数学分析--函数的连续性课件
《函数的连续》课件
闭区间上连续函数的零点定理
如果闭区间上的连续函数在区间两端取值异号,则函数在该区间内至少有一个零点。
03
函数连续性的应用
利用连续性求极限
总结词
利用连续性求极限是函数连续性应用的重要方面之一。
详细描述
在数学分析中,许多函数的极限可以通过利用函数的连续性来求解。例如,利用函数在某点的连续性 ,可以推导出该点的极限值。此外,连续函数的极限定理也是利用连续性求极限的重要工具。
二次函数
二次函数在定义域内也是连续的 。例如,函数$f(x) = x^2$在全 体实数域$mathbf{R}$上是连续 的。
分段函数的连续性
• 分段函数:分段函数在各段定义域的交界处可能不连 续,但在整个定义域内是连续的。例如,函数$f(x) = \begin{cases} x^2, & x \geq 0 \ x, & x < 0 \end{cases}$在全体实数域$\mathbf{R}$上是连续的 ,但在$x=0$处不连续。
函数连续性的性质
Байду номын сангаас
如果内层函数和外层函数都在 某点连续,则复合函数在该点
也连续。
02
反函数的连续性
01
复合函数的连续性
反函数存在的前提下,如果原函 数在某点连续,则反函数在该点
也连续。
02
函数连续性的判定
函数在某点连续的判定
函数在某点连续的定义
如果函数在某一点的极限值等于该点的函数值,则函数在该点连续。
无穷函数的连续性
• 无穷函数:无穷函数在无穷处的值可能不定义,因此不连续。 例如,函数$f(x) = \frac{1}{x}$在$x=0$处不连续。
数学分析第四章函数的连续性
第四章函数的连续性§1 连续性概念连续函数是数学分析中着重讨论的一类函数.从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识, 而应给出函数连续性的精确定义, 并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性.一函数在一点的连续性定义1 设函数f 在某U( x0 ) 内有定义.若lim x → x f ( x ) = f ( x0 ) , ( 1)则称f 在点x0 连续.例如, 函数 f ( x ) = 2 x + 1 在点x = 2 连续, 因为又如,函数limx →2f ( x) = limx →2( 2 x + 1 ) = 5 = f (2 ) .f ( x) =x sin1x, x ≠ 0 ,0 , x = 0在点x = 0 连续, 因为lim x →0 f ( x) = limx →0x sin1x= 0 = f ( 0) .为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 .注自变量的增量Δx 或函数的增量Δy 可以是正数, 也可以是0 或负数.引进了增量的概念之后, 易见“函数y = f ( x ) 在点x0 连续”等价于lim Δy = 0 .Δx →070第四章 函数的连续性由于函数在一点的连续性 是通 过 极限 来定 义的 , 因 而 也可 直接 用 ε- δ方 式来叙述 , 即 : 若对任给的 ε> 0 , 存在 δ> 0 , 使得当 | x - x 0 | < δ时有| f ( x) - f ( x 0 ) | < ε,( 2)则称函数 f 在点 x 0 连续 .由上述定义 , 我们可得出函数 f 在点 x 0 有 极限 与 f 在 x 0 连 续这两 个概 念 之间的联系 .首先 , f 在点 x 0 有极限是 f 在 x 0 连续的必要条件 ; 进一步说“, f 在 点 x 0 连续”不仅要求 f 在点 x 0 有极限 , 而且其 极限值应 等于 f 在 x 0 的 函数 值 f ( x 0 ) .其次 , 在讨论极限 时 , 我们假 定 f 在 点 x 0 的某 空心 邻域 U °( x 0 ) 内有 定 义 ( f 在点 x 0 可以没有定义 ) , 而“ f 在点 x 0 连续”则要求 f 在某 U( x 0 ) 内 ( 包 括 点 x 0 ) 有定义 , 此时由于 (2 ) 式当 x = x 0 时总是成 立的 , 所以在 极限定义 中的“0 < | x - x 0 | < δ”换成了在连续定义中的“ | x - x 0 | < δ”.最后 , (1 ) 式又可表示为lim x → xf ( x) = f lim x ,x → x可见“ f 在点 x 0 连续”意味着极限运算 lim x → x与对应法则 f 的可交换性 .例 1 证明函数 f ( x ) = x D( x ) 在 点 x = 0 连续 , 其 中 D ( x ) 为 狄 利 克 雷 函数 .证 由 f (0 ) = 0 及 | D( x ) | ≤ 1 , 对任给的 ε> 0 , 为使| f ( x ) - f ( 0) | = | xD( x ) | ≤ | x | < ε, 只要取 δ= ε, 即可按 ε- δ定义推得 f 在 x = 0 连续 . □相应于 f 在点 x 0 的左、右极限的概念 , 我们给出左、右连续的定义如下 : 定义 2 设函数 f 在某 U + ( x 0 ) ( U - ( x 0 ) ) 内有定义 .若lim x → x +f ( x) = f ( x 0 ) lim -x → xf ( x) = f ( x 0 ) , 则称 f 在点 x 0 右 ( 左 ) 连续 .根据上述定义 1 与定义 2 , 不难推出如下定理 .定理 4.1 函数 f 在点 x 0 连续的充 要条 件是 : f 在 点 x 0 既是 右连续 , 又 是 左连续 .例 2 讨论函数在点 x = 0 的连续性 .解 因为f ( x ) =x + 2 , x ≥ 0 , x - 2 , x < 0lim x → 0 +lim x → 0 -f ( x ) = lim x → 0 + f ( x) = lim x → 0 -( x + 2 ) = 2 ,( x - 2) = - 2 , 而 f (0 ) = 2 , 所以 f 在点 x = 0 右连 续 , 但 不左 连续 , 从 而 它在 x = 0 不 连续 ( 见●§1 连续性概念 71图 4 - 1 ) .□二 间断点及其分类定义 3 设函数 f 在某 U °( x 0 ) 内有定义 .若 f 在 点 x 0 无定义 , 或 f 在点 x 0 有 定 义而 不 连续 , 则称 点 x 0 为 函数 f 的间断点或不连续点 .