数学分析之函数的连续性

数学分析之函数的连续性
数学分析之函数的连续性

第四章函数的连续性

教学目的:

1.使学生深刻掌握函数连续性的概念和连续函数的概念;

2.熟练连续函数的性质并能加以应用;

3.知道所有初等函数都是在其定义域上的连续函数,并能加以证明;

4.理解函数在某区间上一致连续的概念,并能清楚地认识到函数在一区间上连续与这一区间上一致连续的联系与区别。

教学重点、难点:本章重点是函数连续性的概念和闭区间上连续

函数的性质;难点是一致连续性的概念与有关证明。

教学时数:14学时

§ 1 函数的连续性(4学时)

教学目的:使学生深刻掌握函数连续性的概念和连续函数的概念。

教学要求:

1. 使学生深刻理解函数在一点连续包括单侧连续的定义,并能熟练写出函数在一点连续的各种等价叙述;

2. 应使学生从分析导致函数在一点不连续的所有可能的因素出发,理解函数在一点间断以及函数间断点的概念,从反面加深对函数在一点连续这一概念的理解力并能熟练准确地识别不同类型的间断点;

3. 明确函数在一区间上连续是以函数在一点连续的概念为基础的,使学生清楚区分“连续函数”与“函数连续”所表述的不同内涵。

教学重点:函数连续性概念。

教学难点:函数连续性概念。

一、引入新课:通过生活和科学研究中的实例说明学习连续函数的必要性。

二、讲授新课:

(一)函数在一点的连续性:

1.连续的直观图解:由图解引出解析定义.

函数在一点连续的定义: 设函数在点某邻域有定义.

2.

定义用例如 [1]P87例1和例2, P88 例3.

定义用

定义用先定义

定义连续的Heine定义.

定义( “

”定义.)

(注:强调函数

”定义验证函数在点连续.

例1 用“

例2 试证明: 若

在点连续.

3.单侧连续: 定义单侧连续, 并图解.

Th ( 单、双侧连续的关系 )

例3讨论函数在点的连续或单侧连续性.

(二)间断点及其分类: 图解介绍间断点的分类.

跳跃间断点和可去间断点统称为第一类间断点, 其他情况

或中至少有一个不存在称为第二类间断点.

例4讨论函数的间断点类型.

例5

延拓函数使在点连续.

例6举出定义在[0,1]上且仅在点三点间断的函数的例.

讨论Dirichlet函数和Riemann函数的连续性.

例7

开区间上连续,闭区间上连续, 按段连续.

§ 2 连续函数的性质(6学时)

教学目的:熟悉连续函数的性质并能灵活应用。

教学要求:

1. 掌握连续的局部性质(有界性、保号性),连续函数的有理运算性质,并

能加以证明;熟知复合函数的连续和反函数的连续性。能够在各种问题的讨论中

正确运用连续函数的这些重要性质;

2. 掌握闭区间上连续函数的主要性质,理解其几何意义,并能在各种有

关的具体问题中加以运用;

3. 理解函数在某区间上一致连续的概念,并能清楚地认识到函数在一区间

上连续与在这一区间上一致连续这二者之间的联系与原则区别。

教学重点:闭区间上连续函数的性质;

教学难点:一致连续的概念。

一、复习:连续、间断的含义.

二、讲授新课:

(一)连续函数的局部性质: 叙述为Th 1—4.

1.局部有界性:

2.局部保号性:

3.四则运算性质:

4.复合函数连续性:

在点连续,函数在点连续, 且,

Th 4 若函数

则复合函数在点

註Th 4 可简写为(即在条件满足的前提下,极限运算与函数运算可以交换顺序。)

例1 求极限

例2 求极限:

⑴⑵

的连续性见后.

例3求极限

(二)闭区间上连续函数的基本性质:

1.最值性: 先定义最值.

Th 5 ( 最值性 )

推论( 有界性 )

2. 介值性: 定义介值.

Th 6 ( 介值性 )

连续函数的值域, 连续的单调函数的值域.

推论( 零点定理 )

例4证明: 方程在

到之间有实根.

是正数, 为正整数. 证明方程有唯一正实

在内的严格递增性.

根. 唯一性的证明用

在上严格递增( 或减 )且连续, 则其反函数在

Th 7 若函数

相应的定义域或上连续. ( 证 )

关于函数等的连续性 ( [1]P99 E5,6.)

