原核生物核糖体亚基相互交换形成的杂合核糖体没有功能。 5. 真核细胞中核糖体的合成和装配过程如何? 答: 整个过程相当复杂,首先要合成与核糖体装配有关的蛋白质,这些蛋白质

酶概论习题

酶概论习题 一、填空题 1.酶是____________产生的,具有催化活性的____________。 2.T.Cech从自我剪切的RNA中发现了具有催化活性的,称之为这是对酶概念的重要发展。 3.结合酶是由和两部分组成,其中任何一部分都催化活性,只有___________才有催化活性。 4.有一种化合物为A-B,某一酶对化合物的A,B基团及其连接的键都有严格的要求,称为,若对A基团和键有要求称为,若对A,B之间的键合方式有要求则称为。 5.与化学催化剂相比,酶具有、、_____________和________________________ 等催化特性。 6.从酶蛋白结构看,仅具有三级结构的酶为,具有四级结构的酶,而在系列反应中催化一系列反应的一组酶为。 7.全酶由和组成,在催化反应时,二者所起的作用不同,其中___________决 定酶的专一性和高效率,起传递电子、原子或化学基团的作用。 8.延胡索酸酶只对反丁烯二酸起催化作用,而对顺丁烯二酸则无作用,因而此酶具有 _____________专一性。 9.酶能加速化学反应的主要原因是_____________和_____________结合形成了_____________ , 使_____________呈活化状态,从而_____________了反应的活化能。 10.辅助因子包括_____________、_____________ 和 _____________等。其中 _____________ 与酶蛋白结合紧密,需要_____________除去,_____________ 与酶蛋白结合疏松,可用_____________ 除去。 11.1986年,Lerner RA,Schultz PG等人发现了具有催化活性的_____________,称 _____________。 12.判断一个纯化酶的方法优劣的主要依据是酶的_____________和 _____________。 二、选择题 1.从组织中提取酶时,最理想的结果是 A、蛋白产量最高 B、转换系数最高 C、酶活力单位数值很大 D、比活力最高 2.酶催化底物时将产生哪种效应 A、提高产物能量水平 B、降低反应的活化能 C、提高反应所需活化能 D、降低反应物的能量水平 3.下列那一项符合“诱导契合”学说

核酶的发现和应用

核酶的发现和应用 一、核酶的发现 从人类认识到酶的存在开始直至20世纪80年代初,人们一直以为酶的化学本质是蛋白质。然而美国科罗斯拉多大学博尔分校的Thomas Cech和耶鲁大学的Sidney Altman 均发现具有生物催化功能的RNA,这说明某些RNA 具有催化活性。 1981年Thomas Cech等在研究rRNA前提加工成熟时就发现四膜虫的26SrRNA前体中插入含有插入序列(IVS),在rRNA前体成熟过程中,IVS通过剪切反应被除去,并证实这一剪切反应不需要任何蛋白质的参与,是四膜虫的基因内区自行拼接的。与此同时,Sidney Altman等在从事RNase P 的研究中也发现了这一现象,RNase P是细菌和高等生物细胞里都有的一种tRNA加工酶,它能在特定的位点上切开tRNA前体。早在1978年Sidney Altman等就从纯化的RNase P中分离出了一中蛋白质和一种RNA(M RNA), 1 RNA单独存在时均不具备RNase P活性,而只早期的实验结果是蛋白质和M 1 有当两者混合后才可恢复RNase P活性。1983年,就在Thomas Cech等发现RNA能自行拼接后的两年后,Sidney Altman等就证明:在较高的Mg2+浓度下,RNase P中的RNA(M RNA)具有催化tRNA前体成熟的功能,而其蛋白质组分 1 却不具备此催化功能。但根据当时催化剂不仅能加快反应速度,而且在反应前后催化剂本身不发生改变的准确定义,在Thomas Cech等发现四膜虫26SrRNA前体IVS的自身拼接后,科学家们还排斥它作为生物催化剂的资格,认为那是一种自体催化反应,拼接后的成熟rRNA与前体不同,商不能被看成是严格意义上的催化剂。Sidney Altman等的发现就从实验上消除了这一异议,原因是RNase P所催化的反应收拾一种异体分子间的反应,而该反应正是在RNA的催化下完成的。此后,1984年《Science》发表的题为《First True RNA Catalyst》的报道标志着RNA催化剂的正式诞生。Thomas Cech