按此定义以及上一段中关于极限与连续性之间联系的 讨论 , 若 x 0 为函数 f 的间断点 , 则必出现下列情形之一:图 4 - 1( i ) f 在点 x 0 无定义或极限 l im x → xf ( x ) 不存在 ; 0 ( ii ) f 在点 x 0 有定义且极限 lim x → xf ( x ) 存在 ① , 但 lim x → xf ( x) ≠ f ( x 0 ) .据此 , 我们对函数的间断点作如下分类 : 1. 可去间断点 若lim x → xf ( x ) = A ,而 f 在点 x 0 无定义 , 或有定义但 f ( x 0 ) ≠ A , 则称 x 0 为 f 的可去间断点 .例如 , 对于函数 f ( x ) = | sgn x | , 因 f ( 0) = 0 , 而lim x → 0f ( x) = 1 ≠ f (0 ) ,故 x = 0 为 f ( x ) = | sgn x | 的 可 去 间 断 点 . 又 如 函 数 g ( x ) =sin x, 由 于 xlim x → 0g ( x ) = 1 , 而 g 在 x = 0 无定义 , 所以 x = 0 是函数 g 的可去间断点 .设 x 0 为函数 f 的可去间断点 , 且 lim x → xf ( x ) = A .我们按如下 方法定 义一 个 0函数 f ^: 当 x ≠ x 0 时 , f ^( x ) = f ( x) ; 当 x = x 0 时 , f ^( x 0 ) = A .易 见 , 对 于函 数f ^, x 0 是它的连续点 .例如 , 对上述的 g( x) = sin x , 我们定义x则 g^在 x = 0 连续 .g ^( x ) = sin x x, x ≠ 0 , 1 , x = 0 ,2. 跳跃间断点 若函数 f 在点 x 0 的左、右极限都存在 , 但lim x → x +f ( x) ≠ lim x → x -f ( x) , 则称点 x 0 为函数 f 的跳跃间断点 .例如 , 对函数 f ( x ) = [ x ] ( 图 1 - 8) , 当 x = n ( n 为整数 ) 时有①这里所说的极限存在是指存在有限极限 , 即不包括非正常极限 .72第四章 函数的连续性lim x → n -[ x] = n - 1 , lim x → n +[ x] = n , 所以在整数点上函数 f 的左、右极限不相 等 , 从而 整数 点都是 函数 f ( x ) = [ x ] 的跳跃间断点 .又如符号函数 s gn x 在点 x = 0 处的左、右 极限 分别 为 - 1 和 1 , 故 x = 0 是 sgn x 的跳跃间断点 ( 图 1 - 3) .可去间断点和跳跃间断点统称 为第 一类 间断 点 .第一类 间断 点的特 点是 函 数在该点处的左、右极限都存在 .3. 函数的所有其他形式的间断点 , 即使得函数至少有 一侧极限 不存在的 那 些点 , 称为第二类间断点 .例如 , 函数 y = 1 当 x → 0 时不存在有限的极限 , 故 x = 0 是 y = 1的第二类x x 间断点 .函数 s in 1 在点 x = 0 处左、右极限都不存在 , 故 x = 0 是 s in 1的第二类x x间断点 .又如 , 对于狄利克雷函数 D( x ) , 其定义域 R 上 每一点 x 都 是第二类 间 断点 .三 区间上的连续函数若函数 f 在区间 I 上的每一点都连续 , 则称 f 为 I 上的连续函数 .对于闭区 间或半开半闭区间的端点 , 函数在这些点上连续是指左连续或右连续 .例如 , 函数 y = c, y = x , y = sin x 和 y = cos x 都是 R 上 的连 续 函数 .又 如 函数 y =1 - x 2在 ( - 1 , 1 ) 每 一点处都 连续 , 在 x = 1 为 左连续 , 在 x = - 1 为右连续 , 因而它在 [ - 1 , 1] 上连续 .若函数 f 在区间 [ a , b] 上仅有 有限 个第 一类间 断点 , 则称 f 在 [ a, b] 上 分 段连续 .例如 , 函数 y = [ x ] 和 y = x - [ x] 在区间 [ - 3 , 3 ] 上是分段连续的 .在§3 中我们将证明任何初等函数在其定义区 间上为 连续函数 .同 时 , 也 存 在着在其定义区间上每一点处都不连续的函数 , 如前面已提到的狄利克雷函数 .例 3 证明 : 黎曼函数R ( x) =1 , 当 x = p q qp 、q 为正整数 , p 6q / 为既约真分数 , 0 , 当 x = 0 , 1 及 (0 , 1 ) 内无理数 在 (0 , 1 ) 内任何无理点处都连续 , 任何有理点处都不连续 .证 设 ξ∈ ( 0 , 1) 为无 理数 .任给 ε> 0 不妨设 ε< 12, 满足 1 ≥ε的正 整q数 q 显然只有有限个 ( 但至少有一个 , 如 q = 2) , 从而使 R( x ) ≥ε的 有理数 x ∈(0 , 1 ) 只有有限个 至少有一个 , 如 12, 设为 x 1 , , x n .取δ = min | x 1 - ξ| , , | x n - ξ| ,ξ, 1 - ξ ,3 §1 连续性概念73则对任何 x ∈ U(ξ;δ) ( Ì ( 0 , 1) ) , 当 x 为有理数时有 R( x ) < ε, 当 x 为无理数 时 R ( x ) = 0 .于是 , 对任何 x ∈ U(ξ;δ) , 总有R ( x) - R(ξ) = R ( x ) < ε .这就证明了 R ( x ) 在无理点 ξ处连续 .现设 p 为 (0 , 1 ) 内任一有理 数 .取 ε0 =1 , 对任 何正 数 δ( 无 论 多么 小 ) , 在 q2 q Up q;δ 内总可取到无理数 x ( ∈ ( 0 , 1) ) , 使得 R( x ) - R pq = 1 q > ε0 . 所以 R ( x ) 在任何有理点处都不连续 .□习 题1. 按定义证明下列函数在其定义域内连续 :( 1) f ( x ) = 1; ( 2) f ( x ) = | x | .x2. 指出下列函数的间断点并说明其类型 :( 1) f ( x ) = x + 1 ; ( 2) f ( x) = sin x;x | x |( 3) f ( x ) = [ | cos x | ] ; (4) f ( x) = sgn | x | ;( 5) f ( x ) = sgn ( cos x ) ;x , x 为有理数 ,( 6) f ( x ) =( 7) f ( x ) = - x , x 为无理数 ; 1x + 7, - ∞ < x < - 7 , x , - 7≤ x ≤1( x - 1 )sin 1, 1 < x < + ∞ .x - 13. 