(四)函数的整体连续性——一致连续:

1.

连续定义中对的依赖性:

例6

考查函数在区间上的连续性.对作限

制就有

,取这里与有关,有时特记为.

本例中不存在可在区间

上通用的, 即不存在最小的( 正数 ).

例7

考查函数在区间上的连续性.

本例中可取得最小的, 也就是可通用的该

却与

关, 可记为

.

2.一致连续性:

定义 ( 一致连续 ) 顺便介绍一致连续与连续的关系.

用定义验证一致连续的方法: 对

, 确证存在. 为此,从不

失真地放大式入手, 使在放大后的式子中, 除因子之外, 其余部分中不含有

和, 然后使所得式子, 从中解出

例8验证函数在

内一致连续.

例9 验证函

在区间内一致连续.

例10若函数在有限区间内一致连续,则在内有界.

3.一致连续的否定:

否定定义.

在区间内非一致连续.

例11证明函数

与便有但

证法二 ( 用例10的结果 ).

4.一致连续的判定:

Th8 (Cantor)若函数在闭区间上连续,在上一致连续.

§ 3 初等函数的连续性(2学时)

教学目的:知道所有初等函数都是在其有定义的区间上连续的函数,并能够加以证明。

教学要求:深刻理解初等函数在其定义的区间上都是连续的,并能应用连续性概念以及连续函数的性质加以证明,能熟练运用这一结论求初等函数的极限。

教学重点:初等函数的连续性的阐明。

教学难点:初等函数连续性命题的证明。

教学方法:学导式教学。

回顾基本初等函数中, 已证明了连续性的几个函数.

指数函数和对数函数的连续性. ( 证 )

一.初等函数的连续性:

Th1 一切基本初等函数都在其定义域上连续.

Th2任何初等函数在其有定义的区间上是连续的.

註:初等函数的连续区间和间断点: 初等函数的间断点是其连续区间的开端点. 闭端点是其单侧连续点.

例1求函数的连续区间和间断点.

的连续区间为: 、、和

. 在点右连续 .

二.利用函数的连续性求极限:

例2

例3作倒代换

例4

解I =

例5

I =

习题课(2学时)

一、理论概述:

二、范例讲析:

例1设函数

在区间上连续, 且

证明: 在区间

证若

设函数在区间上连续,试证

例3设

试证明:方程在区间

在内连续且则在内有

例4设函数

最小值. 与

比较.

例5设函数

证明: 在I上

例6设函数

在有限开区间内连续. 则在

例7设函数

有限开区间

内一致连续, 和存在( 有限 ).

例8

内一致连续.

第四章函数的连续性

引言

在数学分析中,要研究种种不同性质的函数,其中有一类重要的函数,就是连续函数。从今天开始,我们就来看看这类函数的特点。主要讲以下几个问题:

1.什么是“函数的连续性”?

2.“间断”或“不连续”有哪些情形?

3.连续函数有哪些性质? 4.初等函数的连续性有何特点?

§1 连续性概念

教学目的:使学生深刻掌握函数连续性的概念和连续函数的概念。

教学要求:(1)使学生深刻理解函数在一点连续包括单侧连续的定义,并能熟练写出函数

在一点连续的各种等价叙述;(2)应使学生从分析导致函数在一点不连续的所有可能的因素出发,理解函数在一点间断以及函数间断点的概念,从反面加深对函数在一点连续这一概念的理解力并能熟练准确地识别不同类型的间断点;(3)明确函数在一区间上连续是以函数在一点连续的概念为基础的,使学生清楚区分“连续函数”与“函数连续”所表述的不同内涵。

教学重点:函数连续性概念。 教学难点:函数连续性概念。 教学程序:

