怎样证明一组数据服从正态分布啊
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样证明一组数据服从正态分布啊
我知道的方法主要是两种:
第一,概率密度估计。用模式识别里常用的概率密度函数估计方法,估计出该组数据的概率密度函数p(x)。然后用这组数据的均值和方差作为参数,得出一个Gauss(正态)概率密度函数f(x)。用绝对值偏差、方均根或其他标准比较f(x)和p(x),如果充分接近,则说明该组数据符合正态分布。(甚至可以利用假设检验的概念指定置信度水平等)。
第二,第二,累积量。三阶和四阶累积量有其明确的意义,即所谓“偏度”和“峰度”。前者表明概率密度函数的对称性,如果值接近0则表示对称性好;后者表明概率密度函数(假定是单峰的)的尖锐程度,如果值接近0则表示接近正态分布(正态分布的所有二阶以上累积量值为0)。注意,峰度可能还有其他定义,注意不要混淆。