延拓下列函数 , 使其在 R 上连续 :( 1) f ( x ) = x - 8 ; ( 2) f ( x) = 1 - cos x;x - 2 x 2( 3) f ( x ) = x cos 1.x2 24. 证明: 若 f 在点 x 0 连续 , 则 | f | 与 f 也在 点 x 0 连 续 .又问 : 若 | f | 或 f 那么 f 在 I 上是否必连续 ?在 I 上连续 , 5. 设当 x ≠0 时 f ( x) ≡ g( x ) , 而 f ( 0) ≠ g (0 ) .证明 : f 与 g 两者中 至多有 一个在 x = 0 连续 .6. 设 f 为区间 I 上的单调函数 .证明: 若 x 0 ∈ I 为 f 的间断点 , 则 x 0 必是 f 的第一类间 断点 .n n - 174第四章 函数的连续性7. 设函数 f 只有可去间断点 , 定义g( x ) = lim y → xf ( y) .证明 g 为连续函数 .8. 设 f 为 R 上的单调函数 , 定义g( x) = f ( x + 0 ) .证明 g 在 R 上每一点都右连续 .9. 举出定义在 [0 , 1 ]上分别符合下述要求的函数 :( 1) 只在 1 , 1 和 1三点不连续的函数 ;2 3 4 ( 2) 只在 1 , 1 和 1三点连续的函数 ;2 3 4 ( 3) 只在 1( n = 1 , 2 , 3 , )上间断的函数 ;n( 4) 只在 x = 0 右连续 , 而在其他点都不连续的函数 .§2 连续函数的性质一 连续函数的局部性质若函数 f 在点 x 0 连续 , 则 f 在点 x 0 有极 限 , 且极 限值 等于函 数值 f ( x 0 ) . 从而 , 根据函数极限的性质能推断出函数 f 在 U ( x 0 ) 的性态 .定理 4.2 ( 局部有界性 ) 若函数 f 在点 x 0 连续 , 则 f 在某 U( x 0 ) 内有界 . 定理 4 .3 ( 局部保号性 ) 若函数 f 在点 x 0 连 续 , 且 f ( x 0 ) > 0 ( 或 < 0 ) , 则 对任何正数 r < f ( x 0 ) ( 或 r < - f ( x 0 ) ) , 存 在 某 U ( x 0 ) , 使 得 对 一 切 x ∈ U( x 0 ) 有f ( x) > r ( 或 f ( x ) < - r) .注 在具体应用局 部保 号性 时 , 常 取 r = 12f ( x 0 ) , 则 ( 当 f ( x 0 ) > 0 时 ) 存在某 U( x 0 ) , 使在其内有 f ( x) > 12f ( x 0 ) .定理 4 .4 ( 四则运算 ) 若函数 f 和 g 在点 x 0 连续 , 则 f ± g , f ·g, 6f g( x 0 ) ≠ 0) 也都在点 x 0 连续 .以上三个定理的证明 , 都可从函数极限的有关定理直接推得 .g /( 这里 对常量函数 y = c 和函数 y = x 反复应用定理 4.4 , 能推出多项式函数P( x) = a 0 x + a 1 x + + a n - 1 x + a n和有理函数 R ( x ) = P( x)Q( x)( P , Q 为多项式 ) 在其定义域的每 一点都是 连续的 .同样 , 由 sin x 和 cos x 在 R 上的连续性 , 可推出 tan x 与 cot x 在其定义域的每0 §2 连续函数的性质75一点都连续 .关于复合函数的连续性 , 有如下定理 : 定理 4.5 若函数 f 在点 x 0 连续 , g 在点 u 0 连续 , u 0 = f ( x 0 ) , 则复合函 数 g f 在点 x 0 连续 .证 由于 g 在 u 0 连续 , 对任给的 ε> 0, 存在 δ1 > 0 , 使得当| u - u 0 | < δ1 时有| g( u) - g( u 0 ) | < ε . ( 1) 又由 u 0 = f ( x 0 ) 及 u = f ( x ) 在点 x 0 连续 , 故 对上述 δ1 > 0 , 存在 δ> 0 , 使得 当 | x - x 0 | < δ时有 | u - u 0 | = | f ( x ) - f ( x 0 ) | < δ1 .联系 ( 1 ) 得 : 对 任给的 ε> 0 , 存在 δ> 0 , 当 | x - x 0 | < δ时有| g ( f ( x ) ) - g( f ( x 0 ) ) | < ε . 这就证明了 g f 在点 x 0 连续 .□ 注 根据连续性的定义 , 上述定理的结论可表为lim x → xg( f ( x) ) = g lim x → xf ( x ) = g( f ( x 0 ) ) .( 2)例 1 求lim sin (1 - x 2) .x → 1解 sin ( 1 - x 2 ) 可看作函数 g( u) = sin u 与 f ( x ) = 1 - x 2的复合 .由 ( 2) 式 得lim sin ( 1 - x 2 ) = sin lim(1 - x 2) = sin 0 = 0 .□x → 1x → 1注 若复合函数 g f 的内函 数 f 当 x → x 0 时 极限 为 a , 而 a ≠ f ( x 0 ) 或 f 在 x 0 无定义 ( 即 x 0 为 f 的可去间断点 ) , 又外函数 g 在 u = a 连续 , 则我们仍可 用上述定理来求复合函数的极限 , 即有lim x → xg( f ( x ) ) = g lim x → xf ( x) .( 3)读者还可证明 : ( 3 ) 式 不 仅 对 于 x → x 0 这 种 类 型 的 极 限 成 立 , 而 且 对 于 x → + ∞ , x → - ∞或 x → x ±等类型的极限也是成立的 .例 2 求极限 :(1 ) lim2 - sin x; (2 ) lim2 - sin x .x → 0解 (1 ) limx → 0 x 2 - sin x x x → ∞= 2 - lim x → 0 xsin x = 2 - 1 = 1; x(2 ) lim 2 -sin x= 2 - lim sin x = 2 - 0 = 2 . □x → ∞ x x → ∞ x二 闭区间上连续函数的基本性质设 f 为闭区间 [ a , b] 上 的连续 函数 , 本 段中我 们讨 论 f 在 [ a , b] 上 的整 体 性质 .。