引言

“连续”与“间断”(不连续)照字面上来讲,是不难理解的。例如下图1中的函数()y f x ,我们说它是连续的,而图2中的函数在0x 处是间断的。

由此可见,所谓“连续函数”,从几何上表现为它的图象是坐标平面上一条连绵不断的曲线。而所谓“不连续函数”从几何上表现为它的图象在某些点处“断开”了。

当然,我们不能满足于这种直观的认识,因为单从图形上看是不行的,图形只能帮助我们更形象地理解概念,而不能揭示概念的本质属性。

例如,可以举出这样的例子,它在(0,1)内的任意无理数点都连续但却无法用图形表示出来(如Rieman 函数)。

因此,为了给出“连续”的定义,需要对此作进一步分析和研究。

从图2看出,在0x 处,函数值有一个跳跃,当自变量从1x 左侧的近傍变到1x 右侧的近旁时,对应的函数值发生了显著的变化。而在其它点处(如1x 处),情况则完全相反。:当自变量从1x 向左侧或向右侧作微小改变时,对应的函数值也只作微小的改变;这就是说,当自变量x 靠近1x 时,函数值就靠近1()f x ,而当1x x →时,1()()f x f x →。换句话说,当1x x →时,()f x 以1()f x 为极限,即1

1lim ()()x x f x f x →=。

根据这一分析,引入下面的定义:

一 函数在一点的连续性

1. 函数f 在点0x 连续的定义

定义1(f 在点0x 连续)设函数f 在某0()U x 内有定义,若0

0lim ()()x x f x f x →=,则称f

在点0x 连续。

注 0

0lim ()()(lim )x x x x f x f x f x →→==,即“f 在点0x 连续”意味着“极限运算与对应法则

f 可交换。

2.例子

例1.0,sin ,cos x R x x ?∈在0x 处连续。 例2.2

lim(21)5(2)x x f →+==。

例3.讨论函数1sin ,0()0

,0x x f x x

x ?

≠?

=??=?在点x=0处连续性。 3.函数f 在点0x 连续的等价定义

1) 记号:0x x x ?=-——自变量x 在点的增量或改变量。设00()y f x =,

0000()()()()y f x f x f x x f x y y ?=-=+?-=-——函数y 在点0x 的增量。

注:自变量的增量x ?或函数的增量y ?可正、可负、也可为零。(区别于“增加”)。

2) 等价定义1:函数f 在点0x 连续?0

lim 0x y ?→?=。

3) 等价定义2:函数f 在点0x 连续?0,0εδ?>?>,当0||x x δ-<时,

0|()()

|f x f x ε-<。 注:一个定义是等价的,根据具体的问题选用不同的表述方式。如用三种定义,可以证明以下命题:

例4.证明函数()()f x xD x =在点0x =连续,其中()D x 为Dirichlet 函数。 4.函数f 在点0x 有极限与函数f 在点0x 连续之间的关系

1) 从对邻域的要求看:在讨论极限时,假定f 在00()U x 内不定义(f 在点0x 可以没有定义)。而f 在点0x 连续则要求f 在某0()U x 内有定义(包括0x )。

2) 在极限中,要求00||x x δ<-<,而当“f 在点0x 连续”时,由于x=0x 时,

0|()()|f x f x ε-<

恒成立。所以换为:0||x x δ-<. 3) 从对极限的要求看:“f 在点0x 连续”不仅要求“f 在点0x 有极限”,而且

0lim ()()x x f x f x →=;而在讨论0

lim ()x x f x →时,不要求它等于0()f x ,甚至于0()f x 可以

不存在。

总的来讲,函数在点0x 连续的要求是:①()f x 在点0x 有定义;②0

lim ()x x f x →存在;

③0

0lim ()()x x f x f x →=. 任何一条不满足,f 在点0x 就不连续。同时,由定义可知,函数在

某点是可连续,是函数在这点的局部性质。

5.f 在点0x 左(右)连续定义

① 定义2:设函数f 在点0()U x +(0()U x -内有定义),若0

0lim ()()x x f x f x +

→=(0

0lim ()()x x f x f x -

→=),则称f 在点0x 右(左)连续。 ② f 在点0x 连续的等价刻划

定理4.1 函数f 在点0x 连续?f 在点0x 既是右连续,又是左连续。

如上例4:0

lim ()lim 0(0)x x xD x x f ++→→===(右连续),0

lim ()lim 0(0)x x xD x x f --

→→===(左连续)。

例5.讨论函数2,0

()2,0x x f x x x +≥?=?