核酶 (英文及中文) 最终成稿

Ribozyme Ribozyme 核酶 (Catalytic RNA molecule) 制作:cz12062008

1.1.What is a Ribozyme? What is a Ribozyme? Ribozymes are true enzymes.. Ribozymes are true enzymes A ribozyme is an RNA molecule (分子) that is capable(能力) of catalyzing (催化)a chemical reaction. NOT PROTEIN(蛋白)

discovered First Ribozyme discovered First Ribozyme 上世纪80年代,美国科罗拉多大学博尔德分校的Thomas Cech(The intron in Tetrahemena is the pre-rRNA of Tetrahemena is The intron in the pre-rRNA of Sidnery Altan n(The M1 self-spliced)和美国耶鲁大学的Sidnery Alta in ribonuclease P is catalytic)各自独立地发现RNA具有RNA in ribonuclease RNA 生物催化功能.从而改变了生物催比剂的传统概念。 1989 Nobel Prize In Chemistry Sid Altman Tom Cech

I型内含子 剪接型核酶 II型内含子 锤头核酶 剪切型核酶 发夹核酶 自体催化 丁型肝炎病毒(HDV)核酶 RNaseP RNaseP 异体催化 2.核酶的分类 通过既剪又接的方式除去内 含子(Intron) 自身催化的 反应是只切不接。异体催化能 剪切所tRNA 前体的5‘端

酶的发现及研究史

酶的发现及研究史 酶的发现来源于人们对发酵机理的逐渐了解。早在18世纪末和19世纪初,人们就认识到食物在胃中被消化,[1]用植物的提取液可以将淀粉转化为糖,但对于其对应的机理则并不了解。 [2] 到了19世纪中叶,法国科学家路易·巴斯德对蔗糖转化为酒精的发酵过程进行了研究,认为在酵母细胞中存在一种活力物质,命名为“酵素”(ferment)。他提出发酵是这种活力物质催化的结果,并认为活力物质只存在于生命体中,细胞破裂就会失去发酵作用。 [3] 法国科学家路易·巴斯德

1878年,德国生理学家威廉·屈内首次提出了酶(enzyme)这一概念。随后,酶被用于专指胃蛋白酶等一类非活体物质,而酵素(ferment)则被用于指由活体细胞产生的催化活性。 这种对酶的错误认识很快得到纠正。1897年,德国科学家爱德华·比希纳开始对不含细胞的酵母提取液进行发酵研究,通过在柏林洪堡大学所做的一系列实验最终证明发酵过程并不需要完整的活细胞存在。[4]他将其中能够发挥发酵作用的酶命名为发酵酶(zymase)。 [5]这一贡献打开了通向现代酶学与现代生物化学的大门,其本人也因“发现无细胞发酵及相应的生化研究”而获得了1907年的诺贝尔化学奖。在此之后,酶和酵素两个概念合二为一,并依据比希纳的命名方法,酶的发现者们根据其所催化的反应将它们命名。通常酶的英文名称是在催化底物或者反应类型的名字最后加上-ase的后缀,而对应中文命名也采用类似方法,即在名字最后加上“酶”。例如,乳糖酶(lactase)是能够剪切乳糖(lactose)的酶;DNA聚合酶(DNA polymerase)能够催化DNA聚合反应。 德国科学家爱德华·比希纳 人们在认识到酶是一类不依赖于活体细胞的物质后,下一步工作就是鉴定其生化组成成分。许多早期研究者指出,一些蛋白质与酶的催化活性相关;但包括诺贝尔奖得主里夏德·维尔施泰特在内的部分科学家认为酶不是蛋白质,他们辩称那些蛋白质只是酶分子的携带者,蛋白质本身并不具有催化活性。1926年,美国生物化学家詹姆斯·萨姆纳完成了一个决定性的实验。他首次从刀豆得到尿素酶结晶,并证明了尿素酶的蛋白质本质。其后,萨姆纳在1931年在过氧化氢酶的研究中再次证实了酶为蛋白质。约翰·霍华德·诺思罗普和温德