数学分析4.2连续函数的性质(讲义)
第四章函数的连续性2 连续函数的性质一、连续函数的局部性质定理4.2(局部有界性):若函数f在x0连续,则f在某U(x0)内有界.定理4.3(局部保号性):若函数f在x0连续,且f(x0)>0(或<0),则任何正数r<f(x0)(或r<-f(x0)),存在某U(x0),使得对一切x∈U(x0),有f(x)>r(或f(x)<-r).注:在应用保号性时,常取r=f(x0).定理4.4(四则运算):若函数f和g在x0连续,则f±g,f·g,f/g(g(x0)≠0)也在点x0连续.定理4.5:若函数f在x0连续,g在u0连续,u0=f(x0),则复合函数g(f(x))在点x0连续.证1:∵g在u0连续,∴对∀ε>0,有δ1>0,使当|u-u0|<δ1时有|g(u)-g(u0)|<ε;又u0=f(x0),及u=f(x)在点x0连续,∴对δ1,有δ>0,使当|x-x0|<δ时有|u-u0|=|f(x)-f(x0)|<δ1;∴对∀ε>0,有δ>0,当|x-x0|<δ时有|g(f(x))-g(f(x0))| <ε;∴复合函数g(f(x))在点x0连续.证2:∵u=f(x)在点x0连续,∴=x0;又u0=f(x0),∴u→u0 (x→x0);又g在u0连续,∴===g(f(x0));∴复合函数g(f(x))在点x0连续.复合函数极限公式:==g(f(x0)).例1:求sin(1-).解:sin(1-)=sin ((1-))=sin 0=0.注:若内函数f当x→x0时极限为a,而a≠f(x0)或f在x0无定义(即x0为f的可去间断点),又外函数g在u=a连续,则仍可应用上述复合函数的极限公式。
.例2:求极限:(1);(2).解:(1)==1.(2)==.二、闭区间上连续函数的基本性质定义1:设f为定义在数集D上的函数。
数学分析 函数的连续性(课堂PPT)
y
o
2
x0
x
o x0
x
y
o
x
12
二、函数的间断点
连续
[1] f (x)在x0有定义;
定义3 间断
若函数 f ( x)满足三个条件之一 : (1) f ( x)在点x0处无定义;
[2] lim f (x)存在; x x0
[3] lim x x0
f
(x)
f
( x0).
(2) lim f ( x)不;
2、 指出
y
x2 x x ( x 2 1)
在
x0
是第________类间
断点;在 x 1 是第______类间断点;在 x 1
是第_____类间断点 .
二、
研究函数
f
(
x
)
x, 1,
x x
1的连续性,并画出函数 1
的图形 .
2
29
三、 指出下列函数在指定范围内的间断点,并说明这些
间断点的类型,如果是可去间断点,则补充或改变函
(x) f
0)
(
f
x0 )
( x0
),
则称f ( x)在点x0处右连续.
定理 函数 f ( x)在 x0 处连续 是函数 f ( x)在 x0
处既左连续又右连续 .
2
7
lim f (x) A lim f (x) lim f (x) A
x x0
x x0
x x0
函数 f ( x)在 x0 处连续
x 0,在x 0处的连续性. x 0,
解 f (0 0) 0, f (0 0) 1,
y
f (0 0) f (0 0),
《数学分析》第四章 函数的连续性
第四章 函数的连续性(计划课时:1 2 时)§1 函数的连续性 ( 2时 )一. 函数在一点的连续性:1. 连续的直观图解:由图解引出解析定义.2. 函数在一点连续的定义: 设函数)(x f 在点0x 某邻域有定义. 定义 (用).()(lim 00x f x f x x =→)定义 (“δε-”定义.)定义 (用0lim 0=∆→∆y x ) 先定义x ∆和.y ∆例1 函数12)(+=x x f 在点20=x 连续.例2 函数⎪⎩⎪⎨⎧=≠=.0,0,0,1sin )(x x xx x f 在点00=x 连续. 例3 函数)()(x xD x f =在点00=x 连续.注: 若函数)(x f 在点0x 连续,则)()(lim 00x f x f x x =→,又因00l i mx x x x =→,从而)lim ()(lim 0x f x f x x x x →→=,即在)(x f 的连续点处极限符号与函数符号可交换运算的次序.3. 单侧连续: 定义单侧连续, 并图解.Th1 (单、双侧连续的关系)例4 ⎪⎩⎪⎨⎧<-=>+=.0 ,2,0,,0 ,2)(x x x A x x x f 讨论函数)(x f 在点00=x 的连续或单侧连续性. 二.间断点及其分类: 图解介绍间断点的分类.跳跃间断点和可去间断点统称为第一类间断点, 其他情况(即)0(0+x f 或)0(0-x f 中至少有一个不存在)称为第二类间断点. 例5 讨论函数x x f sgn )(=的间断点类型.例6 延拓函数,sin )(xxx f = 使在点00=x 连续. 例7 讨论函数][)(x x f =的间断点类型.例8讨论函数xx f 1sin )(=的间断点类型.例9讨论Dirichlet 函数)(x D 和Riemann 函数)(x R 的连续性. 三.区间上的连续函数:开区间上连续, 闭区间上连续, 按段连续.Ex [1]P 73 1—5.§2 连续函数的性质一、连续函数的局部性质:叙述为Th 1—4.1. 局部有界性:2. 局部保号性:3. 四则运算性质:4. 复合函数连续性:Th 4 若函数f 在点0x 连续,函数g 在点0u 连续,且)(00x f u =,则复合函数f g 在点0x 连续. ( 证 )注: Th 4 可简写为 ()().)()lim ()(lim )(lim 0000x f g x f g x f g x f g x x x x x x =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=→→→例1 求极限 ).1sin(lim 21x x -→例2 求极限:⑴ ;s i n 2l i m 0x x x -→ ⑵ .s i n 2l i m xxx -∞→例3 求极限 .)1ln(lim0xx x +→ (x ln 的连续性见后).二、闭区间上连续函数的基本性质:1. 最值性: 先定义最值. Th 5 ( 最值性 ) 系 ( 有界性 )2. 介值性: 定义介值. Th 6 ( 介值性 )连续函数的值域, 连续的单调函数的值域. 