-

在点0x =的连续性。

二 区间上的连续函数

1.定义

若函数f 在区间I上每一点都连续,则称f 为I上的连续函数。对于闭区间或半开半闭区间的端点,函数在这些点上连续是指左连续或右连续。若函数f 在区间[,]a b 上仅有有限个第一类间断点,则称f 在[,]a b 上分段连续。 2.例子

(1)函数,,sin ,cos y C y x y x y x ====是R上的连续函数;(2)函数

y =(1,1)-内每一点都连续。在1x =处为左连续,在1x =-处为右连续,因

而它在[1,1]-上连续。

命题:初等函数在其定义区间上为连续函数。

函数[]y x =,sgn y x =在[1,1]-上是分段连续的[]y x =在R上是分段连续吗?

sgn x 在R上是分段连续吗?

三 间断点及其分类

1.不连续点(间断点)定义

定义3 设函数f 在某00()U x 内有定义,若f 在点0x 无定义,或f 在点0x 有定义而不2,不则称点0x 为函数f 的间断点或不连续点。

注 这个定义不好;还不如说:设f 在00()U x 内不定义,如果()f x 在0x 不连续,则称0x 是()f x 的不连续点(或间断点)。由上述分析可见,若0x 为函数f 的间断点,

则必出现下列情形之一:①()f x 在点0x 无定义;②0

lim ()x x f x →不存在;③

0lim ()()x x f x f x →≠。据此,对函数的间断点作如下分类:

2.间断点分类

1) 可去间断点 若0

lim ()x x f x A →=,而f 在点0x 无定义,或有定义但0()f x A ≠,则

称0x 为f 的可去间断点。

例如:0x =是函数sin ()|sgn |,()x

f x x

g x x

==

的可去间断点。 “可去间断点”名称何来?通过一定的手段,可以“去掉”。设0x 是()f x 的可去间断点,且0

lim ()x x f x A →=。0

(),()

,f x x x f x A x x =??

≠?则0x 是()f x 的连续点。 例如,对sin ()x g x x =,定义sin ,0()1,0

x

x g x x x ?≠?

=??=?,则()g x 在0x =连续。

2) 跳跃间断点 若0

lim (),lim ()x x x x f x f x +-

→→存在,但00(0),(0)f x f x +-,则称点0x 为函数f 的跳跃间断点。

例如,对[]y x =,0

lim[]0,lim[]1x x x x +-

→→==-故0x =是它的跳跃间断点。 再如0x =是sgn x 的跳跃间断点。

可去间断点与跳跃间断点统称为第一类间断点,其特点的函数在该点处的左、右极限都存在。

3) 第二类间断点 函数的所有其它形式的间断点(即使称函数至少有一侧极限不存在

的点)称为函数的第二类间断点。 例如,0x =是函数

1x ,1

sin x

的第二类间断点。 §2 连续函数的性质

教学目的:熟悉连续函数的性质并能灵活应用。

教学要求:(1)掌握连续的局部性质(有界性、保号性),连续函数的有理运算性质,并能

加以证明;熟知复合函数的连续和反函数的连续性。能够在各种问题的讨论中正确运用连续函数的这些重要性质;(2)掌握闭区间上连续函数的主要性质 ,理解其几何意义,并能在各种有关的具体问题中加以运用;(3)理解函数在某区间上一致连续的概念,并能清楚地认识到函数在一区间上连续与在这一区间上一致连续这二者之间的联系与原则区别。

教学重点:闭区间上连续函数的性质; 教学难点:一致连续的概念。

引言

函数的连续性是通过极限来定义的,因而有关函数极限的诸多性质,都可以移到连续函数中来。

一 连续函数的局部性质

性质1(局部有界性)若f 在0x 连续。则f 在某0()U x 有界。 性质2(局部保号性)若f 在0x 连续,且0()0(

0)f x o r ><则对任何正数

0(0,())r f x ∈0(((),0))r f x ∈,存在某0()U x 有()0(()0)f x r f x r >><<。

注 ①在具体应用局部保号性时,r 取一些特殊值,如当0()0f x >时,可取0()

2

f x r =,则存在0()U x ,使得当0()x U x ∈有0()

()2

f x f x >

;②与极限相应的性质做比较可见,这里只是把“极限存在”,改为“连续”,把0()U x 改为00()U x 其余一致。

性质3。(四则运算)若f 和g 在0x 点连续,则0,,

(()0)f

f g f g g x g

±?≠也都在点

0x 连续。

问题 两个不连续函数或者一个连续而另一个不连续的函数的和、积、商是否仍旧连续?