纤维素酶的发展与应用

纤维素酶的发展与应用 季月月16班12720328 摘要: 纤维素酶作为一种重要的酶产品,它是一种复合酶,主要由外切β-葡聚糖酶,内切β-葡聚糖酶和β-葡萄糖苷酶等组成。目前纤维素酶已被广泛应用于饲料、酒精等领域,因此被国内外业内人士看好。它将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,发展前景非常广阔1。 关键字: 纤维素酶;机理;结构变化;饲料;酿造业;水产业 1 纤维素简介 纤维素酶(cellulase)是指能降解纤维素的一类酶的总称,在分解纤维素时起生物催化作用,它是可以将纤维素分解成单糖或多糖的蛋白质或RNA,纤维素酶广泛存在于自然界的生物体中,细菌、真菌、动物体内等都可以产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木酶属(trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium)1。 它不是单种酶,而是其协同作用的多种酶份体系,按照微生物对纤维素酶的分泌性和所产纤维素酶系活性间关系可分为:一、对天然木质纤维素分解较弱,但可大量合成可分泌到胞外的纤维素酶,如木霉等的纤维素酶系;二、对木质纤维素分解力强,但分泌到胞外的纤维素酶活力较低,如担子菌纤维素酶系;三、对木质纤维素分解能力强,但其纤维素酶基本不分泌到胞外,而是存在于细胞壁上,如细菌的纤维素酶系。一个完整的酶系,通常由作用方式不同而能相互协同催化水解纤维素的3类酶组成,即内切葡聚糖苷酶(C1)、外切葡聚糖苷酶(C x)、β-葡萄糖苷酶2。 目前,大规模用于工业生产纤维素酶的菌株主要包括康宁木霉,绿色木霉,里氏木霉和黑曲霉。也有学者开始研究低温纤维素酶,由于其在再燃稳定性有较高的酶活和催化效率,可大大缩短处理时间和费用,因此在工业上具有广阔的发展前景。7 2 纤维素酶的作用机理 纤维素酶酶使纤维素转化为葡萄糖的过程仍不清楚,但普遍认为是各组分协同作用的结果,但各组分是如何作用的,许多学者提出了不同的观点,但最后得

第七章 核 酶

第七章核酶(Ribozyme) 第一节核酶(ribozyme) 一剪接型核酶 二剪切型核酶 第二节脱氧核酶(deoxyribozyme) 第三节核酶的应用 一抗HIV感染 二抗肝炎病毒感染 三肿瘤治疗 Thomas R.Cech 核酶的发现:T.Cech的工作 T.Cech的重要发现开始于1982年 研究目的: 细胞中DNA转录成rRNA后,rRNA中一些无意义的序列,或“内含子(intron),如何从RNA分子中剪切下来的。 根据过去传统的概念,这一过程必须要有蛋白质酶来完成。 T.Cech的工作 研究对象:原生动物四膜虫(Tetrahymena Thermophila):含有一种RNA,其组成中除了核糖体RNA外还有一个由413个核苷酸组成的插入序列(interveningsequenc,IVS)。 研究发现:转录产物rRNA前体很不稳定,在鸟苷和Mg2+存在下切除自身的413个核苷酸的内含子(IVS),使两个外显子拼接起来,变成成熟的rRNA分子。催化反应是在没有任何蛋白质酶的存在下发生的,称为自我剪接。 Cech的实验结论: ?IVS具有类似蛋白酶的功能,能够打断及重建磷酸二脂键。 ?相信rRNA前体能靠自己完成剪接过程。在一定条件下rRNA前体可以按一定方式盘绕,进而自己切割自己,以后再把保留rRNA部分的末端连接起来。即它是可以催化自由底物的具有酶活性的RNA。 ?RNA分子具有自身断裂的催化作用,以及酶活性的另一个重要方面即催化其他分子的反应。 Sidney Altman S.Altman的研究工作: 研究目的:t-RNA分子的剪接过程 研究发现: 在较高浓度的镁离子和适量精氨酸参与下,核酸酶P(ribonuclease P,RNase P )中的RNA能够切割tRNA前体的5’端。 S.Altman的实验结论: ?过去都认为核酸酶P的催化作用由RNA和蛋白质共同完成的。 ?而该实验证明,核酸酶P的催化作用是由RNA完成的,而其中的蛋白质在细胞内仅仅起稳定构象的作用。 1、剪切型核酶: 这类核酶催化自身或者异体RNA的切割,相当于核酸内切酶。 2、剪接型核酶: 这类核酶具有核酸内切酶和连接酶两种活性。

相关文档
最新文档