系 ( 零点定理 )例4 证明: 若,0>r n 为正整数,则存在唯一正数0x ,使得r x n=0(0x 称为r 的n 次正根(即算术根),记作n r x =0).例5 设f 在],[b a 上连续,满足],[]),([b a b a f ⊂,证明:],,[0b a x ∈∃使得00)(x x f =.二. 反函数的连续性:Th 7 若函数f 在],[b a 上严格递增( 或减 )且连续, 则其反函数1-f 在相应的定义域[])(),(b f a f (或[])(),(a f b f )上连续. ( 证 )关于函数αx x x y , , arcsin =等的连续性Ex [1]P 80—81 1—10四. 函数的整体连续性 —— 一致连续: 1. 连续定义中δ对0x 的依赖性 :例6 考查函数xx f 1)(=在区间] 1 , 0 (上的连续性.对], 1 , 0 (0∈∀x 作限制,120≤<x x 就有 . 2211 20000000x x x x x x x xx x x x x -=-≤-=- 对0>∀ε , 取 }. 2, 2 min{020xx εδ=这里δ与0x 有关, 有时特记为),(0x εδ. 本例中不存在可在区间] 1 , 0 (上通用的δ, 即不存在最小的( 正数 )δ.例6 考查函数xx f 1)(=在区间) , [∞+c )0(>c 上的连续性.本例中可取得最小的, 也就是可通用的 }. 2, 2 min{2cc εδ= 该δ却与0x 无关, 可 记为)(εδ.2. 一致连续性:定义 ( 一致连续 ) 顺便介绍一致连续与连续的关系.用定义验证一致连续的方法: 对0>∀ε, 确证)0(>δ存在. 为此, 从不失真地放大 式 )()( x f x f ''-'入手, 使在放大后的式子中, 除因子 x x ''-'之外, 其余部分中不含 有x '和x '', 然后使所得式子ε<, 从中解出.x x ''-'例8 验证函数 )0( )(≠+=a b ax x f 在) , (∞+∞-内一致连续.例9 验证函xx f 1sin )(=在区间 )10( ) 1 , (<<c c 内一致连续. 证 ,c o s 2s i n 2 1s i n 1s i n 22121212121212121c x x x x x x x x x x x x x x x x -≤-≤+-=-例10 若函数)(x f 在有限区间),(b a 内一致连续, 则)(x f 在),(b a 内有界.3. 一致连续的否定: 否定定义. 例11 证明函数xx f 1)(=在区间) 1 , 0( 内非一致连续. 证法一 ( 用一致连续的否定定义验证 ) 取),1( ,10<∀=δε 取}, 21, min{δ='x与,2x x '='' 便有 .22δδ<≤'=''-'x x x 但 .12121 11 0ε=>≥'=''-'=''-'x x x x x证法二 ( 用例10的结果 ).4. Lipschitz 连续与一致连续: 定义Lipschitz 连续.例12 函数)(x f 在区间I 上-L 连续, )( x f ⇒在I 上一致连续. ( 证 )但函数)(x f 在区间I 上一致连续时, 未必有)(x f 在I 上-L 连续. 例如: 函数x x f =)(在区间) 1 , 0 (内一致连续.(为证明x 在区间) 1 , 0 (内一致连续, 先证明不等式: ,0, 21≥∀x x 有不等式 . 2212121x x x x x x -≤-+ 事实上, 21x x ≥时, ,222122212121x x x x x x x x x x -=-+≤-+ 同理, 21x x ≤时, 有.221211212121x x x x x x x x x x -=-+≤-+利用该不等式, 为使 =-221)()( x f x f ,222121ε<-+x x x x 只要 . 221ε<-x x)却不是-L 连续. 事实上, 倘存在L >0, 使对 ), 1 , 0 (, 21∈∀x x 有 , )()( 212121x x L x x x f x f -≤-=-则当21x x ≠时,应成立 .121L x x ≤+但若取,4 ,12221nx n x ==就有 ). ( ,3121∞→∞→=+n nx x 矛盾. 5. 一致连续的判定:Th 8 ( Cantor ) 若函数)(x f 在闭区间],[b a 上连续, )( x f ⇒在],[b a 上一致连续. 例13 见[1]P80例10.Ex [1]P 102 8,9,10.§3 初等函数的连续性回顾基本初等函数中, 已证明了连续性的几个函数. 指数函数和对数函数的连续性. ( 证 )一. 初等函数的连续性:Th1 一切基本初等函数都在其定义域上连续. Th2 任何初等函数在其有定义的区间上是连续的.註: 初等函数的连续区间和间断点: 初等函数的间断点是其连续区间的开端点. 闭端点是其单侧连续点. 例1 求函数2ln 1)(-+=x x x f 的连续区间和间断点.解 ). , 3 () 3 , 2 () 2 , 1 () 1 , 1[∞+⋃⋃⋃-=f D∴ )(x f 的连续区间为: ) 1 , 1[-、) 2 , 1 (、) 3 , 2 (和) , 3 (∞+. 间断点为: 2 , 1=x 和3. ()( x f 在点1-=x 右连续).二. 利用函数的连续性求极限:例2 .cos )1ln(lim20xx x +→例3.1111lim 0⎪⎪⎭⎫ ⎝⎛--++→x x x x x (作倒代换) .1x t = 例4 ().1lim sec 0xctgxx tgx +→ 解 I = ()().)1(lim )1(lim 1sec lim 0sec 0e e tgx tgx xctgxx xctgx x x ==+=+→→→例5 ().sin 1sinlim x x x -++∞→解 =-+x x sin 1sin .21cos 21sin 2xx x x ++-+,021lim sin 21sin lim ,121cos=-+=-+≤++∞→+∞→xx x x x x x x∴I = .0Ex [1]P 84 1,2;。
高中数学(人教版)第4章函数的连续性连续函数的性质课件
§1 连续函数的性质
一、连续函数的局部性质
二、闭区间上连续函数的 性质 三、反函数的连续性 四、一致连续性
*点击以上标题可直接前往对应内容
在本节中 , 我们将 介绍连续函数的局部 性质与整体性质 .熟练 地掌握和运用这些性 质是具有分析修养的 重要标志.