性质4(复合函数的连续性)若f 在点0x 连续,记00()f x u =,函数g 在0u 连续,则复合函数g

f 在点0x 连续。

注 1) 据连续性定义,上述定理可表为:0

0lim [()][()][lim ()]x x x x g f x g f x g f x →→==.(即函数运算与极限可以交换次序,条件是函数连续利用它可来求一些函数的极限。)

例1. 求2

1

limsin(1)x x →-.

2) 若复合函数g

f 的内函数f 当0x x →时极限为a ,又外函数

g 在u a =连续,上

面的等式仍成立。(因此时若0

0lim ()()x x f x a f x →==的话是显然的;若

0lim ()()x x f x a f x →=≠,或()f x 在0x x =无定义,即0x 是f 的可去间断点时,只需对性质

4的证明做修改:“0||x x δ-<”为“00||x x δ<-<”即可)。故可用来求一些函数的极限。

例2 求极限(1)x →(2)x 性质5(反函数的连续性)若函数f 在[,]a b 上严格单调并连续,则反函数1

f -在其定

义域[(),()]f a f b 或[(),()]f b f a 上连续。

二、初等函数的连续性

1.复习(关于初等函数)

(1)初等函数:由基本初等函数经过有限次四则运算与复合运算所得到的函数。 (2)基本初等函数: 常量函数y C =; 幂函数y x α

=;

指数函数(0,1)x

y a a a =>≠; 对数函数log (0,1)a y x a a =>≠; 三角函数sin ,cos ,,y x x tgx ctgx =;

反三角函数arcsin ,arccos ,,y x x arctgx arcctgx =。 2.初等函数的连续

定理1 任何初等函数都是在其定义区间上的连续函数。

定理2 一切基本初等函数都是其定义域上连续函数。 3.利用初等函数的连续性可计算极限

例3.设0

lim ()0x x u x a →=>,0

lim ()x x v x b →=,证明:0

()

lim ()

v x b x x u x a →=。 例4.求0ln(1)

lim

x x x

→+。

例5 求20ln(1)

lim cos x x x

→+。

三 区间上连续函数的基本性质

引 言

闭区间上的连续函数具有一些重要的性质。现将将基本的列举如下。从几何上看,这些性质都是十分明显的。但要严格证明它们,还需其它知识,将在第七章§2给出。先给出下面的关于“最大大值”的定义:

定义1 设f 为定义在数集D上的函数,若存在0x D ∈,使得对一切x D ∈都有0()()f x f x ≥(0()()f x f x ≤),则称f 在D上有最大(小)值,并称0()f x 为f 在D上的最大(小)值。

例如,sin ,[0,]y x π=。max 1y =、min 0y =。

一般而言, f 在其定义域上不一定有最大(小)值,即使()f x 在D上有界。 例如:(),(0,1)f x x x =∈无最大(小)值;

1

,(0,1)

()2,0,1

x f x x

x ?∈?=??=?在[0,1]上也无最大(小)值。

性质1(最大、最小值定理)若f 在闭区间[,]a b 上连续,则f 在[,]a b 上有最大值与最小值。

性质2(有界性定理)若f 在[,]a b 上连续,则f 在[,]a b 上有界。

思考 ①考虑函数(),(0,1)f x x x =∈,1

,(0,1)

()2,0,1

x g x x x ?∈?=??=?上述结论成立否?说明理

由;②f 要存在最大(小)值或有界是否一定要f 连续?是否一定要闭区间呢? 结论 上述性质成立的条件是充分的,而非必要的。

性质3(介值定理)设f 在[,]a b 上连续,且()()f a f b ≠。若μ是介于()f a 和()f b 之间的任何实数,则至少存在一点0(,)x a b ∈,使得0()f x μ=。

注 表明若f 在[,]a b 上连续,又()()f a f b <的话,则f 在[,]a b 上可以取得()f a 和

()f b 之间的一切值。(如左图)。

性质4(根存在定理) 若f 在[,]a b 上连续,且()f a 和()f b 异号(()()0f a f b ?<),则至少存在一点0[,]x a b ∈,使得0()0f x =。

几何意义 若点(,())A a f a 和(,())B b f b 分别在x 轴两侧,则连接A、B的曲线

()y f x =与x 轴至少有一个交点。

2.闭区间上连续函数性质应用举例

关健 构造适当的f ;构造适当的闭区间。

例6.证明:若0r >,n 为正整数,则存在唯一正数0x ,使得0n

x r =。

例7.设f 在[,]a b 上连续,满足([,])[,]f a b a b ?。证明:存在0[,]x a b ∈,使得

00()f x x =。 四 一致连续性

在连续函数的讨论和应用中,有一个极为重要的概念,叫做一致连续。我们先叙述何谓一致连续。

设()f x 在某一区间I连续,按照定义,也就是()f x 在区间I内每一点都连续。即对00,0,(;)x I x U x εδ?∈?>?∈时,就有0|()()|f x f x ε-<。

一般说来,对同一个ε,当0x 不同时,δ一般是不同的。例如图左。中1

y x

=

的曲线,对接近于原点的0x ,δ就应取小一些。而当0x 离原点较远时,δ取大一些。(对后者的δ值就不一定可用于前者。但在以后的讨论中,有时要求能取到一个时区间I内所有的点都适用的η,这就需要引进一个新概念——一致连续。 1.一致连续的定义

定义(一致连续) 设f 为定义在区间I上的函数。若对任给的0ε>,存

在一个()0δδε=>,使得对任何,x x I '''∈

,只要||x x δ'''-<,就有()()||f x f x ε'''-<,则称函数f 在区间I上一致连续。

2.函数在区间上连续与一致连续的比较 (1)

区别:

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高三数学Word版教案第78课时 函数的极限和连续性

高三数学Word版教案第课时函数的极限和连续性 课题:函数的极限和连续性 教学目标:了解函数极限的概念;掌握极限的四则运算法则;会求某些数列与函数的极限;了解函数连续的意义;理解闭区间上连续函数有最大值和最小值的性质 (一)主要知识及主要方法: 函数极限的定义: 当自变量取正值并且无限增大时,如果函数无限趋近于一个常数,就说当趋向于正无穷大时,函数的极限是,记作:,或者当时,;当自变量取负值并且绝对值无限增大时,如果函数无限趋近于一个常数,就说当趋向于负无穷大时,函数的极限是. 记作或者当当时, 如果且,那么就说当趋向于无穷大时,函数的极限是,记作:或者当时,. 常数函数: (),有. 存在,表示和都存在,且两者相等所以中的既有,又有的意义,而数列极限中的仅有的意义. 趋向于定值的函数极限概念:当自变量无限趋近于()时,如果函数无限趋近于一个常数,就说当趋向时,函数的极限是,记作.特别地,;. . 其中表示当从左侧趋近于时的左极限,

表示当从右侧趋近于时的右极限. 对于函数极限有如下的运算法则: 如果,,那么, , . 当是常数,是正整数时:, 这些法则对于的情况仍然适用. 函数在一点连续的定义: 如果函数在点处有定义,存在, 且,那么函数在点处连续. 函数在内连续的定义:如果函数在某一开区间内每一点处连续,就说函数在开区间内连续,或是开区间内的连续函数. 函数在上连续的定义:如果在开区间内连续,在左端点处有,在右端点处有就说函数在闭区间上连续,或是闭区间上的连续函数. 最大值:是闭区间上的连续函数,如果对于任意,≥,那么在点处有最大值. 最小值:是闭区间上的连续函数,如果对于任意,≤,那么在点处有最小值. 最大值最小值定理 如果是闭区间上的连续函数,那么在闭区间上有最大值和最小值. 极限问题的基本类型:分式型,主要看分子和分母的首项系数; 指数型(和型),通过变形使得各式有极限; 根式型(型),通过有理化变形使得各式有极限; 根的存在定理:若①函数在上连续,②,则方程至少有一根在区

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

高考数学难点-函数的连续及其应用

难点33函数的连续及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是能准确画 出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数 定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=2 42+-x x =x -2,其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=?? ???-=--≠+-2)( 4)2( 242x x x x 则函数f (x )在R 上是连续函数. [例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b . 命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法. 知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正. 错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用 .

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

(整理)函数的连续性及其应用

函数的连续性及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=2 42+-x x , (1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是 能准确画出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学 连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象 进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=242+-x x =x -2, 其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =- 4.