§1 连续函数的性质
证 因为 f 在 x0 连续, 所以对正数 0 f (x0 ) r , 存在 0, 当 x ( x0 , x0 ) 时, 有 | f ( x ) f ( x0 ) | 0 f ( x0 ) r , 于是证得 f ( x ) r 0.
连续函数的局部性质
所谓连续函数局部性质就是指: 若函数 f 在点x0 连续(左连续或右连续), 则可推知 f 在点 x0 的某 个局部邻域(左邻域或右邻域)内具有有界性、保 号性、四则运算的保连续性等性质.
连续函数的局部 性质
后退 前进 目录 退出
连续函数的局部 性质
定理4.2(局部有界性)
若函数 f 在点 x0 连续, 则f 在某邻域U ( x0 ) 上有界.
连续函数的局部 性质
(2) 若 g( u) 在 u0 连续 , lim f ( x ) u0 , 则有
x x0
x x0
lim g ( f ( x )) g ( u0 ) g ( lim f ( x )).
x x0
(* )
事实上,只要补充定义(或者重新定义) f ( x0 ) u0
定理4.6(最大、最小值定理)
若函数 f ( x ) 在闭区间[a, b]上连续, 则 f ( x ) 在[a, b]上有最大、最小值.
这个定理刻画了闭区间上连续函数的一个深刻的
《函数连续性》课件
02
函数连续性的判定
函数在某点连续的判定
总结词
极限存在准则
详细描述
如果函数在某点的左右极限存在且相等,则函 数在该点连续。
总结词
四则运算连续性
详细描述
函数的四则运算保持连续性,即两个连续函数进行 加、减、乘、除运算后仍为连续函数。
复合函数连续性
总结词
详细描述
复合函数在某点连续,当且仅当内外函数在该点都连续 。
《函数连续性》ppt课 件
contents
目录
• 函数连续性的定义 • 函数连续性的判定 • 函数连续性的应用 • 函数连续性的扩展
01
函数连续性的定义
函数连续性的数学定义
总结词
描述函数在某点或某范围内的极限状 态
详细描述
函数在某一点或某范围内的极限状态 ,如果函数在这一点或这个范围内的 极限值等于该点的函数值,则函数在 该点或该范围内连续。
详细描述
一致连续性是指在函数的整个定义域内,对 于任意给定的正数ε,都存在一个正数δ,使 得当|x'-x''|<δ时,有|f(x')-f(x'')|<ε。也就是 说,无论x'和x''在定义域内取何值,只要它
们足够接近,函数值的变化就会足够小。
紧致性定理
总结词
紧致性定理是函数连续性的一种重要性质,它表明在闭 区间上的连续函数必定可以取到其最大值和最小值。
函数连续性的几何意义
总结词
表示函数图像在某点或某范围的连续变化
详细描述
函数连续性的几何意义可以理解为函数图像在某一点或某范围内没有间断、断裂或跳跃,图像平滑过 渡。
函数连续性的性质
函数的连续性(125)
介值定理
总结词
介值定理是连续函数的一个重要性质,它表 明如果函数在区间两端取值介于两个常数之 间,则该区间内必存在至少一个介值点。
详细描述
介值定理可以表述为,如果函数$f(x)$在区 间$[a, b]$上连续,且存在两个常数$m, M$,使得$m leq f(x) leq M$对所有$x in [a, b]$成立,则存在至少一个$c in (a, b)$, 使得$f(c) = m + frac{M - m}{2}$。这个定 理在解决一些优化问题时非常有用。
- x_2| < delta$时,有$|f(x_1) - f(x_2)| < epsilon$。
紧致性
要点一
总结词
紧致性是指函数在某个区间内是紧致的,即函数在该区间 内既有上界又有下界,且在该区间内任意子集都具有有限 性。
要点二
详细描述
紧致性是实数理论中的一个重要概念,它描述了一个集合 的有限性质。具体来说,如果一个函数在某个区间内既有 上界又有下界,并且在该区间内任意子集都具有有限性, 则称该函数在该区间内是紧致的。紧致性在数学分析中有 着广泛的应用,例如在证明极限定理、一致连续定理等方 面都有重要的应用。
THANKS FOR WATCHING
感谢您的观看
05 连续性的扩展概念
一致连续性
总结词
一致连续性是指函数在定义域内的每一点都 连续,且在整个定义域上具有一致的连续性 。
详细描述
一致连续性是比连续性更强的数学性质,它 要求函数在定义域内的每一点都连续,并且 在整个定义域上具有一致的连续性。也就是 说,对于任意给定的正数$epsilon$,存在一 个正数$delta$,使得当$x_1, x_2$满足$|x_1
第1节连续性概念
什么样的函数可用代入法求极限?
函数连续的概念
§1 连续性概念 §2 连续函数的性质 §3 初等函数的连续性
首页
×
客观世界中许多量的变化都是循序渐进的. 如气温随 时间的变化规律、有机体随时间的生长规律等变量. 当自变量时间 t 变化无限小 这种连续变化的特点是: 时,这些规律变量的变化也无限小.
§1 连续性概念
而不连续, 则称点 x0 为函数 f 的间断点或不连续点.
间断点的分类 1.可去间断点
0
lim f ( x ) A,而 f 在点 若x x
x0 无定义, 或有定义但
f ( x0 ) A, 则称 x0 为 f 的可去间断点.
lim f ( x ) A, 设 x0 为函数 f 的可去间断点, 且 x x0 ˆ: 我们按如下方法定义一个函数 f ˆ ( x ) f ( x ); 当x x 时, f
0
ˆ ( x ) A. 当 x x0 时, f 0 ˆ , x0是它的连续点. 易见, 对于函数 f
首页
×
间断点的分类 2.跳跃间断点 若函数 f 在点 x0的左、右极限都存在,但
x x0
lim f ( x) lim f ( x),
x x0
则称点 x0 为函数 f 的跳跃间断点.
如何描述?
0
.
x0
x
可用极限概念描述
首页
×
一、函数在一点的连续性 1.定义1(P69) 设函数 f 在某U (x0 )内有定义, 若
x x0
lim f ( x ) f ( x0 )
则称 f 在点 x0 连续.