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

函数的连续性在高等代数中的应用

函数的连续性在高等代数中的应用 摘要:数学分析和高等代数是大学数学专业非常重要的基础课程,这两门课程的一些问题如果只是从学科内部出发很难解决,而运用另一门学科的知识解决,问题就变得简单易行. 关键词:连续函数;行列式;矩阵;二次型 Applications of Continuity of Function in Advanced Algebra Zhou Yuxia (College of Mathematics and the Information Science, Northwest Normal University, Lanzhou 730000) Abstract: The mathematical analysis and advanced algebra are very important foundation courses of university mathematics special ?eld,some of the problems of both courses within the discipline, if only from the start are dif-?cult to resolve but used of the knowledge of other disciplines to solve, the problem becomes very easy. Key words: continuous function; matrix; determinant; quadratic form 本文记号说明:const: 常数;A T : 矩阵A的转置;A*:矩阵A的伴随矩阵; f(x) C(a,b):f(x)在(a,b)上连续.

高等数学课件:函数的连续性

高等数学课件:函数的连续性 1.7函数的连续性 教学目的:理解函数连续性的概念,会判断函数的连续性。掌握连续函数的四则运算,知道反函数及复合函数的连续性,掌握初等函数的连续性, 知道间断点的概念及分类,会判断其类型。 教学重点:函数连续性的概念, 连续函数的四则运算,知道反函数及复合函数的连续性. 教学内容: 1.6.1函数的连续性 1 函数在一点的连续性 xUx()xx定义1 设函数在点的某个邻域内有定义,自变量在点处有增量 yfx,()000 ,相应地函数值的增量 ,x ,,,,,yfxxfx()() 00 xx如果,就称函数fx()在点处连续,称为函数fx()的连续点。 lim0,,y00,,x0 x函数fx()在点处连续还可以描述如下。 0 xUx()设函数yfx,()在点的某个邻域内有定义,如果,就称函数 lim()()fxfx,000xx,0 xfx()在点处连续。 0 左连续及右连续的概念。 xlim()()fxfx,lim()()fxfx,如果,称函数fx()在点处左连续;如果,称函000,,xx,xx,00

x数fx()lim()lim()fxfx,在点处右连续。由于lim()fx存在的充要条件是,因此,根0,,xx,xxxx,,000 xx据函数连续的定义有下述结论:若函数yfx,()在点的某个邻域内有定义,则它在点处00 x连续的充分必要条件是在点处左连续且右连续。 0 2 区间上的连续函数 如果函数在开区间上每一点都连续,我们称函数在开区间内连续,如果函数开区间内连续,在区间的左端点右连续,右端点左连续,就称函数在闭区间上连续。 yx,sin(,),,,,例1 证明在内连续。 x,,,,,,x(,)证明,当有增量时,对应的函数值的增量,x ,,xx,,,,,,,,,yxxxxsin()sin2sincos ,,22,, ,,xx,x,,sin,由于, cos1x,,,,222,, ,,,xxx,,所以 02sincos2,,,,,,,yxx,,222,, 45 xx当时,由夹逼准则得,因此在点处连续,由于的任 ,,y0yx,sin,,x0 意性,在内连续。 yx,sin(,),,,, xya,例2 证明()在内连续。 (,),,,,a,0a,1 x证明,当有增量时,对应的函数值的增量,,,,,,x(,),x xxxxx,,,,,,,,yaaaa(1) x由于时,,因此 axa,1lnx,0 xxx, limlim(1)lim(ln)0,,,,,,yaaaxa000,,,,,,xxx xxya,ya,xx因此,在点处连续,由于的任意性,在内连续。 (,),,,, 1.6.2 函数的间断点