注1 函数 f 在点 x 0 连续,则 x 0 必属于 f 的定义域 .
数学分析第四章函数的连续性
数学分析第四章函数的连续性函数的连续性是数学分析中一个重要的概念,它描述了函数在其中一点附近的行为。
在本章中,我们将讨论函数的连续性及其性质,并介绍一些与连续性相关的重要定理。
在数学分析中,函数的连续性可以用一种直观的方式来理解。
如果在一个区间内,函数的图像是连续的、没有断点的,那么我们就可以说这个函数在这个区间内是连续的。
如果函数在其中一点处发生突变或跳跃,那么我们就认为函数在该点处不连续。
首先,我们来定义函数在其中一点处的连续性。
设函数f(x)在点a 处有定义,则我们说f(x)在点a处连续,如果满足以下三个条件:1.f(a)存在,即函数在点a处有定义;2. lim(x→a) f(x)存在,即函数在点a处的极限存在;3. lim(x→a) f(x) = f(a),即函数在点a处的极限等于函数在点a 处的取值。
根据这个定义,我们可以得出一些常见函数的连续性。
例如,多项式函数、三角函数、指数函数和对数函数都是连续函数。
此外,利用连续函数的相加、相乘、相除和复合运算,我们可以得到更多的连续函数。
接下来,我们来讨论一些与连续性相关的重要定理。
首先是介值定理。
该定理指出,如果一个函数在一个闭区间内连续,并且函数在这个区间两个端点处的值有一正一负,那么在这个区间之内,函数必然存在一个零点。
该定理的应用非常广泛,例如在实际问题中解方程、求极值等情况下都可以通过介值定理来找到解。
其次是零点定理。
该定理指出,如果一个函数在一个闭区间内连续,并且函数在这个区间两个端点处的值异号,那么在这个区间之内,函数必然存在一个零点。
零点定理是介值定理的特殊情况,它对于函数的零点存在性给出了一个更加明确的条件。
另一个重要的定理是最值定理。
该定理指出,如果一个函数在一个闭区间内连续,那么在这个区间之内,函数必然存在最大值和最小值。
最值定理告诉我们,在一定范围内,连续函数的值是有上下界的。
最后,我们介绍一个重要的定理,即连续函数的保号性定理。
第二讲函数的连续性中值定理积分
第二讲 函数的连续性 中值定理 积分一.连续性 定理:设()f x 在[,]a b 上Riemann 可积,则(,)[,]()a b a b αβαβ∀⊂≤<≤,0(,)x αβ∃∈使()f x 在0x x =处连续。
证明:作分划010:n x x x x nβααβ-∆=<=+<<= 。
因()f x 在[,]a b 上Riemann 可积,取102βαε-=>,存在14n ≥,使1(1)(1)11()2n i i i M m n βαβα=---<∑(其中1,1,(1)(1)[][]{()},inf {()}i i i i ii x x x x x x M sup f x m f x --∈∈==,以下类似定义。
) 所以1(1)(1)111()22n i i i n M m n =-<≤-∑,因此至少有三个i ,使(1)(1)1i iM m -<。
取110,i n <<使11(1)(1)1i i M m -<。
作区间11111[,][,]i i x x αβ-=,则()f x 在11[,]αβ上Riemann 可积。
取112202βαε-=>,存在24n ≥,使1(2)(2)111121()4n iii M m n βαβα=---<∑于是2(2)(2)2212()42n i i i n n M m =--<≤∑,因此至少有三个i ,使(2)(2)12iiM m -<。
取220,i n <<使22(2)(2)12i i M m -<。
如此继续可以得到一个闭区间套 11[,][,][,]n n αβαβαβ⊃⊃⊃使得(1)4n n nβαβα--≤;(2)()f x 在[,]n n αβ上的上下确界满足()()1n n i i M m n -<。
由闭区间套定理知01[,]{}n n n x αβ∞== 。
微积分学P.P.t标准课件12-第12讲函数的连续性
THANKS
感谢观看
复合函数在定义域内连 续,则其复合函数也连 续。
03
连续函数的极限值等于 该函数的极限值。
04
连续函数的定积分存在 。
连续函数的图像特征
01
02
03
04
连续函数的图像是一条连续不 断的曲线。
连续函数在定义域内的任意两 点之间都可以画出一条线段, 该线段位于曲线上或者与曲线
相切。
连续函数的图像在定义域内不 会出现间断点或垂直渐近线。
如果函数在某一点处的极 限值等于该点的函数值, 则函数在该点连续。
函数在区间连续
如果函数在区间内的每一 点都连续,则函数在该区 间连续。
左连续与右连续
如果函数在某一点的左侧 或右侧的极限值等于该点 的函数值,则函数在该点 左连续或右连续。
连续函数的性质
01
连续函数的和、差、积 、商仍为连续函数。
02
x1和x2,只要|x1 - x2| < δ,就有|f(x1) - f(x2)| < ε,则函数在该区间
上一致连续。
常见函数的连续性判定
一次函数的连续性
一次函数在其定义域内是 连续的。
二次函数的连续性
二次函数在其定义域内是 连续的,但在其拐点处可 能不连续。
分段函数的连续性
分段函数在其定义域内是 连续的,但需要注意在分 段点处的连续性。
利用连续性证明不等式
利用连续性证明不等式的性质
通过函数的连续性,可以证明一些不等式。例如,如果函数 在某区间上连续且单调递增,那么在该区间上任意取两个数 x1和x2,都有f(x1)≤f(x2),从而证明了函数的单调性。
《数学分析》第四章函数的连续性
《数学分析》第四章函数的连续性《数学分析》第四章主要讨论函数的连续性。
连续性是一个基本概念,它是描述函数在其中一点附近的性质的重要工具。
本章内容将从函数的连续性定义开始,通过研究连续函数的运算性质,以及间断点的分类和性质,深入探讨函数的连续性的各种特点和性质。
首先,我们来回顾函数的定义。
设有函数f(x),如果对于任意给定的ε>0,存在一个δ>0,使得当,x-x0,<δ时,有,f(x)-f(x0),<ε,那么我们称函数f在点x0处连续。
这个定义非常重要,它不仅是刻画函数连续性的数学工具,也是我们研究函数性质的基础。
其次,我们探讨连续函数的运算性质。
常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等一些基本函数都是连续函数。
利用这些基本函数的连续性,可以通过运算和复合等方法构造出更多的连续函数。
比如,两个连续函数之和、差、积和商仍然是连续函数,连续函数的复合函数也是连续函数。
这些运算性质是我们运用函数的连续性进行问题求解的重要工具。
然后,我们研究连续函数的间断点。
函数的间断点可以分为可去间断点、跳跃间断点和无穷间断点三种情况。
对于可去间断点,函数在该点的极限存在且有限,可以通过改变函数在该点的定义来使函数在该点连续。
跳跃间断点指的是函数在该点的左右极限存在但不相等,这种间断可以看作是函数的一个突变点。
无穷间断点则是函数在该点的极限为正无穷大或负无穷大,函数在该点附近发散。
研究间断点有助于我们了解函数的局部性质,并在问题求解中进行函数的优化和极限的计算。
最后,我们来讨论函数连续性的性质。
将函数的定义和运算性质与间断点的分类和性质综合起来,我们可以得到一些重要的性质。
首先是介值性定理,它指出连续函数在区间上将取到任意两个值之间的所有值。
然后是最值定理,它指出连续函数在闭区间上一定有最大值和最小值,并且能够取到这些值。
最后是连续函数的保号性质,它指出如果连续函数在其中一点取正(或负)值,那么在该点附近的函数值也将一直保持正(或负)值。
函数连续性课件
与路程x(单位:km)之间的关系为:
f
(x)
5 1.2x, 13.4 2.1(x
7)
0
x
x
7
7
(1)求 lim f (x) x7
(2)f (x) 是连续函数吗?
《应用数学》
课前反馈 引入教学 新知探索 测试检验 实际应用 拓展梳理
[出租车费]
解
因为 lim f (x) lim (5 1.2x) =13.4
17、18世纪是数学家的英雄时期,并取得了丰硕的成果 ,构成了庞大的数学分析分支.但它从概念到证明都是不够严 密的.在19世纪前后,波尔察诺、柯西、维尔斯特拉斯等人为 了使微积分更严密,发现算术本身是有巩固基础的,可以在 算术概念的基础上重新分析.这样他们正确地抓住了极限与连 续性是两个本质的概念。正如现在我们知道的,极限与连续 性是两个孪生兄弟.
x00
x00
lim f (x) lim (4.2x 420) 420
x00
x00
lim f (x) lim f (x)
x00
x00
所以,函数 f(x) 在 x=0 处不连续。
《应用数学》
课前反馈 引入教学 新知探索 测试检验 实际应用 拓展梳理
[出租车费]
设某城市出租车白天的收费y(单位:元)
连续是的数学基础概念之一
连
续
是植根于工业生活骨髓的概念之一
连续是对世界认知的重要概念
《应用数学》
作业
1
在线测试
2
连续的现实例子
3 不连续应该如何认识
《应用数学》
请各位专家批评指正!
连续,否则称函数f(x)在点x0间断。
如果函数f(x)在开区间(a,b) 内每点连续,则称函数
数学分析二元函数的连续性
lim f(x ,y ) f(0 ,0 ),
(x ,y ) (0 ,0 )
故函数在(0,0)处连续.
例4 讨论函数
f(x,y)x2xyy2, x2y20
0,
x2y20
在(0,0)的连续性.
解 取 ykx
lim
x0
x
2
xy
y2
y0
lxim0 x2
kx2 k2 x2
ykx
1
k k
2
其值随k的不同而变化, 极限不存在.
这里条件 "D 是一区域" 是必要的. 若D不是 区域, z = f (X)可能不是通常意义下的连续曲面.
例. 设 D = {(x, y) | x, y 均为有理数} R2. z =f (x, y)
是定义在 D 上的, 在 D 上恒等于1, 在别的点上
无定义的函数, 即
如图 z
1
f (x, y) =
易知, 例2中 f (x, y)在(0, 0)间断(极限不存在), 例 1 中 ,f(x ,y ) xsyi1 n在x 直 y 0 上 线
x y 每一点都间断.
注
1. 二元函数 f (X)在 X0 连续必须满足三个条件. 在 X0 有定义, 在 X0 的极限存在, 两者相等, 定义可推广到三元以上函数中去.
续。又设 x x(t), y y(t) , x 和 y 的值域在 D 内,并且
当 t t0 时 x(t0 ) x0 , y(t0 ) y0 ,而 x, y 却在 t0 连续。则复合
函数在 t0 连续。
例1
求极限
lim
x1
x y xy
.
y
y2
o
x
函数的连续性(113)
01
02
03
连续函数图像是封闭或 半封闭的,即函数的值 域是闭区间或半开半闭
区间。
连续函数图像在定义域 内的任意一点处都是可 微的,即该点处的切线
斜率存在。
连续函数图像在定义域 内的任意一点处都是单 调的,即函数在该点处 的导数大于等于0或小于
等于0。
连续函数图像的绘制方法
01 02 03 04
首先确定函数的定义域和值域,确定函数的表达式。
函数在区间上的连续性
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
判断函数在区间上连续的方法
检查区间内每一点的左右极限是否存在,并且是否等于该点的函数值。
连续函数的基本性质
连续函数的和、差、积、商 仍为连续函数。
1
连续函数的复合函数仍为连 续函数。
连续函数的反函数仍为连续 函数(如果反函数存在的话 )。
根据函数的表达式,在坐标系上标出关键点,如极值点、拐点等。
使用平滑的曲线将这些关键点连接起来,形成完整的连续函数图像。 可以使用计算机软件如Matlab、Python等绘制连续函数图像,以获
得更精确和美观的结果。
04 连续性的应用
在微积分中的应用
极限运算
函数的连续性是研究函数极限的重要基础,通过连续性可以更好地 理解函数在某一点或某一区间的变化趋势。
有限覆盖定理
总结词
有限覆盖定理是指对于一个开覆盖的集合,总可以选取有限个开子集来覆盖整个集合。
详细描述
有限覆盖定理是实数理论中的一个基本定理,它表明对于一个开覆盖的实数集,总可以 选取有限个开子集来覆盖整个集合。这个定理在实数理论、微积分和数学分析中有着广
泛的应用,是研究函数连续性和可积性的重要工具。