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

《数学分析》5第一章§3函数概念

授课章节:第一章 §3 函数概念 教学目的:使学生深刻理解函数概念。 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示方法; (2)牢记基本初等函数的定义、性质及其图象。会求初等函数的存在域,会分析初等函数的复 合关系。 教学重点:函数的概念。 教学难点:初等函数复合关系的分析。 教学方法:课堂讲授,辅以提问、练习、部分内容可自学。 教学程序: 引言:关于函数概念,在中学数学中已有了初步的了解。为便于今后的学习,本节将对此作进一步讨 论。 一 函数的定义 1.定义1 设,D M R ?,如果存在对应法则f ,使对x D ?∈,存在唯一的一个数y M ∈与之对应,则称f 是定义在数集D上的函数,记作:f D M →(|x y →). 函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f D 。即 {}()|(),f D y y f x x D ==∈。 2.几点说明 (1)函数定义的记号中“:f D M →”表示按法则f 建立D到M的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →。习惯上称x 自变量,y 为因变量。 (2) 函数有三个要素,即定义域、对应法则和值域。当对应法则和定义域确定后,值域便自然确定下来。因此,函数的基本要素为两个:定义域和对应法则。所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则。 例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同) 2)()||,,x x x R ?=∈ ().x x R ψ=∈(相同,对应法则的表达形式不同) 。 (3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域)。此时,函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。即“函数()y f x =”或“函数f ”。 (4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。a 称为()f a 的原象。 (5)函数定义中,x D ?∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x 值,可以对应多于一个y 值,则称这种函数为多值函数。本书中只讨论单值函数(简称函数)。 (6)定义1中的定义是Cauchy 于1834年给出。不是完美的、现代意义上的函数定义。事实上,函数定义的产生也经历了一个从无到有,从具体到抽象。从特殊到一般,从不完美到逐步完美的过程。这个进程

数学分析下——二元函数的极限课后习题

第二节二元函数的极限 1、试求下列极限(包括非正常极限): (1);(2); (3);(4); (5);(6)(x+y)sin; (7)x2+y2. 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=;(2)f(x,y)=(x+y)sinsin; (3)f(x,y)=;(4)f(x,y)= ; (5)f(x,y)=ysin;(6)f(x,y)=; (7)f(x,y)=. 。f(x,y)存在且等于A;2。y在b的某邻域内,有f(x,y)= 3、证明:若1 (y)则 f(x,y)=A. 4、试应用ε—δ定义证明 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) f(x,y)=A;(2)f(x,y)=A. 7、试求下列极限: (1);(2)(x2+y2)e-(x+y); (3)(1+)xsiny;(4). 8、试作一函数f(x,y)使当x+,y+时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3. 10、设f(x,y)在点(x0,y0)的某邻域U。()上有定义,且满足: (i)在U。()上,对每个y≠y0,存在极限f(x,y)=ψ(y); (ii)在U。()上,关于x一致地存在极限f(x,y)=(x)(即对任意ε>0,存在δ>0,当0<|y-y0|<δ时,对所有的x,只要(x,y)∈U。(),都有|f(x,y)-(x)|<成立). 试证明 f(x,y)=f(x,y).

数学分析课程简介

导言数学分析课程简介 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值 函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算, 利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究 一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累 时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时 期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的 ), 后面的学习就会容易一些; 只要

在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析(第三版),高等教育出版社,2001; [2] 陈纪修於崇华等编,《数学分析》(第二版)高等教育出版社,2001 [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析方法课开设.

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极 限与连续习题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所 以()x f 与()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x

Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。 授课章节:第一章 实数集与函数---§2数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加 以运用。 教学重点:确界的概念及其有关性质(确界原理)。 教学难点:确界的定义及其应用。 教学方法:讲授为主。 教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。 引言 上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章 §1实数的相关内容。下面,我们先来检验一下自学的效果如何! 1.证明:对任何x R ∈有(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. 2.证明:||||||x y x y -≤-. 3.设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤. 4.设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<. [引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。 本节主要内容: 1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。 一 区间与邻域 1.区间(用来表示变量的变化范围) 设,a b R ∈且a b <。

高三数学教案:第四节函数的连续性及极限的

第四节 函数的连续性及极限的应用 1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义, lim x x →f (x )存在,且 lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续. 2..函数f (x )在点x =x 0处连续必须满足下面三个条件. (1)函数f (x )在点x =x 0处有定义; (2)0 lim x x →f (x )存在; (3)0 lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值. 如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)?g(x),)()(x g x f (g(x)≠0)也在 点x 0处连续。 ②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。 4.函数f (x )在(a ,b )内连续的定义: 如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数. f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义: 如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有 + →a x lim f (x )=f (a ),在右端点x =b 处有 - →b x lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上 的连续函数. 6. 最大值最小值定理 如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值 7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、问题讨论 ●点击双基 1.f (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

相关文档
最新文档